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Abstract. The central scheme of Nessyahu and Tadmor [J. Comput. Phys., 87 (1990), pp.
408–463] solves hyperbolic conservation laws on a staggered mesh and avoids solving Riemann prob-
lems across cell boundaries. To overcome the difficulty of excessive numerical dissipation for small
time steps, the recent work of Kurganov and Tadmor [J. Comput. Phys., 160 (2000), pp. 241–282]
employs a variable control volume, which in turn yields a semidiscrete nonstaggered central scheme.
Another approach, which we advocate here, is to view the staggered meshes as a collection of over-
lapping cells and to realize the computed solution by its overlapping cell averages. This leads to a
simple technique to avoid the excessive numerical dissipation for small time steps [Y. Liu, J. Com-
put. Phys., 209 (2005), pp. 82–104]. At the heart of the proposed approach is the evolution of two
pieces of information per cell, instead of one cell average which characterizes all central and upwind
Godunov-type finite volume schemes. Overlapping cells lend themselves to the development of a
central-type discontinuous Galerkin (DG) method, following the series of works by Cockburn and
Shu [J. Comput. Phys., 141 (1998), pp. 199–224] and the references therein. In this paper we develop
a central DG technique for hyperbolic conservation laws, where we take advantage of the redundant
representation of the solution on overlapping cells. The use of redundant overlapping cells opens
new possibilities beyond those of Godunov-type schemes. In particular, the central DG is coupled
with a novel reconstruction procedure which removes spurious oscillations in the presence of shocks.
This reconstruction is motivated by the moments limiter of Biswas, Devine, and Flaherty [Appl.
Numer. Math., 14 (1994), pp. 255–283] but is otherwise different in its hierarchical approach. The
new hierarchical reconstruction involves a MUSCL or a second order ENO reconstruction in each
stage of a multilayer reconstruction process without characteristic decomposition. It is compact,
easy to implement over arbitrary meshes, and retains the overall preprocessed order of accuracy
while effectively removing spurious oscillations around shocks.
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1. Introduction. The first order Godunov and Lax–Friedrichs (LxF) schemes
are, respectively, the forerunners for the large classes of upwind and central high-
resolution schemes for nonlinear conservation laws and related equations. The Go-
dunov scheme captures shock waves monotonically in narrow transition layers. It is
based on evolving a piecewise cell average representation of the solution by evaluat-
ing the fluxes at the boundaries of each cell which are obtained from the solution
of (approximate) Riemann problems along the boundary interfaces. Various higher
order generalizations of Godunov scheme have been developed since the mid 1970s.
They employ higher order piecewise polynomials which are reconstructed from the
evolving cell averages “in the direction of smoothness.” We mention here the no-
table examples of the high-resolution upwind FCT, MUSCL, TVD, PPM, ENO, and
WENO schemes [8, 49, 19, 16, 20, 35], and this list is far from complete. The use of
intricate Riemann solvers can be avoided at the expense of using the more diffusive
LxF scheme. The excessive numerical dissipation can be reduced significantly, how-
ever, when higher order piecewise polynomial reconstructions are used in conjunction
with the staggered formulation of the LxF scheme. The central scheme of Nessyahu
and Tadmor (NT) [40] provides such a second order generalization of the staggered
LxF scheme. It is based on the same piecewise linear reconstructions of cell averages
used with upwind schemes, yet the solution of (approximate) Riemann problems is
avoided. High-resolution generalizations of the NT scheme were developed since the
1990s as the class of central schemes in, e.g., [43, 3, 22, 21, 36, 6, 25, 2, 27, 28, 32], and
here too the list is far from complete. The relaxation scheme of Jin and Xin [23] pro-
vides another approach which leads to a staggered central stencil for solving nonlinear
conservation laws.

Being free of the (eigenstructure of) the underlying Riemann problems, central
schemes provide black-box–type methods for the approximate solution of nonlinear
hyperbolic conservation laws and other closely related equations [5]. Essentially, one
only needs to supply the flux functions. But the staggered high order central schemes
of order, say, r > 1 still share one disadvantage with the original LxF scheme, namely,
the amplitude of their numerical viscosity of order O((Δx)r+1/Δt). It excludes the use
of small time steps, Δt, which are too small relative to the spatial grid size Δx. The
problem lies with the space-time control volumes which are staggered “Δx/2-away”
from each other. (Similar difficulties occur with the two-dimensional (2D) conservative
front tracking method which was overcome by Glimm et al. in [17] using space-time
cells instead of rezoning.) This problem was addressed by Kurganov and Tadmor
who introduced, in [28], a new type of central scheme whose numerical viscosity is
independent of O(1/Δt)). This was achieved by using variable control volumes so
that cells are staggered only “O(Δt)-away” from each other. The latest version of the
central-upwind scheme has been recently derived in [26]. It allows implementation
of central schemes with arbitrarily small time step, and, in particular, it yields a
semidiscrete formulation which can be conveniently integrated by ODE solvers, e.g.,
the strong stability preserving (SSP) Runge–Kutta methods of [45]; consult, e.g., [18].
Similar advantages of a semidiscrete formulation can be achieved when a local LxF
building block is used over nonstaggered meshes; see, e.g., Shu and Osher [45, 46] and
Liu and Osher [34]. The upwind and central schemes mentioned so far share one thing
in common—they evolve one piece of information per cell, that is, the cell average.
Upwind schemes use Riemann solvers, while central schemes use simpler quadrature
rules. For higher accuracy, they both employ piecewise polynomial representation of
the solution which is reconstructed from these cell averages.

In [38], Y. Liu introduced an alternative technique for controlling the numerical
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dissipation of central schemes. The main idea is to evolve the solution over overlap-
ping cells. That is, two sets of cell averages are realized over interlacing grids. The
solution is then represented as a convex combination—an “O(Δt)-weighted” com-
bination of these overlapping cell averages. The resulting scheme has a numerical
viscosity which is independent of O(1/Δt), and as such it admits a semidiscrete for-
mulation which can be integrated using SSP methods. The use of overlapping cells,
however, is fundamentally different in that it evolves two independent quantities for
each given cell, that is, the two overlapping subcell averages. The use of overlapping
cells opens many new possibilities. For example, instead of the usual reconstructions
such as MUSCL and (W)ENO, overlapping cells offer a more efficient approach for
high-resolution: by adding the two subcell averages, we recover the evolution of a full
cell average, where by taking their difference, we independently evolve an approx-
imate slope, rather than reconstructing it from neighboring averages. This makes
feasible the use of the central discontinuous Galerkin (DG) approach over overlapping
cells, following the series of works by Cockburn and Shu [13, 14, 15]. Thus, in par-
ticular, the use of overlapping cells yields the versatility of finite element (Galerkin)
methods which can be easily formulated on general unstructured meshes with any
formal order, since no reconstruction is involved. In this paper, we further develop
the staggered central DG method introduced in [37] for solving hyperbolic conser-
vation laws. Numerical tests are performed up to third order accuracy on uniform
staggered meshes in one and two dimensions. Stability analysis and error estimates,
and extension of the method for time-dependent and steady state convection-diffusion
equations, constitute ongoing work and will be reported in the future. Here, one does
not reconstruct a piecewise-polynomial representation of the solution; rather it is part
of the evolution of higher moments. Still, a nonlinear limiting procedure is necessary
to reduce spurious oscillations for high order methods. We introduce here such a
general nonoscillatory procedure, the so-called hierarchical reconstruction, interesting
in its own right, which is closely related to the moment limiters of Biswas, Devine,
and Flaherty [7] and to the earlier work of Cockburn and Shu [13]. Since this limiting
procedure requires only linear reconstructions using information from adjacent cells
without characteristic decomposition, it can be easily implemented for any shapes
of the cells and hence is practical also for unstructured meshes or even dynamically
moving meshes (e.g., Tang and Tang [47]), although we do not pursue it in this paper.
We refer the reader to [3] and the references therein for a systematic study of central
schemes on unstructured grids using the framework of discontinuous finite elements.

This paper is organized as follows. In section 2, we briefly describe the central
finite volume scheme on overlapping cells as the background. The natural extension
to the central DG scheme on overlapping cells is discussed in section 3. In subsec-
tion 3.1 we study the numerical convergence rate for a number of linear and nonlinear
equations having smooth solutions. In section 4, we introduce a general nonoscilla-
tory hierarchical reconstruction procedure and use it as a limiter for the central DG
scheme on overlapping cells to control spurious oscillations in the presence of shocks.
Numerical results testing the accuracy of the proposed schemes are included in sec-
tions 3 and 4. Additional numerical results are presented in section 5. Concluding
remarks and a plan for future work are included in section 6.

2. Central schemes on overlapping cells. Consider the scalar one-dimen-
sional (1D) conservation law

(2.1)
∂u

∂t
+

∂f(u)

∂x
= 0, (x, t) ∈ R× (0, T ).
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Set {xi := x0 + iΔx}, let Ci+1/2 := [xi, xi+1) be a uniform partition of R, and let

{Un

i+1/2} denote the set of approximate cell averages U
n

i+1/2≈(1/Δx)
∫
Ci+1/2

u(x, tn)dx.

Similarly, we set Di := [xi−1/2, xi+1/2) as the dual partition and let {V n

i } denote the

corresponding set of approximate cell averages V
n

i ≈ (1/Δx)
∫
Di

u(x, tn)dx. Starting

with these two piecewise-constant approximations,1∑
i

U
n

i+1/21Ci+1/2
(x) and

∑
i

V
n

i 1Di(x),

we proceed to compute our approximate solution at the next time level, tn+1 :=
tn + Δtn. To this end, we reconstruct two higher order nonoscillatory piecewise-
polynomial approximations,

Un(x) =
∑
i

Ui+1/2(x)1Ci+1/2
(x) and V n(x) =

∑
i

Vi(x)1Di(x),

with breakpoints at xi, i = 0,±1,±2, . . . , and, respectively, at xi+1/2, i = 0,±1,
±2, . . . . These piecewise polynomials should be conservative in the sense that∫
Cj+1/2

Un(x)dx = ΔxU
n

j+1/2 and
∫
Dj

V n(x)dx = ΔxV
n

j for all j’s. There are large

libraries for such conservative, accurate, and nonoscillatory reconstructions; we refer,
for example, to the second order example of MUSCL [48], the third order example
of [36], the well-known class of high order (W)ENO reconstructions [20, 44], etc. Fol-
lowing Nessyahu and Tadmor [40], the central scheme associated with these piecewise
polynomials reads

V
n+1

i =
1

Δx

∫
Di

Un(x)dx− Δtn

Δx

[
f(Un+ 1

2 (xi+1/2)) − f(Un+ 1
2 (xi−1/2))

]
,(2.2a)

U
n+1

i+1/2 =
1

Δx

∫
Ci+1/2

V n(x)dx− Δtn

Δx

[
f(V n+ 1

2 (xi+1)) − f(V n+ 1
2 (xi))

]
.(2.2b)

To guarantee second order accuracy, the right-hand sides of (2.2a), (2.2b) require the

approximate values of Un+ 1
2 (xj+1/2) ≈ u(xj+1/2, t

n+ 1
2 ) and V n+ 1

2 (xj) ≈ u(xj , t
n+ 1

2 )
to be evaluated at the midpoint t + Δtn/2. Replacing the midpoint rule with higher
order quadratures yields higher order accuracy; see, e.g., [36, 6].

The central NT scheme (2.2) and its higher order generalizations provide effec-
tive high-resolution “black-box” solvers to a wide variety of nonlinear conservation
laws. However, when Δt is very small, e.g., with Δt = O

(
(Δx)2

)
as required by the

CFL condition for convection-diffusion equations, the numerical dissipation of the NT
schemes becomes excessively large. The excessive dissipation is due to the staggered
grids where, at each time step, cell averages are shifted Δx/2-away from each other:
indeed, at the extreme of f(u) ≡ 0, the central scheme (2.2) is reduced to reaveraging
at every time step. To address this difficulty, Kurganov and Tadmor [28] suggested
removing this excessive dissipation by using staggered grids which are shifted only
O(Δt)-away from each other. This amounts to using control volumes of width O(Δt)
so that the resulting schemes admit a semidiscrete limit as Δt → 0, the so-called
“central-upwind” schemes introduced in [28] and further generalized in [27]. Liu [38]
introduced another modification of the NT scheme which removes its O(1/Δt) depen-
dency of numerical dissipation. In this approach, one takes advantage of the redundant

1Here and below, 1Ω(x) denotes the characteristic function of Ω.
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A B C

Fig. 1. (A) NT scheme; (B) 1D overlapping cells; (C) overlapping cells create self-similarity
for the grid over time and allow a convex combination of the overlapping cell averages to control
the numerical dissipation.

representation of the solution over overlapping cells, V
n

i and U
n

i+1/2. The idea is to
use an O(Δt)-dependent weighted average of U

n

i+1/2 and V
n

i . In fact the difference
between them is the local dissipation error. To simplify our discussion, we momen-
tarily give up on second order accuracy in time, setting Un+ 1

2 = Un and V n+ 1
2 = V n

in (2.2a) and (2.2b). The resulting first order forward-Euler formulation of the new
central scheme (consult Figure 1) reads

V
n+1

i = θ

(
1

Δx

∫
Di

Un(x)dx

)
+ (1 − θ)V

n

i(2.3a)

− Δtn

Δx

[
f(Un(xi+1/2)) − f(Un(xi−1/2))

]
,

U
n+1

i+1/2 = θ

(
1

Δx

∫
Ci+1/2

V n(x)dx

)
+ (1 − θ)U

n

i+1/2(2.3b)

− Δtn

Δx

[
f(V n(xi+1)) − f(V n(xi))

]
.

Here θ := Δtn/Δτn, where Δτn is an upper bound for the time step, dictated by the
CFL condition. We refer the readers to [40] and [38] for more details to facilitate the
full understanding of the sketches in Figure 1. Note that when θ = 1, (2.3a), (2.3b)
is reduced to the first order, forward-Euler–based version of the NT scheme (2.2a),
(2.2b). Moreover, writing

θ

(
1

Δx

∫
Di

Un(x)dx

)
+ (1 − θ)V

n

i = V
n

i +
Δtn

Δτn

(
1

Δx

∫
Di

Un(x)dx− V
n

i

)
,

and recalling that Δτn = O(Δx) due to the CFL restriction, it follows that the local
dissipative error now has a prefactor of order Δtn, and hence the cumulative error will
be independent of O(Δt). The reduced dissipation allows us to pass to a semidiscrete
formulation: subtracting V

n

i and U
n

i+1/2 from both sides, multiplying by 1
Δtn , and

then passing to the limit as Δtn → 0, we end up with

d

dt
V i(t

n) =
1

Δτn

(
1

Δx

∫
Di

Un(x)dx− V
n

i

)
(2.4a)

− 1

Δx

[
f(Un(xi+1/2)) − f(Un(xi−1/2))

]
,

d

dt
U i+1/2(t

n) =
1

Δτn

(
1

Δx

∫
Ci+1/2

V n(x)dx− U
n

i+1/2

)
(2.4b)

− 1

Δx

[
f(V n(xi+1)) − f(V n(xi))

]
.
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x

y

Fig. 2. 2D overlapping cells formed by collapsing the staggered dual cells on two adjacent time
levels to one time level.

The spatial accuracy of the semidiscrete central scheme (2.4) is dictated by the order
of the reconstruction Un(x) and V n(x). The SSP Runge–Kutta methods yield the
matching high order discretization in time.

We conclude this section by quoting [38] regarding the nonoscillatory behavior
of the central scheme (2.4), which is quantified here in terms of the total-variation-
diminishing (TVD) property; see, e.g., [19].

Theorem 1. Consider the central schemes (2.2) and (2.3) which are set with the
same initial values V

n

i and U
n

i+1/2 at t = tn. If the NT scheme is TVD, then so is
the central scheme (2.3).

There are two reconstruction procedures for overlapping cells: one is the standard
procedure to reconstruct the two classes of cell averages {V n

i : i = 0,±1,±2, . . .} and
{Un

i+1/2 : i = 0,±1,±2, . . .}; the other couples these two classes for reconstruction
of the final representation of the solution. Thus, this approach is redundant. At the
same time, numerical examples in [38] have shown that by coupling the reconstruc-
tions, redundancy does provide improved resolution when compared with the one-cell
average evolution approach of Godunov-type schemes.

3. A central discontinuous Galerkin method on overlapping cells for
conservation laws. Following the general strategy of the DG methods (see, e.g.,
Lesaint and Raviart [31], Cockburn [10], and Cockburn and Shu [13, 15]), the central-
type DG method on overlapping cells can be derived [37]. Consider the system of
conservation laws

(3.1)
∂uk

∂t
+ ∇x · fk(u) = 0, (x, t) ∈ Rd × (0, T ), k = 1, . . . ,m,

where u = (u1, . . . , um)�. For simplicity, assume a uniform staggered rectangular
mesh, depicted in Figure 2, for the 2D case, and we note that a similar formulation is
used for irregular staggered meshes, e.g., the Voronoi mesh consisting of a triangular
mesh and its dual.

Let {CI+1/2}, I = (i1, i2, . . . , id), be a partition of Rd into uniform square cells,
depicted by solid lines in Figure 2, and tagged by their cell centroids at the half
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integers, xI+1/2 := (I + 1/2)Δx. Let M denote the set of piecewise polynomials of
degree r on the cells {CI+1/2}; no continuity is assumed across cell boundaries. Let
{DI} be the dual mesh which consists of a Δx/2 shift of the CI+1/2’s, depicted by
dashed lines in Figure 2. Let xI be the cell centroid of the cell DI and let N denote
the set of piecewise polynomials of degree r over the cells {DI}; again, no continuity
is assumed across the cell boundary. The weak formulation of (3.1) over these cells
reads

d

dt

∫
CI+1/2

ukφdx =

∫
CI+1/2

fk · ∇xφdx(3.2a)

−
∫
∂CI+1/2

(fk · n)φds ∀φ ∈ M, k = 1, . . . ,m,

d

dt

∫
DI

ukψdx =

∫
DI

fk · ∇xψdx(3.2b)

−
∫
∂DI

(fk · n)ψds ∀ψ ∈ N , k = 1, . . . ,m,

where n is the unit outer normal of the corresponding cell and φ and ψ are test
functions. As in the 1D setup, we let

Un(x) =
∑

I+1/2

Un
I+1/2(x)1CI+1/2

(x) ∈ M and Vn(x) =
∑
I

Vn
I (x)1DI

(x) ∈ N

denote two representations of the numerical solution, approximating u(·, tn) over the
two overlapping grids, {CI+1/2} and {DI}. Observe that each of the two vector
functions, Un with smooth pieces supported on the CI+1/2’s and Vn with smooth
pieces supported on the DI ’s, consists of m components

Un(x) = (Un
1 (x), . . . , Un

m(x))� and Vn(x) = (V n
1 (x), . . . , V n

m(x))�.

Given these conservative, accurate, and nonoscillatory approximations at tn we pro-
ceed to compute the approximate solution at the next time level, tn+1 = tn +Δtn. To
this end, the exact solution u(x, tn) of (3.1) in the right-hand side of (3.2a) is replaced
by Vn(x) = (V n

1 , . . . , V n
m)�; similarly, for the right-hand side of (3.2b) we use the ap-

proximate solution Un(x) = (Un
1 , . . . , U

n
m)�. Further, time derivatives on the left are

replaced by forward-Euler time differencing where we use the same type of θ-weighting
of the Un’s and the Vn’s as in (2.3a), (2.3b). In the resulting central DG method one
seeks piecewise polynomials {Un+1

I+1/2} ∈ M and {Vn+1
I } ∈ N such that for all I’s,

∫
CI+1/2

Un+1
k (x)φ(x)dx = θ

∫
CI+1/2

V n
k (x)φ(x)dx + (1 − θ)

∫
CI+1/2

Un
k (x)φ(x)dx

+ Δtn
∫
CI+1/2

fk(V
n(x)) · ∇xφdx(3.3a)

− Δtn
∫
∂CI+1/2

(fk(V
n(x)) · n)φ(x)ds ∀φ ∈ M, k = 1, . . . ,m,
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DI

V n+1
k (x)ψ(x)dx = θ

∫
DI

Un
k (x)ψ(x)dx + (1 − θ)

∫
DI

V n
k (x)ψ(x)dx

+ Δtn
∫
DI

fk(U
n(x)) · ∇xψ(x)dx(3.3b)

− Δtn
∫
∂DI

(fk(U
n(x)) · n)ψ(x)ds ∀ψ ∈ N , k = 1, . . . ,m.

Here θ = Δtn/Δτn ≤ 1, Δτn is the maximum time step size determined by the CFL
restriction, and Δtn = tn+1 − tn is the current time step size. Δτn = (CFL factor)×
Δx/(maximum characteristic speed), where the CFL factor should be less than 1/2.
At time tn, Δτn is first chosen with a certain CFL factor, then Δtn has the freedom to
take any value in (0,Δτn] without introducing excessive dissipation. The smaller Δτn

is chosen, the larger the numerical dissipation is. We find in numerical experiments
that setting Δτn with CFL factor 0.4 is robust. In some numerical tests with fewer
interactions of discontinuities, we can choose larger Δτn. This forward-Euler step is
going to be used in an SSP Runge–Kutta method of desired order. For the pure hyper-
bolic problem, Δtn can be chosen as large as possible, i.e., Δtn = Δτn for efficiency.

The resulting central DG is the 2D analogue of the 1D central scheme (2.4). And
as in the 1D case, the semidiscrete version of (3.3) can be obtained; higher order
Runge–Kutta time discretization can be used to match the high order accuracy of the
spatial reconstructions. We conclude with the semidiscrete central DG approximation
of (3.1) such that for all admissible test functions φ and ψ and all I’s,

d

dt

∫
CI+1/2

Ukφdx =
1

Δτ

∫
CI+1/2

(Vk(x) − Uk(x))φ(x)dx

+

∫
CI+1/2

fk(V(x)) · ∇xφdx(3.4a)

−
∫
∂CI+1/2

(fk(V(x)) · n)φ(x)ds ∀φ ∈ M, k = 1, . . . ,m,

d

dt

∫
DI

Vkψdx =
1

Δτ

∫
DI

(Uk(x) − Vk(x))ψ(x)dx

+

∫
DI

fk(U(x)) · ∇xψ(x)dx(3.4b)

−
∫
∂DI

(fk(U(x)) · n)ψ(x)ds ∀ψ ∈ N , k = 1, . . . ,m.

For example, consider the piecewise quadratic element in two dimensions; see,
e.g., Figure 2. We use the third order SSP Runge–Kutta method [45] to discretize
(3.4) in time, which ends up with calling the forward-Euler step (3.3) three times. Let
cell CI+1/2 as in (3.3a) be the cell bounded by solid lines in the center of Figure 2,
and let

UI+1/2(x− xI+1/2, y − yI+1/2) = UI+1/2(0, 0) + ∂xUI+1/2(0, 0)(x− xI+1/2)

+ ∂yUI+1/2(0, 0)(y − yI+1/2)

+
1

2
∂xxUI+1/2(0, 0)(x− xI+1/2)

2

+ ∂xyUI+1/2(0, 0)(x− xI+1/2)(y − yI+1/2)

+
1

2
∂yyUI+1/2(0, 0)(y − yI+1/2)

2
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Table 1

P 1 version of the central DG scheme (3.4) for the linear convection equation (3.5).

Δx 1/20 1/40 1/80 1/160 1/320
L1 error 8.91E-3 2.25E-3 5.66E-4 1.42E-4 3.54E-5
order - 1.99 1.99 1.99 2.00

L∞ error 5.92E-3 1.55E-3 3.96E-4 1.00E-4 2.51E-5
order - 1.93 1.97 1.99 1.99

Table 2

P 1 version of the central DG scheme (3.4) for the 2D Burgers equation.

Δx 1/2 1/4 1/8 1/16 1/32
L1 error 6.69E-2 3.29E-2 5.04E-3 1.66E-3 3.88E-4
order - 1.02 2.70 1.60 2.10

L∞ error 3.85E-2 2.05E-2 7.69E-3 1.19E-3 2.75E-4
order - 0.91 1.41 2.69 2.11

be Un+1
k |CI+1/2

, i.e., Un+1
k (x) restricted in cell CI+1/2, where (xI+1/2, yI+1/2) is the

cell centroid of cell CI+1/2. There are six coefficients to be determined in this poly-
nomial in cell CI+1/2, namely,

UI+1/2(0, 0), ∂xUI+1/2(0, 0), ∂yUI+1/2(0, 0),

1

2
∂xxUI+1/2(0, 0), ∂xyUI+1/2(0, 0),

1

2
∂yyUI+1/2(0, 0).

By letting

φ(x) = 1, x− xI+1/2, y − yI+1/2, (x− xI+1/2)
2,

(x− xI+1/2)(y − yI+1/2), or (y − yI+1/2)
2,

we obtain six linear equations in (3.3a) to solve for UI+1/2(x − xI+1/2, y − yI+1/2).
The last two integrals in (3.3a) can be approximated by Gaussian quadratures, such
as the three-point Gaussian quadrature for line integrals. The other integrals on the
right-hand side of (3.3a) can be evaluated exactly.

3.1. Numerical errors for smooth solutions. In this subsection we study the
convergence rate for a number of equations having smooth solutions. The examples
are computed by linear schemes described previously without using any limiter.

Example 1. Let us start with the following linear transport equation with periodic
boundary conditions:

ut + aux = 0, (x, t) ∈ (0, 2) × (0, 2),(3.5)

u(x, 0) = 1 + sin(πx), x ∈ (0, 2),

where a = 1 by default.
The test results at T = 2 for the P 1 (piecewise linear) version of the central DG

scheme on overlapping cells (3.4) are listed in Table 1, with second order Runge–
Kutta time discretization. The CFL factor is 0.4 for choosing Δτ and the actual time
step size Δt is chosen with θ = 0.9. It can be seen that the expected second order
accuracy is achieved. Similar results for the 2D Burgers equation can be found in
Table 2. The results for the P 2 (piecewise quadratic) version of the scheme (3.4) for
the linear convection equation (3.5) are listed in Table 3, with a third order TVD
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Table 3

P 2 version of the central DG scheme (3.4) for the linear convection equation (3.5).

Δx 1/20 1/40 1/80 1/160 1/320
L1 error 6.50E-5 8.12E-6 1.02E-6 1.27E-7 1.59E-8
order - 3.00 2.99 3.01 3.00

L∞ error 4.68E-5 5.90E-6 7.40E-7 9.27E-8 1.16E-8
order - 2.99 3.00 3.00 3.00

Table 4

P 2 version of the central DG scheme (3.4) for (3.5) with a = 0.

Δx 1/20 1/40 1/80 1/160
L∞ error 9.32E-7 5.89E-8 3.70E-9 2.32E-10

order - 3.98 3.99 4.00

L∞ error, Δt = Δx2 9.32E-7 5.89E-8 3.70E-9 2.32E-10
order - 3.98 3.99 4.00

Table 5

P 2 version of the central DG scheme (3.4) for the 1D Burgers equation.

Δx 1/10 1/20 1/40 1/80 1/160
L1 error 2.72E-5 3.41E-6 4.29E-7 5.37E-8 6.78E-9
order - 3.00 2.99 3.00 2.99

L∞ error 4.00E-5 7.06E-6 8.27E-7 1.04E-7 1.31E-8
order - 2.50 3.09 2.99 2.99

Runge–Kutta time discretization [45]. The results for the same equation with a = 0
are listed in Table 4, in which the first row is computed with the previously chosen
Δt and the second row is computed with Δt = Δx2. We observe that the staggered
dissipation error does not increase with a diminishing time step size. We remark that
for this special case with a = 0, the Δτ can be chosen as +∞, since there is no
CFL restriction on the stability time step. With this choice of Δτ , our scheme will
maintain exactly the initial condition for this degenerated PDE. If we choose a finite
Δτn anyway, then the initial solution may not be maintained exactly. As to the order
of accuracy, we can see that the expected third order accuracy is achieved in Table 3,
and fourth order accuracy, which is one order higher than expected, is achieved in
Table 4.

Example 2. We test the scheme for the Burgers equation ut + ( 1
2u

2)x = 0,
u(x, 0) = 1

4 + 1
2 sin(πx). The errors are shown in Table 5 at the final time T = 0.1

when the solution is still smooth.

Example 3. We conduct a convergence test for the P 1 version of the scheme
(3.4) on a 2D problem [11] which is the Burgers equation with periodic initial data:
ut + ( 1

2u
2)x + ( 1

2u
2)y = 0 on [−1, 1] × [−1, 1], u(x, y, 0) = 1

4 + 1
2 sin(π(x + y)). The

numerical solutions are computed at the final time T = 0.1 when the exact solution
is still smooth. The CFL factor is 0.4 for choosing Δτ and the actual time step size
Δt is chosen with θ = 0.9. The errors are shown in Table 2. Again we observe the
expected second order accuracy. Further we test the P 2 version of scheme for the 2D
Burgers equation. The errors are shown in Table 6 at the final time T = 0.1.

Example 4. The solution of the 2D Burgers equation may contain linear waves;
hence we also test the scheme on another 2D equation ut + ( 1

2u
2)x + ( 1

4u
4)y = 0,

u(x, 0) = 1
4 + 1

2 sin(π(x + y)). The accuracy of the numerical solution is shown at
T = 0.1 in Table 7.
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Table 6

P 2 version of the central DG scheme (3.4) for the 2D Burgers equation.

Δx 1/4 1/8 1/16 1/32 1/64
L1 error 8.33E-3 9.58E-4 1.36E-4 1.65E-5 2.14E-6
order - 3.12 2.82 3.04 2.95

L∞ error 4.56E-3 8.20E-4 1.48E-4 1.95E-5 2.58E-6
order - 2.48 2.47 2.92 2.92

Table 7

P 2 version of the central DG scheme (3.4) for the 2D nonlinear equation.

Δx 1/4 1/8 1/16 1/32 1/64
L1 error 5.35E-3 5.75E-4 6.80E-5 7.81E-6 9.77E-7
order - 3.22 3.08 3.12 3.00

L∞ error 2.57E-3 3.16E-4 8.00E-5 1.10E-5 1.53E-6
order - 3.02 1.98 2.86 2.85

It seems that for all these cases the expected third order accuracy is achieved for
the P 2 version of scheme, at least for the L1 errors.

4. A general nonoscillatory hierarchical reconstruction procedure. Com-
pared to finite volume schemes which evolve only cell averages over time, DG methods
compute and evolve a high order polynomial in each cell. The challenge lies in deter-
mining how to take advantage of the extra information provided by the DG method
in each cell and use it in the limiting process where the solution is nonsmooth. The
first idea is given by Cockburn and Shu [13] for the DG method which limits the
variation between a cell edge value and its cell average by the differences between the
cell averages of the current and neighboring cells. The higher Legendre moments are
truncated in a cell if nonsmoothness is detected. This process is shown to be total
variation bounded in the means. A generalization is introduced in Biswas, Devine,
and Flaherty [7], which detects the nonsmoothness in higher degree moments and
applies the limiting when necessary from higher to lower moments. In Qiu and Shu
[42, 41], a high order WENO reconstruction is used as a limiter for the so-called trou-
bled cells, where the polynomial defined at Gaussian points is reconstructed from a
WENO procedure and is projected back to the finite element space to replace the one
computed by the DG method. In [41], the Hermite WENO reconstruction takes not
only cell averages of a function, but also cell averages of its first order derivatives in
order to obtain a compact reconstruction. A similar strategy is used in our nonoscil-
latory hierarchical reconstruction, where cell averages of various orders of derivatives
of a function are to be calculated and used in the reconstruction of linear polyno-
mials at each stage. Our limiting procedure is closely related to that of [7]. Our
departure from [7] begins with a different point of view, where the approximation
in each cell is viewed as a high degree polynomial, instead of the combination of
orthogonal Legendre polynomials advocated in [7]. Instead of a limiting procedure
which is trying to set an acceptable range for the coefficient of the Legendre moments
(by using the coefficients of lower degree moments), we reconstruct the complete set
of coefficients of the m-degree polynomial terms, using a nonoscillatory conservative
reconstruction which involves previous reconstructed terms of degrees above m. The
resulting, so-called hierarchical reconstruction algorithm is easy to implement in a
multidimensional setting, and there is no need to transform an irregular mesh cell
into a rectangular one or use a dimension-by-dimension extension of a 1D limiter. It
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is essentially independent of the shapes of mesh cells and is compact because of the
conservative nonoscillatory linear reconstruction (such as the MUSCL or second order
ENO reconstruction; see [1] for an implementation for unstructured meshes) used at
each stage. We now give the details of this reconstruction procedure. For simplicity
we discuss only the scalar case. For systems a component-by-component extension is
applied without characteristic decomposition.

From scheme (3.4) with the SSP Runge–Kutta methods, we obtain numerical so-
lutions Un(x) and V n(x) at time tn. To simplify the notation we drop the superscript
n and write

U(x) =
∑

I+1/2

UI+1/2(x − xI+1/2)1CI+1/2
(x) ∈ M,

V (x) =
∑
I

VI(x − xI)1DI
(x) ∈ N ,

recalling that xI+1/2 and xI are centroids of cells CI+1/2 and DI , respectively;
UI+1/2(x − xI+1/2) and VI(x − xI) are the polynomials (of degree r) in cells CI+1/2

and DI , respectively.2 The task is to reconstruct a “limited” version of these polyno-
mials, retaining high-resolution and removing spurious oscillations. In the following,
we discuss a hierarchical reconstruction procedure for recomputing the polynomial
UI+1/2(x − xI+1/2) by using polynomials in cells adjacent to cell CI+1/2. For conve-
nience these adjacent cells are renamed as the set {CJ} (which contain cells CI+1/2,
DI , etc.), and the polynomials (of degree r) supported on them are thus renamed
as {UJ(x − xJ)}, respectively, where xJ is the cell centroid of cell CJ . We write
UI+1/2(x − xI+1/2) in terms of its Taylor expansion,

UI+1/2(x − xI+1/2) =

r∑
m=0

∑
|m|=m

1

m!
U

(m)
I+1/2(0)(x − xI+1/2)

m,

where 1
m!U

(m)
I+1/2(0) are the coefficients which participate in its typical m-degree terms,

∑
|m|=m

1

m!
U

(m)
I+1/2(0)(x − xI+1/2)

m, |m| = 0, . . . , r,

m = (m1,m2, . . . ,md) is the multi-index,

|m| =

d∑
i=1

mi, m! =

d∏
i=1

mi!, U
(m)
I+1/2(x) = ∂md

xd
· · · ∂m1

x1
UI+1/2(x),

and x = (x1, . . . , xd). The following hierarchical reconstruction describes a procedure
to compute the new coefficients,

1

m!
Ũ

(m)
I+1/2(0), m = r, r − 1, . . . , 0,

in UI+1/2(x − xI+1/2), iterating from the highest to the lowest degree terms.

2These polynomials could be oscillatory. There could be other methods to compute these poly-
nomials such as a finite volume reconstruction from cell averages.
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1

2
3

x x

y

1 2

3

4 5

Fig. 3. Left: 1D nonoscillatory hierarchical reconstruction for cell 2 involves only overlapping
cells 1, 2, and 3. Right: 2D nonoscillatory hierarchical reconstruction for cell 3 involves only
overlapping cells 1, 2, 3, 4, and 5.

4.1. An example for piecewise quadratic finite element space in one
dimension. Suppose Uj(x−xj) = Uj(0)+U ′

j(0)(x−xj)+
1
2U

′′
j (0)(x−xj)

2, j = 1, 2, 3,
are given at cells C1, C2, and C3, respectively (see Figure 3, left), where xj is the center
of cell Cj . These polynomials could be oscillatory if located near a discontinuity of
the weak solution. The following algorithm computes a new value for each coefficient
in the polynomial defined on cell C2 in order to reduce the oscillation while keeping
the accuracy (in the smooth area) and resolution.

Step 1. (1) Take the first derivative for them to obtain Lj(x − xj) = U ′
j(0) +

U ′′
j (0)(x− xj), j = 1, 2, 3.

(2) Calculate the cell average of Lj(x − xj) on cell Cj to obtain Lj = U ′
j(0),

j = 1, 2, 3.
(3) With the three cell averages one can apply a MUSCL or second order ENO

procedure to reconstruct a nonoscillatory linear polynomial in cell C2. The slope
of this new linear polynomial corresponds to the slope U ′′

2 (0) of the original linear

polynomial L2(x−x2) in cell C2 and is denoted by Ũ ′′
2 (0). The details can be explained

as follows.
Using the technique of [1], let the new linear polynomial L̃2(x− x2) in cell C2 be

determined by solving

(4.1)
1

|Cj |

∫
Cj

L̃2(x− x2)dx = Lj , j = 1, 2.

We now obtain the slope of L̃2(x − x2), which is only a candidate for the new value
of U ′′

2 (0). The set of cells {C1, C2} chosen by Cj in (4.1) is called a stencil for cell C2.
We can similarly determine another candidate for the new value of U ′′

2 (0) by solving
(4.1) with Cj chosen from another stencil {C2, C3} of cells. Finally we let

Ũ ′′
2 (0) = minmod

(
candidates of U ′′

2 (0)
)
,

where

minmod{c1, c2, . . . , cm} =

⎧⎪⎨
⎪⎩

min{c1, c2, . . . , cm} if c1, c2, . . . , cm > 0,

max{c1, c2, . . . , cm} if c1, c2, . . . , cm < 0,

0, otherwise.
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Table 8

P 2 version of the central DG scheme (3.4) with the hierarchical reconstruction Algorithm 1 for
the Burgers equation. MUSCL is used in Algorithm 1.

Δx 1/10 1/20 1/40 1/80 1/160
L1 error 4.24E-4 5.33E-5 6.71E-6 8.44E-7 1.07E-7
order - 2.99 2.99 2.99 2.98

L∞ error 5.13E-4 6.20E-5 7.38E-6 1.29E-6 2.66E-7
order - 3.05 3.07 2.52 2.28

Table 9

P 2 version of the central DG scheme (3.4) with the hierarchical reconstruction Algorithm 1 for
the Burgers equation. Second order ENO is used in Algorithm 1.

Δx 1/10 1/20 1/40 1/80 1/160
L1 error 4.51E-4 5.36E-5 6.85E-6 8.54E-7 1.08E-7
order - 3.07 2.97 3.00 2.98

L∞ error 5.24E-4 6.17E-5 1.03E-5 1.81E-6 3.27E-7
order - 3.09 2.58 2.51 2.47

This is a MUSCL reconstruction. To use the second order ENO reconstruction, we
replace the minmod function by the following minmod2 function:

minmod2{c1, c2, . . . , cm} = cj if |cj | = min{|c1|, |c2|, . . . , |cm|}.

In order to find the new value Ũ ′
2(0) for U ′

2(0) by using the above MUSCL or
second order ENO reconstruction, we need to find the cell averages of the linear part
U2(0) + U ′

2(0)(x− x2) on cell C2 and its neighbors C1 and C3.
Step 2. (1) Compute the cell average of Uj(x − xj) on cell Cj to obtain Uj ,

j = 1, 2, 3.
(2) Compute the cell average of the polynomial R̃2(x−x2) = 1

2 Ũ
′′
2 (0)(x−x2)

2 on

cell Cj to obtain Rj , j = 1, 2, 3.
(3) Redefine Lj = Uj − Rj , j = 1, 2, 3. These are the approximate cell averages

of the linear part U2(0) + U ′
2(0)(x− x2) on cells C1, C2, and C3.

(4) Similar to Step 1, we solve (4.1) to obtain a linear polynomial in cell C2. The
slope of this linear polynomial corresponds to the slope U ′

2(0) of the linear polynomial
U2(0)+U ′

2(0)(x−x2) and is only a candidate for the new value of U ′
2(0). Another can-

didate can be obtained by solving (4.1) with Cj chosen from another stencil {C2, C3}
of cells. Finally let

Ũ ′
2(0) = minmod

(
candidates of U ′

2(0)
)
.

For the second order ENO reconstruction, the minmod function can be replaced by
the minmod2 function. To keep the cell average invariant, we let the new value for
U2(0) be Ũ2(0) = L2.

The convergence test results with Algorithm 1 for Example 2 can be found in
Tables 8 and 9. We observe that the order of accuracy is maintained, although (as
expected for any limiter) the magnitude of the error is increased for the same mesh
(see Table 5 for a comparison).

4.2. Hierarchical reconstruction—General description. In the following,
we discuss a hierarchical reconstruction procedure for recomputing the polynomial
UI+1/2(x− xI+1/2) by using polynomials in cells adjacent to cell CI+1/2. Recall that
these adjacent cells are renamed as the set {CJ} and the polynomials (of degree r)
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supported on them are thus renamed as {UJ(x − xJ)}, respectively. The following
hierarchical reconstruction describes a procedure to compute the new coefficients,

1

m!
Ũ

(m)
I+1/2(0), m = r, r − 1, . . . , 0,

in UI+1/2(x − xI+1/2), iterating from the highest to the lowest degree terms.

To reconstruct Ũ
(m)
I+1/2(0), we first compute many candidates of U

(m)
I+1/2(0) (some-

times still denoted as Ũ
(m)
I+1/2(0) with specification), and we then let the new coefficient

for U
(m)
I+1/2(0) be

Ũ
(m)
I+1/2(0) = F

(
candidates of U

(m)
I+1/2(0)

)
,

where F is a convex limiter of its arguments, e.g., the minmod function.

In order to find these candidates of U
(m)
I+1/2(0), |m| = m, we take an (m − 1)th

order partial derivative of UI+1/2(x − xI+1/2) and denote it by

∂m−1UI+1/2(x − xI+1/2) = LI+1/2(x − xI+1/2) + RI+1/2(x − xI+1/2),

where LI+1/2 is the linear part and RI+1/2 contains all second and higher degree
terms of ∂m−1UI+1/2(x−xI+1/2). Clearly, every coefficient in the first degree terms of

LI+1/2 is in the set {U (m)
I+1/2(0) : |m| = m}. And for every m subject to |m| = m, one

can always take some (m−1)th order partial derivatives of UI+1/2(x−xI+1/2) so that

U
(m)
I+1/2(0) is a coefficient in the first degree terms of LI+1/2. Thus, a “candidate” for

a coefficient in the first degree terms of LI+1/2 is the candidate for the corresponding

U
(m)
I+1/2(0).

In order to find the candidates for all the coefficients in the first degree terms of
LI+1/2(x − xI+1/2), we only need to know the cell averages of LI+1/2(x − xI+1/2)
on d + 1 distinct mesh cells adjacent to cell CI+1/2, recalling that d is the spatial

dimension. Assume CJ0 , CJ1 , . . . , CJd
∈ {CJ} are these cells and LJ0

, LJ1
, . . . , LJd

are
the corresponding cell averages. The set of these d + 1 cells with the associated cell
averages is called a stencil. Let a linear polynomial L̃I+1/2(x−xI+1/2) be determined
by

(4.2)
1

|CJl
|

∫
CJl

L̃I+1/2(x − xI+1/2)dx = LJl
, l = 0, 1, . . . , d.

Then the coefficients in the first degree terms of L̃I+1/2(x − xI+1/2) will be the
candidates for the corresponding coefficients of LI+1/2(x − xI+1/2). Therefore, a
stencil located near cell CI+1/2 will determine a set of candidates for all coefficients
in the first degree terms of LI+1/2(x − xI+1/2). The key is to determine the new
approximate cell averages of LI+1/2(x−xI+1/2) on the cells of {CJ}, which is outlined
by the following algorithm.

Algorithm 1.

Step 1. Suppose r ≥ 2. For m = r, r − 1, . . . , 2, do the following:
(a) Take an (m−1)th order partial derivative for each of {UJ(x−xJ)} to obtain

polynomials {∂m−1UJ(x − xJ)}, respectively. In particular, denote ∂m−1UI+1/2(x −
xI+1/2) = LI+1/2(x−xI+1/2) +RI+1/2(x−xI+1/2), where LI+1/2(x−xI+1/2) is the
linear part of ∂m−1UI+1/2(x − xI+1/2) and RI+1/2(x − xI+1/2) is the remainder.
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(b) Calculate the cell averages of {∂m−1UJ(x − xJ)} on cells {CJ} to obtain
{∂m−1UJ}, respectively.

(c) Let R̃I+1/2(x−xI+1/2) be the RI+1/2(x−xI+1/2) with its coefficients replaced

by the corresponding new coefficients.3 Calculate the cell averages of R̃I+1/2(x −
xI+1/2) on cells {CJ} to obtain {RJ}, respectively.

(d) Let LJ = ∂m−1UJ −RJ for all J .

(e) Form stencils out of the new approximate cell averages {LJ} by using a
nonoscillatory finite volume MUSCL or second order ENO strategy. Each stencil
will determine a set of candidates for the coefficients in the first degree terms of

LI+1/2(x − xI+1/2), which are also candidates for the corresponding U
(m)
I+1/2(0)’s,

|m| = m.

(f) Repeat from (a) to (e) until all possible combinations of the (m − 1)th order
partial derivatives are taken. Then the candidates for all coefficients in the mth degree
terms of UI+1/2(x − xI+1/2) have been computed. For each of these coefficients, say
1
m!U

(m)
I+1/2(0), |m| = m, let the new coefficient Ũ

(m)
I+1/2(0) = F (candidates of U

(m)
I+1/2(0)).

Step 2. In order to find the new coefficients in the zeroth and first degree terms
of UI+1/2(x − xI+1/2), we perform the procedure of Step 1(a)–(f) with m = 1, and

make sure that the new approximate cell average LI+1/2 is in each of the stencils,
which ensures that the cell average of UI+1/2(x − xI+1/2) on cell CI+1/2 is not
changed with the new coefficients. The new coefficient in the zeroth degree term of
UI+1/2(x−xI+1/2) is LI+1/2, which ensures that the cell average of UI+1/2(x−xI+1/2)
in cell CI+1/2 is invariant with the new coefficients. At this stage all new coefficients
of UI+1/2(x − xI+1/2) have been found.

Remarks. 1. The coefficients of the polynomials can be updated after Algorithm 1
has been applied to all mesh cells, or at the mth stage when all new coefficients for
those in the mth degree terms of all polynomials have been computed (in this case,
{∂0UJ} used in Step 2 should be the cell averages of the original polynomials to
ensure that they are invariant). The latter case is supposed to be more diffusive. In
numerical experiments we find their results are about the same. All numerical results
presented in this paper are performed with the former implementation.

2. One motivation for us to develop this hierarchical reconstruction is that the
limiting for the DG scheme on nonstaggered meshes is different from that for scheme
(3.4). For the usual DG scheme the time evolution of the cell averages is completely
determined by the fluxes; however, in (3.4), cell interior values are also involved. We
find in numerical experiments that the moment limiter [7] does not work as robustly
for scheme (3.4) as it does for the DG scheme on nonstaggered meshes. The proposed
hierarchical reconstruction process is quite general and could be useful for conventional
DG or even finite volume schemes. These will be explored in the future.

3. Scheme (3.4) with Algorithm 1 and with piecewise linear elements is identical
to the second order central scheme on overlapping cells [38].

4. It is more efficient to apply the hierarchical reconstruction process only in
places where it is needed by using nonsmoothness detectors (see, e.g., [42, 9]). This
will be explored in the future.

3At this stage, we have already found new values for all coefficients in the terms of UI+1/2(x −
xI+1/2) of degree above m. These coefficients remain in RI+1/2(x−xI+1/2) (after taking an (m−1)th
order partial of UI+1/2(x − xI+1/2)). When they are replaced by their corresponding new values,

RI+1/2(x − xI+1/2) becomes R̃I+1/2(x − xI+1/2). See Step 2(2) in section 4.1 as an example.
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The most important point is that even though the linear reconstruction used
in Algorithm 1 is only second order accurate, the approximation order of accuracy
of a polynomial in a cell is unaffected by the algorithm, and we have the following
condition.

Condition 1. Let {xJ0 ,xJ1 , . . . ,xJd
} be the d + 1 cell centroids of a stencil.

Then there is a point among them, say xJ0
, such that the matrix A = 1

Δx [xJ1
− xJ0

,
xJ2

−xJ0 , . . . ,xJd
−xJ0 ] is nonsingular. Further, there is a constant α > 0 independent

of Δx such that ||A−1|| ≤ α.
In two dimensions, this condition means that xJ0 ,xJ1 ,xJ2 are not along a straight

line. Further, the angle between the line passing xJ0 ,xJ1 and the line passing xJ0 ,xJ2

has a positive lower bound independent of Δx. This condition is satisfied for stencils
such as {C3, C1, C2}, {C3, C2, C5}, {C3, C5, C4}, and {C3, C4, C1} in Figure 3 (right),
and is not satisfied for {C1, C3, C5}.

Theorem 2. Suppose {UJ(x−xJ)} in Algorithm 1 approximate a Cr+1 function
u(x) with pointwise error O

(
(Δx)r+1

)
within their respective cell {CJ}, and all cells

in {CJ} are contained in a circle centered at xI+1/2 with radius O(Δx). Let the d+1
cell centroids in every stencil used in Algorithm 1 satisfy Condition 1. Then after the
application of Algorithm 1, the polynomial ŨI+1/2(x−xI+1/2), i.e., UI+1/2(x−xI+1/2)
with its coefficients replaced by the corresponding new values, also approximates the
function u(x) with pointwise error O

(
(Δx)r+1

)
within cell CI+1/2. The cell average

of ŨI+1/2(x − xI+1/2) on cell CI+1/2 is the same as that of UI+1/2(x − xI+1/2).
Proof. From the assumption we know that the coefficients in the mth degree

terms of UI+1/2(x − xI+1/2), 0 ≤ m ≤ r, are the (r −m + 1)th order approximation
to the corresponding coefficients of the Taylor expansion of u(x) at xI+1/2.

Assume that when starting to compute new values for the coefficients of the
mth degree terms of UI+1/2(x − xI+1/2), 1 ≤ m ≤ r, all the computed new values
(if there are any) for the coefficients of the lth degree terms (m < l ≤ r, if they
exist) of UI+1/2(x − xI+1/2) are their (r − l + 1)th order approximations. In fact,
when m = r, there are no new coefficients which have been computed at Step 1(a).
However, the following argument will show that the new coefficients computed at
Step 1(f) for coefficients of the rth degree terms of UI+1/2(x− xI+1/2) are their first
order approximations.

Let LI+1/2(x− xI+1/2) = c0 + c1 · (x− xI+1/2) in Step 1(a) and let L̂(x) = ĉ0 +
ĉ1·(x−xI+1/2) be the corresponding linear part in the Taylor expansion of the same (as
for UJ) (m−1)th partial derivative of u(x) at xI+1/2. Therefore c0 and c1 approximate

ĉ0 and ĉ1 to the order of O
(
(Δx)r−m+2

)
and O

(
(Δx)r−m+1

)
, respectively. Also

from the above assumptions it is easy to see that LJ = ∂m−1UJ − RJ in Step 1(d)

approximates the cell average of L̂(x) on cell CJ to the order of O(Δxr−m+2) for all
cells CJ adjacent to cell CI+1/2.

Reconstructing L̃I+1/2(x−xI+1/2) = c̃0+ c̃1 ·(x−xI+1/2) from a stencil CJ0 , CJ1 ,
. . . , CJd

∈ {CJ} entails finding c̃0 and c̃1 that satisfy the equations (see (4.2))

1

|CJl
|

∫
CJl

(c̃0 + c̃1 · (x − xI+1/2))dx = c̃0 + c̃1 · (xJl
− xI+1/2)(4.3)

= LJl
= ĉ0 + ĉ1 · (xJl

− xI+1/2)

+ O
(
(Δx)r−m+2

)
,

where xJl
is the cell centroid of cell CJl

, l = 0, . . . , d. The solutions are candidates
for c0 and c1, respectively. Subtracting the first equation (l = 0) from the rest of the
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equations in (4.3), we can obtain

AT (c̃1 − ĉ1) = O
(
(Δx)r−m+1

)
,

where A = 1
Δx [xJ1 − xJ0 ,xJ2 − xJ0 , . . . ,xJd

− xJ0 ]. From Condition 1, ||A−1|| is
bounded independently of Δx. We conclude that the candidate

(4.4) c̃1 = ĉ1 + O
(
(Δx)r−m+1

)
.

Also since ||xJl
− xI+1/2|| = O(Δx), l = 0, 1, . . . , d, by substituting the estimate of

the candidate c̃1 back into one of the equations of (4.3), we obtain that the candidate

(4.5) c̃0 = ĉ0 + O
(
(Δx)r−m+2

)
.

Since the function F used in Step 1(f) is a convex combination of its arguments, it does
not change the approximation order of its arguments. Therefore estimate (4.4) implies
that the new values for coefficients of the mth degree terms of UI+1/2(x − xI+1/2)
are their (r−m+ 1)th order approximations. Estimate (4.4) moves the induction till
m = 1 and estimate (4.5) implies that in Step 2 the new value for the coefficient of
the zeroth degree term of UI+1/2(x− xI+1/2) is its O(Δxr+1) approximation. Step 2
clearly ensures that the cell average of UI+1/2(x−xI+1/2) on cell CI+1/2 is unchanged
with the new coefficients. The proof is now complete.

4.3. Implementation for piecewise quadratic finite element space in two
dimensions. Suppose on cell Cj (see Figure 3, right) a quadratic polynomial is given
as

Uj(x− xj , y − yj) = Uj(0, 0) + ∂xUj(0, 0)(x− xj) + ∂yUj(0, 0)(y − yj)

+
1

2
∂xxUj(0, 0)(x− xj)

2

+ ∂xyUj(0, 0)(x− xj)(y − yj) +
1

2
∂yyUj(0, 0)(y − yj)

2,

where (xj , yj) is the cell centroid of cell Cj , j = 1, 2, . . . , 5.
According to Step 1 of Algorithm 1, take the first partial derivative with respect

to x for them to obtain Lj(x − xj , y − yj) = ∂xUj(0, 0) + ∂xxUj(0, 0)(x − xj) +
∂xyUj(0, 0)(y− yj), j = 1, 2, . . . , 5. Calculate the cell average of Lj(x− xj , y− yj) on
cell Cj to obtain Lj = ∂xUj(0, 0), j = 1, 2, . . . , 5 (note that R3(x− x3, y − y3) ≡ 0).
With the five new approximate cell averages {Lj : j = 1, 2, . . . , 5}, one can apply
a MUSCL or a second order ENO procedure to reconstruct a nonoscillatory linear
polynomial

L̃3(x− x3, y − y3) = ∂xŨ3(0, 0) + ∂xxŨ3(0, 0)(x− x3) + ∂xyŨ3(0, 0)(y − y3)

in cell C3. For example, one can form the four stencils {C3, C1, C2}, {C3, C2, C5},
{C3, C5, C4}, and {C3, C4, C1}. For the first stencil, solve the following equations for

∂xxŨ3(0, 0) and ∂xyŨ3(0, 0):

1

|Cj |

∫
Cj

L̃3(x− x3, y − y3)dxdy = L3 + ∂xxŨ3(0, 0)(xj − x3) + ∂xyŨ3(0, 0)(yj − y3)

= Lj ,
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Table 10

P 2 version of the central DG scheme (3.4) with the hierarchical reconstruction Algorithm 1 for
the 2D Burgers equation. Second order ENO is used in Algorithm 1.

Δx 1/4 1/8 1/16 1/32 1/64
L1 error 8.00E-2 1.24E-2 1.58E-3 1.92E-4 2.40E-5
order - 2.69 2.97 3.04 3.00

L∞ error 4.90E-2 9.85E-3 1.68E-3 2.01E-4 2.68E-5
order - 2.31 2.55 3.06 2.91

j = 1, 2; similarly for other stencils. We obtain two sets of candidates for ∂xxU3(0, 0)
and ∂xyU3(0, 0), respectively. By taking the first partial derivative with respect to
y for Uj(x − xj , y − yj), j = 1, 2, . . . , 5, we similarly obtain a set of candidates for
∂yyU3(0, 0) and enlarge the set of candidates for ∂xyU3(0, 0). Putting all candidates
for ∂xxU3(0, 0) into the arguments of the minmod (or minmod2) function, we obtain

the new coefficient ∂xxŨ3(0, 0) for ∂xxU3(0, 0). Applying the same procedure, we

obtain new coefficients ∂xyŨ3(0, 0) and ∂yyŨ3(0, 0).
According to Step 2 of Algorithm 1, we compute the cell average of Uj(x − xj ,

y − yj) on cell Cj to obtain Uj , j = 1, 2, . . . , 5, and compute cell averages of the
polynomial

R̃3(x− x3, y − y3) =
1

2
∂xxŨ3(0, 0)(x− x3)

2 + ∂xyŨ3(0, 0)(x− x3)(y − y3)

+
1

2
∂yyŨ3(0, 0)(y − y3)

2

on cell C1, C2, . . . , C5 to obtain R1, R2, . . . , R5, respectively. Redefine Lj = Uj −Rj ,
j = 1, 2, . . . , 5. The same MUSCL or second order ENO procedure as described pre-
viously can be applied to the five cell averages {Lj : j = 1, 2, . . . , 5} to obtain the new

coefficients ∂xŨ3(0, 0) and ∂yŨ3(0, 0). Finally let the new coefficient Ũ3(0, 0) = L3.
The convergence test results with Algorithm 1 for Example 3 can be found in

Table 10. We again observe that the order of accuracy is maintained, although (as
expected for any limiter) the magnitude of the error is increased for the same mesh
(see Table 6 for a comparison).

5. Additional numerical examples. Scheme (3.4) with the piecewise rth de-
gree polynomial space is referred to as CO-DG-(r+1), where “C” stands for “central”
and “O” stands for “overlapping cells.” When the hierarchical reconstruction Algo-
rithm 1 is applied, it is referred to as CO-DG-hr1-(r+1). To specify whether a linear
MUSCL (with the minmod limiter) or ENO (with the minmod2 limiter) reconstruc-
tion is used in Algorithm 1, we refer it as CO-DG-hr1m-(r+1) or CO-DG-hr1e-(r+1),
respectively.

The corresponding (up to third order) TVD Runge–Kutta time discretization
methods [45] are applied to the above schemes. Only the solution in one class of
the overlapping cells is shown in the graphs throughout this section. For systems of
equations, the componentwise extensions of the scalar schemes (without characteristic
decomposition) have been used in all the computations.

Example 5. We compute the Euler equation with Lax’s initial data. ut+f(u)x = 0
with u = (ρ, ρv,E)T , f(u) = (ρv, ρv2 + p, v(E + p))T , p = (γ− 1)(E− 1

2ρv
2), γ = 1.4.

Initially, the density ρ, momentum ρv, and total energy E are 0.445, 0.311, and 8.928
in (0, 0.5), and are 0.5, 0, and 1.4275 in (0.5, 1). The computed results by CO-DG-
hr1e-3 and CO-DG-hr1m-3 are shown at T = 0.16 in Figure 4, with Δx = 1/200,
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Fig. 4. Lax’s problem, Δx = 1/200. From left to right, top to bottom, (1) density (CO-
DG-hr1e-3); (2) velocity (CO-DG-hr1e-3); (3) pressure (CO-DG-hr1e-3); (4) density (CO-DG-
hr1m-3).

Δτn chosen with a CFL factor 0.4, Δtn = 0.5Δτn. The solid line reference solutions
are analytic solutions to the Riemann problem. We observe that the resolution is
quite good with very small over/undershoots. The only concern is that the contact
discontinuity is much more smeared than that of the regular third order DG scheme
with a total variation bounded limiter (Figure 20 in [12]). We hope to improve this
performance by reducing the usage of the reconstruction limiter through a troubled-
cell indicator in future work.

Example 6. The Woodward and Colella blast wave problem [50] for the Euler
equation computed by CO-DG-hr1e-3. Initially, the density, momentum, and total
energy are 1, 0, 2500 in (0, 0.1); 1, 0, 0.025 in (0.1, 0.9); and 1, 0, 250 in (0.9, 1). The
density, velocity, and pressure profiles are plotted in Figure 5 for T = 0.01 and
T = 0.038. The solid line reference solutions are computed by a third order central
scheme on overlapping cells [38] on a much refined mesh (Δx = 1/2000). Δτn is
chosen with a CFL factor 0.4, Δtn = 1

2Δτn. We observe stable results with good
resolution for this very demanding problem in terms of numerical stability.
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Fig. 5. Woodward and Colella blast wave problem computed by CO-DG-hr1e-3, Δx = 1/400.
Top: density; middle: velocity; bottom: pressure. Left: T = 0.01. Right: T = 0.038.

Example 7. Shu–Osher problem [46]. It is the Euler equation with an initial data

(ρ, v, p) = (3.857143, 2.629369, 10.333333) for x < −4,

(ρ, v, p) = (1 + 0.2 sin(5x), 0, 1) for x ≥ −4.

The density profiles are plotted at T = 1.8, with Δx = 1/40; see Figure 6. Δτn is
chosen with a CFL factor 0.5, Δtn = 0.5Δτn. The solid line is the numerical solution
on a fine mesh (Δx = 1/200) computed by a central scheme on overlapping cells [38].
We observe very good resolution for this example. In order to see the resolution of
the 2D nonoscillatory hierarchical reconstruction algorithm, we put the Shu–Osher
problem to a 2D domain [−5, 5] × [0, 0.25] and solve the 2D Euler equation. Initially
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Fig. 6. Shu–Osher problem, Δx = 1/40. Left: CO-DG-dr1m-3. Right: CO-DG-hr1e-3.
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Fig. 7. Shu–Osher problem in two dimensions, Δx = Δy = 1/40. CO-DG-hr1e-3. Left:
density in the xy plane. Right: density along the line y = 0.25/3.

the density variation is only along the x direction. The density profiles at T = 1.8
are plotted in Figure 7.

Example 8. 2D Riemann problem [29] for the Euler equation computed by CO-
DG-hr1e-3. The 2D Euler equation can be written as

ut + f(u)x + g(u)y = 0, u = (ρ, ρu, ρv,E)T , p = (γ − 1)(E − 1
2ρ(u

2 + v2)),

f(u) = (ρu, ρu2 + p, ρuv, u(E + p))T , g(u) = (ρv, ρuv, ρv2 + p, v(E + p))T ,

where γ = 1.4. The computational domain is [0, 1] × [0, 1]. The initial states are
constants within each of the 4 quadrants. Counterclockwise from the upper right
quadrant, they are labeled (ρi, ui, vi, pi), i = 1, 2, 3, 4. Initially, ρ1 = 1.1, u1 = 0,
v1 = 0, p1 = 1.1; ρ2 = 0.5065, u2 = 0.8939, v2 = 0, p2 = 0.35; ρ3 = 1.1, u3 = 0.8939,
v3 = 0.8939, p3 = 1.1; and ρ4 = 0.5065, u4 = 0, v4 = 0.8939, p4 = 0.35. The density
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Fig. 8. A 2D Riemann problem [29] computed by CO-DG-hr1e-3. Δx = Δy = 1/400, Left:
density. Right: pressure.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

Fig. 9. A 2D Riemann problem [29]. Density profile along y = 1/3.

and pressure profiles are plotted at T = 0.25 in Figure 8, with 30 equally spaced
contours. The numerical resolution is quite good for this problem. The density profile
along y = 1/3 is plotted in Figure 9. There is no oscillation near the discontinuities.

Example 9. Double Mach reflection [50] computed by CO-DG-hr1e-3. A planar
Mach 10 shock is incident on an oblique wedge at a π/3 angle. The air in front of the
shock has density 1.4, pressure 1, and velocity 0. The boundary condition is described
in [50]. The density and pressure profiles are plotted at T = 0.2 in Figure 10, with
30 equally spaced contours. Δx = Δy = 1/120, Δτn chosen with a CFL factor 0.4,
Δtn = 0.99Δτn. We can see in the lower graph (the cross section density profile along
y = 1/3) that the computed result is nonoscillatory.

6. Concluding remarks and a plan for future work. In this paper we
have developed a central DG method based on staggered overlapping cells, with a
numerical viscosity which stays bounded when the time step size goes to zero. Time
discretization is via the standard TVD Runge–Kutta method. We have also developed
a multilayer hierarchical reconstruction procedure and used it as a limiter for our
central DG scheme. The limiter is able to maintain the original order of accuracy
and can effectively control spurious oscillations for discontinuous solutions. In future
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Fig. 10. Double Mach reflection computed by CO-DG-hr1e-3, Δx = Δy = 1/120. Top: density
contours. Middle: pressure contours. Bottom: density cut along the line y = 1/3.

work we will generalize the method to convection-diffusion equations, improve the
limiter by applying troubled-cell indicators, and also study further the hierarchical
reconstruction procedure as a limiter for the regular DG methods and finite volume
schemes. A stability analysis and error estimates for the central DG scheme as well as
a comparison between the regular DG and central DG schemes will also be performed.

The examples reported in the paper are aimed to show the flexibility of the new
approach to use with a Runge–Kutta method, and its capability to handle small time
steps, without introducing excessive numerical dissipation. The more efficient way to
overcome the small time step restriction with the presence of a diffusion term is to
use implicit-explicit time discretization, e.g., Ascher, Ruuth, and Spiteri [4], Kennedy
and Carpenter [24], and Liotta, Romano, and Russo [33], which treats the advection
part explicitly and the diffusion part implicitly, thus avoiding the O(Δx2) stability
restriction on the time step due to the diffusion term; another way would be to use a
fast explicit Runge–Kutta solver, e.g., Lebedev [30] or Medovikov [39].

Even though in all the numerical examples the reconstruction is performed com-
ponentwisely, we have also performed some preliminary tests on the nonoscillatory hi-
erarchical reconstruction with local characteristic decomposition and have not found
any significant difference. We plan to conduct more careful study on this subject in
the future.
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