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Abstract

We are concerned with high-resolution, non-oscillatory central schemes for approxi-

mating solutions of nonlinear, multi-dimensional, hyperbolic conservation laws subject to

prescribed initial values and to Dirichlet boundary conditions in inflow boundaries. We

demonstrate that a naive continuation of these central schemes up to the boundary typ-

ically results in spurious oscillations at inflow boundaries. Consequently, we are led to

present our new boundary scheme which is based on a different treatment in inflow and

in outflow boundaries. We explicitly construct the boundary scheme in one and in two

space dimensions and present numerical simulations that clearly demonstrate its desired

non-oscillatory properties.
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1 Introduction

In recent years, central schemes for approximating solutions of hyperbolic conservation laws,

received a lot of attention. In particular, a family of high-resolution, non-oscillatory, cen-

tral schemes, was developed to handle such problems. Compared with the ’classical’ upwind

schemes, these central schemes were shown to be both simple and stable for a large variety
of problems ranging from one-dimensional scalar problems to multi-dimensional systems of
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conservation laws. They were successfully implemented for a variety of other related prob-
lems, such as, e.g., the incompressible Euler equations [18], the magneto-hydrodynamics equa-

tions [28], hyperbolic systems with relaxation source terms [3], non-linear optics [23] and slow
moving shocks [11].

The high-order central schemes can be viewed as a direct extension to the first-order, Lax-

Friedrichs (LxF) scheme [6], which on one hand is robust and stable, but on the other hand
suffers from excessive dissipation. To address this problematic property of the LxF scheme,
a Godunov-like second-order central scheme was developed by Nessyahu and Tadmor (NT)

in [20] (see also [25]). It was extended to higher-order of accuracy as well as for more space
dimensions (consult [1, 2, 10, 12, 15, 17] for the two-dimensional case, and [24, 19, 4, 16] for

higher-order methods).

The NT scheme is based on reconstructing, in each time step, a piecewise-polynomial
interpolant from the cell-averages computed in the previous time step. This interpolant is

then (exactly) evolved in time, and finally projected on its staggered averages, resulting with
the staggered cell-averages at the next time-step. The one- and two-dimensional second-order

schemes, are based on a piecewise-linear MUSCL-type reconstruction, whereas the higher-order
schemes are based on piecewise-polynomial reconstructions of higher-order.

Like upwind schemes, the reconstructed piecewise-polynomials used by the central schemes,

also make use of non-linear limiters which guarantee the overall non-oscillatory nature of the
approximate solution. Yet, unlike the upwind schemes, central schemes avoid the intricate
and time consuming Riemann solvers; this advantage is particularly important in the multi-

dimensional setup – where no such Riemann solvers exist.

In this paper, we address the question of implementing the central schemes in the presence
of Dirichlet boundary conditions in inflow boundaries. First, we demonstrate that a naive

continuation of the central scheme from the interior of the domain up to the boundary may
result in spurious oscillations. Consequently, we are led to introduce a new accurate boundary

scheme which is problem independent and also enjoys the overall simplicity and advantages of
the central framework.

The paper is organized as follows:

In §2 we briefly overview the construction of the central schemes, focusing on the one- and

two-dimensional second-order scheme.

In §3 we turn to deal with the problem of augmenting the central methods with Dirichlet
boundary conditions prescribed in inflow boundaries. After showing that a naive approach of

extending the interior treatment to the boundary can produce spurious oscillations, we present
our new boundary method. This method is based on a separate treatment of the inflow and
outflow boundaries. In both cases we still construct a linear interpolant in the boundary cells.

While in outflow boundary cells, a one-sided reconstruction based on data propagating from
the interior of the domain is natural, in the inflow case, however, one has to take into account

also the point-wise data from the boundary. The key question which we answer here is exactly
how to plug this inflow data into the approximate solution without modifying the accuracy of

the method, and without creating numerical artifacts.

We end in §4 by presenting several examples in which our new boundary method is im-
plemented. These examples clearly show that our treatment does not produce any spurious

oscillations at the boundary while retaining the overall order of accuracy, and by that it clearly
enjoys the robust nature of the entire interior schemes.
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2 A Short Guide to Central Schemes

In this section we briefly overview the construction of high-order, non-oscillatory, central
schemes for approximating solutions of hyperbolic conservation laws. We start by considering

the one-dimensional hyperbolic system of conservation laws

ut + f(u)x = 0, (2.1)

subject to the initial data, u(x, t=0) = u0(x). To approximate solutions of (2.1), we introduce
a mesh in the x− t plane, the spatial grid-points are denoted by xj. We denote by ∆x and ∆t,

the spacing in the x and in the t variables respectively, and abbreviate by Ij the cell around
xj, i.e., Ij :=

{

ξ||ξ − xj| ≤
∆x
2

}

.

By wj ∼ u(xj), we denote the approximate solution at xj, and define w̄j as the average
of wj over the cell Ij. Here, we follow Nessyahu and Tadmor (NT) [20] in the reconstruction
of the second-order, non-oscillatory central scheme. To approximate solutions of (2.1), we

introduce a piecewise-linear approximate solution at the discrete time levels, tn = n∆t, based
on linear functions pj(x, tn) which are supported at the cells Ij ,

w(x, t)|t=tn =
∑

j

pj(x, tn)χj(x) :=
∑

j

[

w̄n
j + w′

j

(

x − xj

∆x

)]

χj(x), χj(x) := 1Ij
. (2.2)

Second-order of accuracy is guaranteed if the discrete slopes approximate the corresponding

derivatives, w′
j ∼ ∆x · ∂xw(xj, t

n) + O(∆x)2. Such a non-oscillatory approximation of the
derivatives is possible, e.g., by using built-in non-linear limiters of the form

w′
j = MM{θ(w̄n

j+1 − w̄n
j ),

1

2
(w̄n

j+1 − w̄n
j−1), θ(w̄

n
j − w̄n

j−1)}. (2.3)

Here and below, θ ∈ (0, 2) is a non-oscillatory limiter and MM denotes the Min-Mod function

MM{x1, x2, ...} =







mini{xi} if xi > 0, ∀i
maxi{xi} if xi < 0, ∀i

0 otherwise.

An exact evolution of w, based on integration of the conservation law over the staggered
cell, Ij+ 1

2

, then reads

w̄n+1
j+ 1

2

=
1

∆x

∫

I
j+ 1

2

w(x, tn)dx−
1

∆x

∫ tn+1

τ=tn
[f(w(xj+1, τ))− f(w(xj, τ))]dτ.

The first integral is the staggered cell-average at time tn, w̄n
j+ 1

2

, which can be computed directly

from the above reconstruction. The time integrals of the flux are computed by the second-

order accurate mid-point quadrature rule. Here, the Taylor expansion is being used to predict
the required mid-values of w. The scheme can be therefore formulated in a predictor-corrector

form: a predictor step

w
n+1/2
j = wn

j −
λ

2
f ′
j , f ′

j = fu(wj)w
′
j =: A(wj)w

′
j, (2.4)
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which is followed by the corrector step

w̄n+1
j+ 1

2

=
1

2
(w̄n

j + w̄n
j+1) +

1

8
(w′

j − w′
j+1)− λ

[

f(w
n+1/2
j+1 ) − f(w

n+1/2
j )

]

. (2.5)

To upgrade this scheme into a third-order accurate scheme, e.g., one has to use (consult [19])

• A piecewise-parabolic reconstruction which replaces the piecewise-linear reconstruction.

• A more accurate quadrature rule for the flux integral such as Simpsons method, which

replaces the mid-point quadrature.

• A second-order accurate Taylor expansion to predict the mid-values which replaces the
corresponding first-order expansion. Alternatively, one can replace the Taylor expansion

with a Runge-Kutta solver (consult [4], [16]), which is a favorable approach in particular
for systems.

Following the same ideas, one can derive a non-oscillatory, two-dimensional central scheme.

Below we sketch the construction of the second-order two-dimensional scheme following [10].
For a two-dimensional third-order accurate scheme, we refer to [15], [17].

We consider the two-dimensional hyperbolic system of conservation laws

ut + f(u)x + g(u)y = 0. (2.6)

To approximate a solution to (2.6), we start with a two-dimensional linear reconstruction

w(x, y, tn) =
∑

j,k

pj,k(x, y)χj,k(x, y), (2.7)

pj,k(x, y) = w̄n
j,k + w′

j,k

(

x − xj

∆x

)

+ w8

j,k

(

y − yk

∆y

)

.

Here, the discrete slopes in the x and in the y direction approximate the corresponding deriva-
tives, w′

j,k ∼ ∆x · wx(xj, yk, t
n) + O(∆x)2, w8

j,k ∼ ∆y · wy(xj, yk, t
n) + O(∆y)2, and χj,k(x, y)

is the characteristic function of the cell Ij,k :=
{

(ξ, η)||ξ − xj| ≤
∆x
2 , |η − yk| ≤

∆y
2

}

.

An exact evolution of this reconstruction, which is based on integration of the conservation
law over the staggered volume followed by a mid-point approximation to the integrals of the

fluxes, can be formulated in a predictor-corrector form with the predictor step

w
n+ 1

2

j,k = wn
j,k −

λ

2
f ′
j,k −

µ

2
g8

j,k, (2.8)

and the corrector step

w̄n+1
j+ 1

2
,k+ 1

2

= <
1

4
(w̄n

j,. + w̄n
j+1,.) +

1

8
(w′

j,. − w′
j+1,.) − λ(f

n+ 1

2

j+1,· − f
n+ 1

2

j,· ) >k+ 1

2

+

+ <
1

4
(w̄n

.,k + w̄n
.,k+1) +

1

8
(w8

.,k − w8

.,k+1) − µ(g
n+ 1

2

·,k+1 − g
n+ 1

2

·,k ) >j+ 1

2

.

Here are below, λ := ∆t
∆x and µ := ∆t

∆y denote the fixed mesh-ratios, and we used the staggered

averaging notation

< wj,. >k+ 1

2

:=
1

2
(wj,k + wj,k+1), < w.,k >j+ 1

2

:=
1

2
(wj,k + wj+1,k).
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3 Numerical Treatment of Boundary Conditions

In this section we construct a non-oscillatory boundary scheme that augments the second-order

interior central scheme we overviewed in §2. We start by constructing such a scheme for the
one-dimensional case and then extend this boundary scheme to two space dimensions.

3.1 The scalar One-Dimensional Setup

The central schemes we overviewed in §2 are based on a staggered grid. Consequently, the
boundary scheme we present here is composed from two steps dictated by the two phases of the
boundary cells. While one stencil is composed of whole cells, the staggered stencil terminates

with half-cells at both boundaries (see Figure 1).

t x

w

x x

1/4

3/21/20

w w
N-1/4N-1

xxx

w
1

NN-1/2N-3/2

t

xx

w w

0 1

1/2 3/2

w
N-1/2

x
2

x x
N-1 N

n

n+1

n n n n

n+1 n+1
n+1

Figure 1: one dimensional stencil

The Problem

We start by demonstrating that a naive continuation of the interior central scheme up to the
boundary, typically results with spurious oscillations. To this extent, we assume that the cell-
averages, w̄n

1/2, w̄
n
3/2 . . . , w̄n

N−1/2, are known and we wish to compute w̄n+1
1/4

, w̄n+1
j (j=1,...,N−1),

w̄n+1
N− 1

4

at the next time-step (a reversed situation compared with Figure 1). We assume that

the left boundary is an inflow boundary and hence data propagates into the interior of the
domain. Consequently, the point-values at the boundary, w0, must be prescribed.

At such an inflow boundary-cell, I1/2, the reconstructed interpolant is given by (consult
(2.2))

p1/2(x, tn) = w̄n
1/2 + w′

1/2

(

x − x1/2

∆x

)

. (3.1)

The cell-average, w̄n
1/2, was already computed at the previous time-step; the remaining question

is how to reconstruct the discrete slope, w′
1/2, at the boundary cell, I1/2? Here we are dealing

with an inflow boundary and thus the point-value, wn
0 , is prescribed. Consequently, we may

use the prescribed boundary point-values to uniquely determine the discrete slope, w′
1/2, as

w′
1/2 = 2(w̄n

1/2 − wn
0 ). (3.2)

Here, due to the unique solution (3.2), one can not limit the discrete slope at the boundary cell
by using the limiting procedure which was used to prevent spurious oscillations at the interior
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cells (see (2.3)). Consequently, the reconstruction (3.1) can develop spurious oscillations at
the boundary, which will then propagate and contaminate also the interior of the domain.

In Figure 2 we demonstrate a typical situations in which spurious oscillations develop at

the boundary. Here, we solve Burgers equation: (2.1) with f(u) = u2/2, augmented with the
initial data

u0(x) = −5x3, x ∈ [−1, 1],

and with the inflow boundary conditions, u(−1, t) = 5, u(1, t) = −5. On the boundary cells,
we use a linear reconstruction whose slopes where determined according to (3.2).

-10

-8

-6

-4

-2

0

2

4

6

8

10

-1 -0.5 0 0.5 1 1.5

T=0.015

Figure 2: Oscillations at the boundaries with naive boundary treatment

The Solution

In the following we present our new boundary scheme at the left boundary. An analo-
gous treatment holds for the right boundary. First, we assume that the cell averages, w̄n

1/4,

w̄n
j (j=1,...,N−1), w̄n

N− 1

4

, are given at time t = tn, and we wish to compute the cell averages,

w̄n+1
1/2 , w̄n+1

3/2 . . . , w̄n+1
N−1/2, at the next time-step tn+1 (consult Figure 1).

To follow the setup dictated by the differential level, we distinguish between two possible
situations: the left boundary is either an inflow boundary, i.e., f ′(w̄n

1/4) > 0, or an outflow

boundary, f ′(w̄n
1/4) < 0.

If it is an inflow boundary cell, we replace the given cell-average, w̄n
1/4, with the prescribed

boundary data at the left of the cell, wn
0 , i.e., we define

w̄n
1/4 := wn

0 .

Such an assignment enables us to construct a linear interpolant that coincides with the

boundary data on x0. This is equivalent to considering instead of the half cell, a whole cell
I0 = [x−1/2, x1/2], centered around x0. We note that the computation of the derivative in the

neighboring cell I1, therefore involves the cell-averages, w̄n
1 , w̄n

2 , and the prescribed point-value,
wn

0 .
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The reconstructed linear interpolant at the boundary cell I0 equals

p0(x, tn) = w̄n
1/4 + w′

1/4

(

x − x0

∆x

)

, x ∈ [x0, x1/2].

The required derivative, w′
1/4, is approximated using a one sided derivative, i.e., w′

1/4 = w̄n
1 −

wn
0 . It is easy to see that this one-sided computation of the derivative avoids over/under-

shoots and hence it is free from spurious oscillations. The point-values on the boundary at

the mid-time, w
n+1/2
0 , required for the approximation of the flux integral there, is assumed

to be given (from the inflow data). In fact, assuming that the data at an inflow boundary is
prescribed for all time, one can approximate the flux integral there as accurate as desired.

In the outflow case, the only change compared with the inflow case is that there is no given
boundary data. The approximation of the derivative is once again one-sided, w′

1/4 = w̄n
1 −wn

0 ,

and the required mid-value on the boundary itself is computed using the standard Taylor
predictor step.

In the second phase of the staggering, we assume that the cell-averages, w̄n+1
1/2 , w̄n+1

3/2 , . . ., are

given, and we compute the cell averages at the next time step, w̄n+2
1/4

, w̄n+2
j (j=1,...,N), w̄

n+2
N−1/4

.

Here, the crucial observation is that in order to avoid spurious oscillations, one must use
one-sided approximations of the derivatives from the interior of the domain in the boundary

cells in both inflow and outflow cases. Locally, in inflow boundary cells in this phase of the
staggering, one can not satisfy the non-oscillatory requirements and simultaneously agree with

the given boundary conditions as demonstrated above. The key point is that ignoring the
exact point-values at the boundary in one phase is allowed, as the exact values are plugged

into the approximate solution in the next time step. Alternatively, one can interpret this step
as an intermediate step in which one splits the cell I1/2 into two: I1/2 = [x0, x0+ε]∪[x0+ε, x1],

where ε ∼ (∆x)2. In the right part, [x0 + ε, x1], one implements a one-sided approximation of
the derivative, while the left part, [x0, x0+ε], is non-important as its contribution is overridden

in the next phase of the staggering when we exchange the computed cell-average with the given
point-value at an inflow boundary cell.

Following this idea, one uses one-sided approximation for the derivative, w′
1/2 = w̄n+1

3/2 −

w̄n+1
1/2

. The slope in any piecewise-linear cell is constant throughout the cell, and in particular,

w′
0 = w′

1/2. Utilizing a Taylor expansion, the predicted mid-value at the boundary equals

w
n+3/2
0 = wn+1

0 −
λ

2
f ′
0, (3.3)

with

wn+1
0 = wn+1

1/2 −
∆x

2
w′

1/2, f ′
0 = A(wn+1

0 )w′
0, w′

0 = w′
1/2.

The boundary cell average at tn+2 is given by integration over the control volume I1/4 ×

[tn+1, tn+2], which leads to the corrector step

w̄n+2
1/4 = w̄n+1

1/2 −
1

4
w′

1/2 − λ
[

f(w
n+3/2
1/2 ) − f(w

n+3/2
0 )

]

. (3.4)

Remark: We emphasize that the exact point-values prescribed by the Dirichlet boundary

condition at inflow boundaries enter only in one phase of the staggering. The one-sided extrap-
olation of the approximated derivatives on the boundary cells is the same for both inflow and
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outflow cases. One may think of overcoming the difficulty in understanding why the boundary
conditions enter only in one phase of the staggering, by looking at the entire method every

two time steps. The surprising point, however, is that in view of the above, it is natural to
consider the basic stencil of such two-step method, as the one composed of the half-cells at

the boundaries, because this is the stencil in which the inflow data enters.

The entire boundary scheme is summarized in the following algorithm:

Phase I (of the staggering):

Determine the type of the flow at the left boundary. If inflow (f ′(wn
1/4) > 0):

w̄n
1/4 := wn

0 Exchanging the cell-average for the boundary data.

w
n+1/2
0 Given by the boundary data.

In both inflow and outflow cases:

w′
0 = w̄n

1 − w̄n
1/4 One sided approximation of the derivative.

Phase II:
w′

1/2 = w̄n+1
3/2

− w̄n+1
1/2

One-sided approximation.

wn+1
0 = wn+1

1/2
− ∆x

2 w′
1/2, f ′

0 = A(wn+1
0 )w′

1/2

w
n+3/2
0 = wn+1

0 − λ
2f ′

0

w̄n+2
1/4 = w̄n+1

1/2 − 1
4w′

1/2 − λ[f(w
n+3/2
1/2 )− f(w

n+3/2
0 )] The half cell-average at the boundary.

In the case of an inflow boundary, replace w
n+3/2
0 with the exact value.

3.2 Extensions to Systems

An analogous boundary treatment to the scalar case presented in §3.1 is also valid for systems.

The distinction between inflow and outflow boundaries is crucial for the well-posedness of
the underlying problem. Technically, however, assuming that the consistency of the problem

is given, there is almost no difference between our handling of the two types of boundaries.
One simply introduces the given data when such is available, either as cell-averages or as

point-values (for the quadrature of the fluxes)

As shown in §3.1 above, it is forbidden to utilize the point-values at the inflow boundaries
for limiting the derivatives there, as this may introduce spurious oscillations as demonstrated

above. Derivatives on the boundary should be computed using one-sided approximations.

Following these ideas, the extension to systems is straightforward. Systems are solved
component-wise (consult [20]). Each component is treated at the boundary exactly like the

scalar case of §3.1.

3.3 Extensions to the Two-Dimensional Setup

Here, we extend the one-dimensional boundary scheme presented in §3.1, to the two-dimensional

setup. This extension is done dimension by dimension; in each direction we apply the one-
dimensional arguments. Following §3.1, in the phase of the staggering that involved half-cells,

we replace the cell-averages with the given boundary conditions in inflow cells. All derivatives
in the boundary cells, at both phases of the staggering, are computed using one-sided approx-

imations. Finally, the required mid-values on the boundary are either extrapolated from the
interior in outflow cells, or taken from the given data in inflow cells.
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For brevity, we only consider the left boundary and the upper-left corner. An analo-
gous treatment holds for the other three boundaries and corners. We recall that in this

two-dimensional case, we approximate solutions to equation (2.6), augmented with boundary
conditions at the inflow boundaries.

0,k+1

0,k+1/2

0,k

1/2,k+1

1/2,k

x

y

Figure 3: Two dimensions - left boundary

We start with the first phase of the staggering assuming that the cell-averages are given on
the stencil which is composed of partial-cells at the boundary (the dotted stencil in Figure 3).

We consider the left boundary, and distinguish between inflow (f ′(wn
1/4,k+1/2) > 0), and

outflow (f ′(wn
1/4,k+1/2) < 0), boundary cells. Following the one-dimensional arguments, in

inflow cells, we replace the cell-average with the boundary data, i.e.,

w̄n
1/4,k+1/2 := wn

0,k+1/2.

The x-derivative is computed in both inflow and outflow boundaries using a one-sided approx-
imation,

w′
1/4,k+1/2 = w̄n

1,k+1/2 − w̄n
1/4,k+1/2.

The y-derivative is computed using the same limiting mechanism of the interior scheme. The
rest of the computations is straightforward, noting that in inflow boundary cells, the mid-

values, w
n+1/2
0,k+1/2

, are known from the boundary condition.

We now turn to the corners and as a prototype, consider the upper-left corner (see Figure 4).

In the corner we repeat the previous boundary treatment with one simple modification, namely,
we replace the cell average with the boundary data whenever at least one of the two directions

(x or y) is an inflow boundary,

w̄n
1/4,N−1/4 := w0,N .

Both derivatives are computed using one-sided approximations,

w′
1/4,N−1/4 = w̄n

1,N−1/4 − w̄n
1/4,N−1/4,

w8

1/4,N−1/4 = w̄n
1/4,N−1/4 − w̄n

1/4,N−1.
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The mid-value at the corner, w
n+1/2
0,N , is either taken from the boundary data if at least on of

the boundaries is inflow, or approximated using a Taylor expansion if its an outflow corner in

both directions.

1/2,N-1/2

1/2,N0,N

0,N-1/2

0,N-1

Figure 4: Upper-left corner

We now turn to the second phase of the staggering. For simplicity of notation, we assume
that the cell-averages are given in time tn, and we would like to compute the staggered cell-
averages at time tn+1.

We start with the left boundary (consult Figure 3). First, the discrete slope in the x-

direction are computed using the one-sided approximation w′
1/2,k = w̄n

3/2,k − w̄n
1/2,k. In the

inflow case, the mid-values w
n+1/2
0,k are prescribed by the boundary conditions. In the outflow

case, we extrapolate these values from the interior, i.e., first we have

wn
0,k = wn

1/2,k −
∆x

2
w′

1/2,k,

which is then used to predict the mid-value,

w
n+1/2
0,k = wn

0,k −
λ

2
f ′
0,k −

µ

2
g8

0,k.

Here f ′
0,k = A(wn

0,k)w
′
1/2,k and g8

0,k = B(wn
0,k)w

8

1/2,k. The discrete slope in the y-direction,

w8

0,k, is computed in both inflow and outflow cases using the limiting procedure of the interior

scheme. Finally, the staggered average at time tn+1 is given by

w̄n+1
1/4,k+1/2

=
w̄n

1/2,k + w̄n
1/2,k+1

2
+

1

8
(−w′

1/2,k − w′
1/2,k+1 + w8

1/2,k − w8

1/2,k+1) −

−
λ

2
(f(wn

1/2,k+1) + f(wn
1/2,k) − f(wn

0,k+1) − f(wn
0,k)) −

− µ(g(wn
1/2,k+1) + g(wn

0,k+1) − g(wn
1/2,k) − g(wn

0,k+1)). (3.5)

This concludes the boundary treatment of the left boundary. Similar expressions hold for the

other three boundaries.

We are left with the corners. Once again, we consider the upper-left corner (see Figure 4). If
the flow in this corner is outflow in both directions, the required quantities for the computation
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of the cell-averages at the next time-step are computed according to











w′
1/2,N−1/2 = w̄n

3/2,N−1 − w̄n
1/2,N−1/2, One-sided slopes

w8

1/2,N−1/2 = w̄n
1/2,N−1/2 − w̄n

1/2,N−3/2,











wn
0,N−1/2 = wn

1/2,N−1/2 −
∆x
2 w′

1/2,N−1/2, Predictor (west)

w
n+1/2
0,N−1/2

= wn
0,N−1/2 −

λ
2f ′

0,N−1/2 −
µ
2g8

0,N−1/2,











wn
1/2,N = wn

1/2,N−1/2 + ∆y
2 w8

1/2,N−1/2, Predictor (north)

w
n+1/2
1/2,N = wn

1/2,N − λ
2 f ′

1/2,N − µ
2g8

1/2,N ,











wn
0,N = wn

1/2,N−1/2 −
∆x
2 w′

1/2,N−1/2 + ∆y
2 w8

1/2,N−1/2, Predictor (north-west)

w
n+1/2
0,N = wn

0,N − λ
2 f ′

0,N − µ
2g8

0,N .

In an inflow boundary, the predicted mid-values are replaced by the boundary data, i.e., either

{w
n+1/2
0,N−1/2

, w
n+1/2
0,N } or {w

n+1/2
1/2,N

, w
n+1/2
0,N } or all three if it is an inflow-inflow corner.

The cell-average in the north-west edge of Figure 4 in time tn+1, is finally given by the
corrector step

w̄n+1
1/4,N−1/4

= w̄n
1/2,N−1/2 +

−w′
1/2,N−1/2 + w8

1/2,N−1/2

4
−

−λ(f(wn
1/2,N) + f(wn

1/2,N−1/2) − f(wn
0,N)− f(wn

0,N−1/2))−

−µ(g(wn
1/2,N) + g(wn

0,N) − g(wn
1/2,N−1/2) − g(w0,N−1/2)

n). (3.6)

4 Examples of Non-Linear Initial-Boundary Value Problems

Accuracy tests

We start by presenting a couple of accuracy tests. The first accuracy test, taken from [26],

corresponds to the linear advection problem ut + ux = 0 in the domain [-1,1], subject to the
time-dependent boundary condition u(−1, t) = sin πt and to the initial data u(x, 0) = sinπx.

In Table 1 we present the L1 and L∞ errors and convergence rates obtained at time T = 1
with CFL = 0.49. As expected, our boundary scheme preserves the order of accuracy of the
method, and results with a second-order method when measured in the L1 norm.

In Table 2 we present the results obtained when computing the accuracy of our method

with the Burgers equation, ut + uux = 0 in the domain [-1,1]. Here, the initial data was taken
as u0(x) = 2 + cos[π(x + 0.25)], and the time-dependent data in the left inflow boundary was

taken as the exact solution of the periodic Burgers equation at x = −1, with the same initial
data. Once again, it is evident that our method is second-order.
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N L1 error L1 order L∞ error L∞ order

40 1.363e-3 - 3.611e-3 -

80 3.484e-4 1.97 1.328e-3 1.44

160 8.805e-5 1.98 6.205e-4 1.10

320 2.288e-5 1.94 2.819e-4 1.14

640 5.861e-6 1.96 1.161e-4 1.28

Table 1: Linear Advection, T = 1, CFL = 0.49. L1 and L∞ errors and convergence rates.

N L1 error L1 order L∞ error L∞ order

40 7.169e-3 - 2.176e-2 -

80 1.952e-3 1.88 8.986e-2 1.28

160 5.284e-4 1.89 3.650e-3 1.30

320 1.444e-4 1.87 1.519e-3 1.26

640 3.798e-5 1.93 6.172e-4 1.30

Table 2: Burgers Equation, T = 0.15, CFL = 0.49. L1 and L∞ errors and convergence rates.

Shock exiting the domain

Our next example is of a shock going out of the domain. Here, we approximate the solution
of the one-dimensional Burgers Equation,

ut +

(

u2

2

)

x

= 0, −1 ≤ x ≤ 1, 0 ≤ t, (4.1)

subject to the initial conditions, u0(x)=0.2 − sin
(

πx
2

)

, and to the constant inflow boundary
conditions, u(−1)= u0(−1) = 1.2, u(1)= u0(1)=−0.8. In time, the solution sharpens until a

discontinuity (shock) is formed. This shock moves towards the right boundary and disappears
after ’hitting’ it.

Figure 5 shows the evolution of the numerical solution to equation (4.1) in time. The
plotted values are the cell-averages. One can clearly see the formation of the shock, and its
movement towards the right boundary. Note that no spurious oscillations are created in the

boundaries.

Shock entering from inflow-boundary

Our last 1D example is that of a shock entering the domain from a time-dependent inflow
boundary. Following Cockburn and Shu [5], we solve the Burgers equation (4.1) in [−1, 1],

subject to the initial data

u(x, 0) =
1

4
+

1

2
sinπ(x + 0.2), −1 ≤ x ≤ 1, (4.2)

and to the time-dependent inflow boundary condition

u(−1, t) = v(−0.8, t).

Here, v denotes the exact solution of (4.1) in a periodic domain [−1, 1] subject to the initial
data (4.2). This exact solution v is smooth until T = 2/π, then it develops a moving shock
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Figure 5: one dimensional Burgers equation (N=41)

which interacts with rarefaction waves. Note that there is a sonic point. The right boundary
is an outflow boundary and hence we prescribe no additional boundary conditions there.

In Figure 6 we plot the approximate solution at time T = 1.1, i.e., after the development

of discontinuity in the inflow boundary condition. We clearly see that our boundary treatment
is accurate and stable even in the presence of a shock entering from the time-dependent inflow

boundary.

2D Burgers equation

Here, we approximate the solution to the two-dimensional Burgers equation

ut +

(

u2

2

)

x

+

(

u2

2

)

y

= 0, (4.3)

subject to the initial conditions,

u0(x, y) =







































0.5 −1 ≤ x < 0, −1 ≤ y < 0,

0.0 0 ≤ x ≤ 1, −1 ≤ y < 0,

−1.0 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

−0.2 −1 ≤ x < 0, 0 ≤ y ≤ 1,

and augmented with boundary conditions at the inflow boundaries which are equal to the

initial values at these same boundaries. The solution is approximated using the algorithm of
§3.3. Figures 7-8 show contour plots of the solution at time T = 2 with mesh sizes 41 × 41,

81× 81, 161× 161 and 321× 321. Again, we observe that there are no spurious oscillations at
the boundaries, oscillations that are inherent with a naive treatment of inflow boundaries.
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Figure 6: Burgers equation. Shock entering from the time-dependent left boundary. T=1.1 (a)

N=200, (a′) N=400
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Figure 7: The 2D IBVP Burgers equation: T=2. (a) N=41, (a′) N=81
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Figure 8: The 2D IBVP Burgers equation: T=2. (a) N=161, (a′) N=321
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