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ABSTRACT

We study the question of entropy stability for discrete approximacions to
hyperbolic systems of conservatien laws. We gquantify Che amount of aumerical
viscosicy present in such schemes, and relate it to their entrepy stability by
means of comparison. To this end, twoe mein ingredients are used: the entropy
variables and the econstruction of cgercaln entropy conservative achemes In
terms of plecewise—linear finite element approximations., We then show that
conservative schemes are entropy stable, 1f and—~for three=polnt schemes—-
only 4if, rthey contain more numerical wviscosity Chan the zbove mentioned

entropy conservative omes.

1. THE ENTROFY VARIAELES

Ye consider semi-discrete schemes of the form

I 2
at B = b Ifu+1.ﬁ fu—l.-"p_]’ o,

which &re consistent wwith the evetem of conservation laws

B ] B =
Here, £ = [(u) = {fl"“’fH}T i & smooth flux function of the coneervative
variables hu z ul{x,t) = (u1.+++,uu}T, quL} Jdenote the discrete soclution
Ay Sl % :
along the gridline (Iy.t} with hxﬂ E E'E1v+1 jﬂ-l} being the



(1)
fu4-bi

variahle meshsize, and iz the Lipschitz continuouws numecical flux

consistent with differencial ooe

N e T E(u,u,.u,u) = EQu). (3]

He are concetnsed here with the entrvopy stability question of such

Fluld be an entropy pair

schemes. To this end, lec {0 = Uiu), F

asgociated with che system {20, such chat
T
uf =F, U » 0. (&)
[N

We ask wherher the scheme (1) iz entropy steble w.r.t. such palir, io the sense

that it satisfies a discrete entropy inequalicy of the form

d ! o £ i
at vy, (2 Bx Fonty™ Pl L0 i

with F

u+1j2 being & consiscent numerical entrepy flux

F u

u4-¥2= Fi“u—ﬂ+1:---= u+p}! Flu,uy..n,u) = Flug, (6)

1f, in partiecular, equalicy takes place ILn (5), we say that the scheme (1) is

entropy conservative, We note in pesssing thsat if it helds for a large enmough

class of entropy pairs, such a discrete entropy imequality is intimately

(l)The same notations are used Ffor differential and discrete £luxes; the
distinetion between the two is by the sumber af thelr srguments.



related to boath guestions of convergence toward a limit solution as well as
thiz limit solution bBeing the unigue phyeically relevant one, e.g. [1], [2],
[3].

Making wuse of the entropry pair {4), HMock [4] {seec alse [3]), has
suggested the Eollowing procedure to gymmetrize the system (21,

Define the entropy woariables

v = wlu) =-%% (u). (7Y}

Thanks to the convexity of Ulw) the mapping w+v iz one-to-one. Hence,
one can make the chanpe of variables u = w(v) which puts the sysrem (2) into

its equivalent symmetric form

= lw(m)] + = [g(v)] =0, g(v) = £aiv)). (8)

The system (8) 1= symmetric in the sense that the Jacobians of Lis Cemporal

and =zpatisl fluxes are
H = H(v) =.§; [u(v}] » O, B3 B(v) =.§F latv)]. (9)

Indeed, 1f we introduce the s¢-called poteatial functions

o = #0v) = viulv) — Ululv})
(10)

Blv) = viglv) — Flulv}),

Y



then making use of {4) we find

ufwl =-§% '
Crl
_ oy
g['-.‘r'] _ﬁ ]

and hence the Jacohians Hiv) and Biv) din {9), are the symmetric Hessiens

of  $lv) and v}, respactively.

Example 1.1. ¢Conslder che Euler equacione

/] m
g FaL b EE_+ - 0 = {y = 13[E = EEI (127
g O PR B ’ F L Zptt
m
E — | Ep -
: {E+p)}

asserting the c¢onservation of the density p, momeatum = and enecgy L.

Harten [&] has noted that this system 18 equipped with a family of entropy

pairs; Godunow [T7] and Hughes et &1, [8] have studied the canonical choice
(U= -p5, F=—ms), T = la(p '3, (13}

which lecads to the entropy variables

P o e
v E + = (5 —-v - 1)

vE % = =l -m (14]



The loverse mapping =y can be found in [8]. We call attentien Eto the
fact that the corresponding potential paie in this cege i given by
(b = {y = 1)=py § = 0y — 1)=m), and hence, in view of (11), Euler cquations

coan be rewrittem im the intriguing [orm [10]
i—-[ﬁrad ] + E—-[grad m] = 0. (15]
ak 1.l'|:I ix% i

Returning to our guestion of entropy stability, rche answer provided in
19], [10], consists of two maln iangredients: the uee of the encropy variables
described sbove, and the comparison wich appropriste entropy conservative
schemes. To this end we proceed as follows.

We wse the entropy veriables——rather than the conservative ones——as our
primary dependent quencities, by making the change of variadles w = utvu},

g.f., [111, [12]. The scheme {1} is now equivalently expressed as

d e - -
= uu(t} vy [gﬂ_ 3, By- ) u = ulv {£}}, (16)
with a numerical flux
= RN [ A = - TER 17
g'l.""lllrz g{vﬂ'-p'l'l’.." 'l.i'+P-}l 5{ 3V } :El: rl,l:l:".":l :I# { :I

consistent with the differeatlal one

E'-."-"p“m+++ :E} =.E':""':|:- gl::v::l = f{uiujj- '[..I-E.:'



Defining

-

T . .
T 15~ Vb1 Byt hﬁ b ) (19}

ut+l

then the following identity, criginally due to Osher [13], see also [9], holds

d = ,_1 - = T -
= Ulw (£)) + ey [F,. If, L 1.-’2] AVoe bBus Y T By Ly
(200

d ¥

I-||_|.|.]..I|'2E y - 'J-":"'ru:l-

W
W+l

Ie wiew of {10}, F is a consiscent numerical entrepy flux &nd this

';I'i']-,-"z
brings us to {see [13], [9, Theorem 5.2]]

Thoorem 1.2: The conservative scheme (16) is entropy conservative, if

and==for three-point schemes (p = 1}==gnly if, the following egqualicy holds

T
AVt Jj'%u-t- Ya = A% Ly (21)

2. THE SCALAR PROBLEM
We dispuse the entropy stability of secalar coneervative schoemes, N = 1.

Defining

3 [{uﬂ} + fﬂu“+1} - 25@4-yb i i T (22)
Us Lin av L 4 vilfy o Tvel b

then our scheme recast into the moTte convenient viscosity form



d . i 1 _ i
EUUELJ 1.'1-.1:12. [f{“1.l+1'\'I EI:"L1.|+1'~'|] * Eﬂxu m'.:+Jv'_-£'v'u+ ]1"1 Q‘.}- 2&.1.”'_ ].&I]’ L)

thus revealing the role of q*.-d- 1t as the numerical viscosity coefficient
[14].

According te {Z1), the scalar entropy conservative schemea are uniguely

*
determined by Ey,4 1.-"2: gu'l-l."g where

1

= ] mlv, (6D,
£=0

et lllri[E} =, + gﬁvu_'_ 1&. (2L
Writing

# T
ety™ S o € 2 8, e, (25)

and integrating by parts, these enCropy conservatlive schemes assume the

w
viscosity form [23), with viscosity coefficient ﬂ'-.-+ 1|||.2= Qu+ 1.-"2 ., where

1
#
QM_ 1-"2= E‘-I;D R gﬂ{vu-i— lJ"EI:E'r”E ] e

We sre now ready to charactarlze entropy =tability, by comparieon with the

above entropy conservative schemes,

Theorem 2.1 [9, Theorezm 5,1]: The conservative schene f_g_a]- iz entTopy

atable, if and==for three-poling schemes {p = 1)==only 1f, it contains more

vigseosity than the entropy conservative one (28], L.e.,

*
Q. erzi Q. L (27)



The last theore=z enable uvs to wverify the entropy stability of first—as well
as second-order accurate scheses, Indeed, & lengthy caleulation which we omit

vields [10]

1 1
.o B2yl ; iy
Qs ui—-giu niu[{E 2] + (n E} 1 {v“+ u}{ﬂ + (1-n2(1-5 3]} 3dndE ﬂ‘u+%@ (28)
showing that the entropy conservative viscasity is of order U{|EUU+HE]'

This implies second order accuracsy in view of

Lemma 2.Z; Comsider cthe conservative schemes (25} with wviscosity
LS|
—Ei—EL is Lipschicez continuous. Thena

coefficlent, 1os such that
Qﬂ'l' i = ':"1"1..-+ 1&
these schemes are second—-order accurate, in the sense that theile Cruncation is

of the order

2 2 o
G[|xu+1 - uv| |xu - Iuwll + ]xu+1 ix hu_ll]- {29}
We give two of the examples considered in [L0, Section 4].
Example 2.3: Using the simple wpper bound, see {28),
* 1 o
Qu+l,n’2£'§ Mas lg==(v]| |.'J.*.'u+1ll,|, (30)

wia ohbain, on the right of {30), a wviscosity coefficient which according te
Theorem 2.1 and Lemma 2.2 maintains both, entrepy stability and secend-erder
ACCUTACY . Gimilar wigcosity terms were previously derived im a number af

special cases, e.g., [13], [16], [17). We remark that the careful lemgthy



caleculatieons required in those derivations is due to the delicate balance

between the cubiec order of entropy loss and the thivrd-order dissipetionm in

this case.

Example Z.4%: Consider the genuinely nonlinear case where £(u) i1s, =ay,
COTVEX, The quadratic entrbpy funccion, Ufu) =-% uz, leads Eo  entroopy
variables which ecolncide with the zconservative ones, glv) = £(u). Thes,
agcordiag te (36}, viscosity is5 required only at rarvefactions where

- * a ¥
Au » 0, since 51gn(ﬂu+]ﬁ? = sxgn{huu+1ﬂ£ < 0 ctherwise, A =zimple

W+ 1|'12
second—order accurate entropy stable flux of this kind is given in [10]

T
fp (u +u ) b, 1, > 0

'|.:'+1,|"2= 5
(f(u ¥} o+ flu ] 3} &uﬂ+ hh-{ ]

3. SEISTEMS OF CONSEEVATION LAWS
We generalize the construction of the scalar entropy conservative schemes
263, to systems ol consecvation laws, wsing plecewise linear finite-elements.

To this end, consider the weak formulacion of (6)

[ v E=
£l

ml L

T
[u{vildxde = }‘ — p{vidxdr. (32}
0
Let the trial solutlons U*;Ex.t} - Ek wk{tj Hk{x} e chosen out of the

typicel finite-element set spenned by the €° "hat functions"



K - }[k_'_]

—_— X gowm o
®oT Ly k-1 = %
uﬁtx} - . [33)
= =
'-IT-IH-]'—_ X oW E Hk.-l-]
i1 T B

The spatizl parc on the right of (32) yields—after change of veriables,

Fakl HH (=) . wtl 5
—— g[v{x,t) = 1 v, (LK (%}]dx -
» H S b
=1 e
1 1
= _[gin Blv,, 1pfE03de - E£D gEVﬁ__H;g}}dg], Vop LREY =V, EAY 1

A second=order mase lumping on che lefr of (32) leads to

RTES . it ul ] 5
J HUEE}-gf ulvix,t) = Uglvk(tJHk(xJ] = ax o= [ulv (£33] + DE|&vu+]fJ 1035)

xu—l

Equating ¢34) and (35) while neglecting the gquadratlie error terms, wo end up

with, compare (24],

LI, * i [« (2))dE.  (36)
E [Eu-l- 1‘,-1— B 1&]1 gu+1,|"g [ = 1'r~.,|-+1.|:-;1E E.

d
Ty (L) ==
4t w £=0)

Without mass lumping, the global conservation of the entrepy 15 immediste as
shown by chooeing wi=,t) = vw(x,t}, so that in view (4), (3I) yields

a

: . avT au
0 = I [v [u(v}] = g(v}]dxdt f [ " ——Jnxﬂt. {37}
R

With the mass lumping, we obtein the locally entropy conservative scheme (363,

satisfying, consulc {11),



. o
4 'l..l'rl

h?T ' - - Elw  + Efw de = f dvT glwl} = fp [3a)
vl Bustp ™ Ly a1 B T E 1 T v b

in agreement with Theorem 2.1. This entropy conservative schems can he eleo

rewritten in the viseossity form [9]

o (c) - :{v (£(u,, ) - £u )]+ m (9, 1% 1, ™ Ce 1Y— 1) 39

with a2 numerical wigsenzsicy coefficent matrix, q“*‘hi= Q:+]ff where
Ry B £))dE B(v) = 4 | (40)
'31._.+l-'ri_ Ei{l (% = 1 ':‘-’v+1ll,.2|:,))-:[,, vl E oo lglvi].

In analogy with Theorem 2.1, we have

Theorem 3.1 [9, Theorem 5.1]: The conservative scheme (39) is entropy

stable, if and—fer three-point schemes ({p = 1}=-cnly if, it contains more

vizcosity than the encropy conservative one (&40), 1.B..

x
AVot lfng s ¥ e 1.-’15 M¥ye lfzq'—"* }?"ih e Lig i

If, in particular iz gymmetrie, then a sufficient entropy scability
1 + 1."2 ] BF

criterdon dis

"
. &
g q\r+ l.-rgi Qu+ l.l’z’ (42)

where the inequality is understood in the vsual sense of order smong symmetric

oatrices.



Example 3.Z7: Consider the conservative scheme (3%) with & numerical

viscosity cocfflclent given by

!
Uiy, = E-I-D |E(#“+11I,2{Ej|r15. (43)

Here the absolute wvalue of & symmetric matrix is ewvaluated in the wusuval

*
feehion from its spectral representation, B = 0 AU,

* -
[BCe,agfe ] = U Cw L fady, PN LIS HCOME {443

Zinee
(25=1)M v, l&{gn LR IC léia:-}l,

(£2} holde and entropy stebility follows.

Away from gomic points, (43} smounts to the wsual upwind differencing,
e.g., [18]. In the nsighborhood of such scnic podnts, however, an exact
evalustion of qﬁ*‘hé in (43) may turn out to be a diffieult tesk. Yet, im
wiew of Thearem 3.1, one can use instead simpler upper bounds. Tn [10] this
ia achieved using the construction of a whele family of entropy conservative
achemes which tske into account the characteristie directions assoclfared with

the system (2).
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