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Many of the recently developed high-resolution schemes for hyperbolic conservation laws are based on upwind

differencing. The building block of these schemes is the averaging of an approximate Godunov solver; its time

consuming part involves the field-by-field decomposition which is required in order to identify the “direction of the

wind.” Instead, we propose to use as a building block the more robust Lax-Friedrichs (LxF) solver. The main

advantage is simplicity: no Riemann problems are solved and hence field-by-field decompositions are avoided. The

main disadvantage is the excessive numerical viscosity typical to the LxF solver. We compensate for it by using

high-resolution MUSCL-type interpolants. Numerical experiments show that the quality of the results obtained by

such convenient central differencing is comparable with those of the upwind schemes. c©Academic Press, Inc.

INTRODUCTION

In this paper we present a family of non-oscillatory, second order, central difference approximations to non-
linear systems of hyperbolic conservation laws. These approximations can be viewed as natural extensions of
the first-order Lax-Friedrichs (LxF) scheme. In particular, total-variation and entropy estimates are provided
in the scalar case, and unlike the upwind framework, no Riemann problems need to be solved in the case of
systems of conservation laws. The use of second-order piecewise-linear approximants instead of the first-order
piecewise-constant ones, compensates for the excessive LxF viscosity, and results in second-order resolution
Riemann-solver-free family of central difference schemes.

The paper is organized as follows. In Section 2, we derive our family of high resolution central differ-
encing schemes, using the LxF solver together with MUSCL-type interpolants. Thus, at each time-level we
reconstruct from the piecewise constant numerical data, a non-oscillatory piecewise linear approximation of
second order accuracy. We then follow the evolving solution to the next time level, and end up by pro-
jecting it back to a piecewise constant solution. The result is a family of schemes which takes an easily
implemented predictor-corrector form. The resolution of our method hinges upon the choice of certain local
numerical derivatives with which one reconstructs the piecewise-linear MUSCL-type interpolants from the
piecewise-constant data.

In Section 3, we concentrate on the scalar conservation law. We discuss a variety of choices for numerical
derivatives, and prove that the resulting scalar family of schemes, under the appropriate CFL limitation,
satisfies both the Total Variation Diminishing (TVD) property and a cell entropy inequality. These properties
guarantee the convergence to the unique entropy solution, at least in the genuinely non-linear scalar case.
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In Section 4, we describe several ways to extend our scalar family of central differencing schemes to
systems of conservation laws. The main issue lies again in the choice of vectors of numerical derivatives.
First, we describe a component-wise extension for the definition of these vectors, which share the simplicity
of the scalar family of schemes. Next, we demonstrate the flexibility of our central differencing framework,
which enables us to incorporate characteristic information–whenever available, into the definition of numerical
derivatives. We continue, by using this characteristic-wise framework to isolate the contact wave where the
Artificial Compression Method (ACM) is employed, while treating the more robust sound waves using the less
expensive component-wise approach. We end up by presenting a corrective type ACM, which is implemented
in a component-wise manner. This both improves the contact resolution, and retains the simplicity of the
Riemann-solver-free scalar approach.

Finally, in Section 5 we present numerical experiments with our high-resolution non-oscillatory central
difference schemes, and compare the results with the corresponding upwind-based ones.

Both the quantitative and qualitative results for a representative sample of compressible flow problems
governed by the Euler equations, are found to be in complete agreement with the resolution expected by the
scalar analysis. Taking into account the ease of implementation, robustness and time performance, these
results compare favorably with the results obtained by the corresponding upwind-based schemes.

2. A FAMILY OF HIGH-RESOLUTION CENTRAL DIFFERENCING METHODS

Many of the recently developed high-resolution schemes, which approximate the one dimensional system
of conservation laws

∂u

∂t
+

∂

∂x
(f(u)) = 0, (2.1)

are based on upwind differencing. The prototype of such upwind approximations is the Godunov scheme [4];
it computes a piecewise constant approximate solution over cells of width ∆x = xj+ 1

2
− xj− 1

2
, which is of

the form,

v(x, t) = vj(t), xj− 1
2
≤ x ≤ xj+ 1

2
. (2.2)

To proceed in time, the Godunov scheme first evolves the piecewise constant solution, v(x, t), for a sufficiently
small time step ∆t. Initiated with v(x, t), equation (2.1) consists of a successive sequence of non-interacting
Riemann problems. Their resulting solution at time level t + ∆t, can be expressed in terms of the Riemann
solver, R(x

t ; w`, wr),

v(x, t + ∆t) = R(
x − xj+ 1

2

∆t
; vj(t), vj+1(t)), xj ≤ x ≤ xj+1. (2.3)

This solution is then projected back into the space of piecewise constant gridfunctions, see Fig. 2.1,

vj(t + ∆t) ≡ v(x, t + ∆t) =
1

∆x

∫ x
j+ 1

2

x
j− 1

2

v(y, t + ∆t)dy, xj− 1
2
≤ x ≤ xj+ 1

2
. (2.4)
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Fig. 2.1

Integration of (2.1) over a typical cell [xj− 1
2
, xj+ 1

2
] × [t, t + ∆t] yields

vj(t + ∆t) = vj(t) + λ[f(R(0+; vj−1(t), vj(t)) − f(R(0+; vj(t), vj+1(t))], λ ≡ ∆t

∆x
. (2.5)

This shows the upwind property of the Godunov scheme. Namely, if the characteristic speeds throughout
the relevant neighboring cells, [xj−1, xj+1], are all positive (respectively, negative), then (2.5) is simplified
into vj(t + ∆t) = vj(t)−λ[f(vj(t))− f(vj−1(t))] (respectively, vj(t + ∆t) = vj(t)−λ[f(vj+1(t))− f(vj(t))]).
However, a more complex situation occurs when there is a mixture of both rightgoing and leftgoing waves.
In this case, the computation of Godunov’s numerical flux in (2.5) requires us to identify the “direction of
the wind,” i.e., to distinguish between the left- and rightgoing waves inside the Riemann fan. The exact (or
approximate) solution of the Riemann fan may be an intricate task, and in this context, we mention the
field-by-field decomposition proposed by Roe [19], which intends to simplify this task.

Instead, in this section we propose a high resolution approximation of (2.1), which is based on the
staggered form of the Lax-Friedrichs (LxF) scheme,

vj+ 1
2
(t + ∆t) =

1
2
[vj + vj+1] − λ[f(vj+1(t)) − f(vj(t))]. (2.6)

The LxF scheme, [13], is a prototype of a central difference approximation, which offers a great simplicity
over the upwind Godunov scheme (2.5). We observe that (2.6) can also be interpreted as a piecewise constant
projection of successive non-interacting Riemann problems, which are integrated over a staggered grid, see
Fig. 2.2,

vj+ 1
2
(t + ∆t) ≡ v(x, t + ∆t) =

1
∆x

∫ xj+1

xj

R(
x − xj+ 1

2

∆t
; vj , vj+1)dx, xj ≤ x ≤ xj+1. (2.7)
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Fig. 2.2

The robustness of the LxF scheme, (2.7), stems from the fact that unlike the Godunov case, here we
integrate over the entire Riemann fan, taking into account both the left- and rightgoing waves. This enables us
to ignore any detailed knowledge about the exact (or approximate) Riemann solver R(·; ·, ·). Unfortunately,
the LxF staggered solver, (2.7), which results in the simple recipe (2.6), suffers from excessive numerical
viscosity, which is evident from the viscous form [23]

vj(t + ∆t) = vj(t) − 1
2λ[f(vj+1(t) − f(vj−1(t))]+

+ 1
2 [Qj+ 1

2
∆vj+ 1

2
(t) − Qj− 1

2
∆vj− 1

2
(t)], ∆vj+ 1

2
(t) ≡ vj+1(t) − vj(t).

(2.8)

Indeed, the class of upwind schemes is characterized by a numerical viscosity coefficient matrix QU
j+ 1

2
∼

λ|Aj+ 1
2
|, (here Aj+ 1

2
refers to an approximate average of the Jacobian of f(v(x, t)) over the cell [xj , xj+1]×

[t, t + ∆t], e.g., [22]). By the CFL limitation, this amount of numerical viscosity is always less than the
amount of numerical viscosity present in the central LxF scheme, whose non-staggered form corresponds to
QLxF ≡ I. Consequently, the upwind Godunov-like approximations have better resolution than the central
LxF approximation, though they both belong to the same class of first-order accurate schemes. This is one of
the main motivations for using upwind schemes as building blocks for the modern shock capturing methods
of higher (than first-order) resolution, e.g. [7], [17], [24].

Alternatively, our proposed method will use the simpler central LxF solver as the building block for a
family of high-resolution schemes. In this manner we shall retain the LxF main advantage of simplicity: no
Riemann problems are solved and hence field-by-field decompositions are avoided. The main disadvantage
of excessive numerical viscosity will be compensated by using high-resolution MUSCL interpolants, [24],
instead of the first-order piecewise constant ones in (2.2).

To this end, at each time level we first reconstruct from (2.2) a piecewise linear approximation of the
form

Lj(x, t) = vj(t) + (x − xj)
1

∆x
v′j , xj− 1

2
≤ x ≤ xj+ 1

2
. (2.9a)

This form retains conservation, i.e., (here the overbar denotes the [xj , xj+1] - cell average),

Lj(x, t) = v(x, t) = vj(t);

second-order accuracy is guaranteed if the so-called vector of numerical derivative, 1
∆xv′j , which is yet to be

determined, satisfies
1

∆x
v′j =

∂

∂x
v(x = xj , t) + O(∆x). (2.9b)
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Next, we continue with a second stage, similar to the construction of the central LxF recipe: we evolve the
piecewise linear interpolant, (2.9), which is governed by the solution of successive sequences of noninteracting
Generalized Riemann (GR) problems, [1], see Fig. 2.3,

v(x, t + ∆t) = GR(x, t + ∆t; Lj(x, t), Lj+1(x, t)), xj < x < xj+1.

t

x

vj+ 1
2
(t + ∆t)

vj+1(t)

Lj+1(x, t)

Lj(x, t)

vj(t)

xj xj+ 1
2

xj+1

1
∆xv

′
j

Fig. 2.3

Finally, the resulting solution is projected back into the space of staggered piecewise-constant gridfunc-
tions

vj+ 1
2
(t + ∆t) = v(x, t + ∆t) ≡ 1

∆x

∫ xj+1

xj

v(y, t + ∆t)dy, xj ≤ x ≤ xj+1. (2.10)

In view of the conservation law (2.1), the last integral equals

vj+ 1
2
(t + ∆t) =

1
∆x


∫ x

j+ 1
2

xj

Lj(x, t)dx +
∫ xj+1

x
j+ 1

2

Lj+1(x, t)dx




− 1
∆x

[∫ t+∆t

τ=t

f(v(xj+1, τ))dτ −
∫ t+∆t

τ=t

f(v(xj , τ))dτ

]
.

(2.11)

The first two linear integrands on the right of (2.11), Lj(x, t) and Lj+1(x, t), are given by (2.9a) and can
be integrated exactly. Moreover, if the CFL condition

λ · max
xj≤x≤xj+1

ρ(A(v(x, t))) <
1
2
, (2.12)

is met, then the last two integrands on the right of (2.11), f(v(xj , τ)) and f(v(xj+1, τ)), are smooth functions
of τ ; hence they can be integrated approximately by the midpoint rule at the expense of O(∆t)3 local
truncation error. Thus we arrive at

vj+ 1
2
(t + ∆t) =

1
2
[vj(t) + vj+1(t)] +

1
8
[v′j − v′j+1] − λ[f(v(xj+1, t +

∆t

2
)) − f(v(xj , t +

∆t

2
))]. (2.13)

By Taylor expansion and the conservation law (2.1),

v(xj , t +
∆t

2
) = vj(t) − 1

2
λf ′

j , (2.14)
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may serve as our approximate midvalue, v(xj , t+ ∆t
2 ), within the permissible second-order accuracy require-

ment. Here, 1
∆xf ′

j stands for an approximate numerical derivative of the flux f(v(x = xj , t)),

1
∆x

f ′
j =

∂

∂x
f(v(x = xj , t)) + O(∆x), (2.15)

which is yet to be specified.
We should emphasize that while using the central type LxF solver, we integrated over the entire Riemann

fan, see v(x, t + ∆t) in (2.10), which consists of both the left- and rightgoing waves. On the one hand, this
enabled us to ignore any detailed knowledge about the exact (or approximate) generalized Riemann solver
GR(·; ·, ·); on the other hand, this enables us to accurately compute the numerical flux,

∫ t+∆t

τ=t f(v(x, τ))dτ ,
whose values are extracted from the smooth interface of two non-interacting Riemann problems.

In summary, our family of central differencing schemes takes the easily implemented predictor-corrector
form,

vj(t +
∆t

2
) = vj(t) − 1

2
λf ′

j , (2.16a)

vj+ 1
2
(t + ∆t) =

1
2
[vj(t) + vj+1(t)] +

1
8
[v′j − v′j+1] − λ[f(vj+1(t +

∆t

2
) − f(vj(t +

∆t

2
))]. (2.16b)

Here the numerical derivatives of both gridfunctions, {vj} and {fj}, should obey the accuracy constraints
(2.9b) and (2.15). In this manner the second-order accurate corrector step (2.16b), augments the first-order
accurate predictor step (2.16a), and results in a high- resolution second-order central difference approximation
of (2.1).

Remarks. 1. The choice 1
∆xv′j ≡ 1

∆xf ′
j ≡ 0 in (2.16), recovers the original first-order accurate LxF scheme

(2.6).
2. If instead of (2.6) we use the non-staggered version of the LxF scheme,

vj(t + ∆t) =
1
2
[vj+1(t) + vj−1(t)] − λ

2
[f(vj+1(t)) − f(vj−1(t))], (2.17)

and repeat the reconstruction, evolution and projection steps described above, then the resulting high reso-
lution central differencing approximation amounts to

vj(t +
∆t

2
) = vj(t) − 1

2
λf ′

j , (2.18a)

vj(t + ∆t) =
1
2
[vj+1(t) + vj−1(t)] +

1
4
[v′j−1 − v′j+1] −

λ

2
[f(vj+1(t +

∆t

2
) − f(vj−1(t +

∆t

2
))]. (2.18b)

To guarantee the desired nonoscillatory property of these approximations, the two free ingredients at our
disposal – the numerical derivatives 1

∆xv′j and 1
∆xf ′

j, should be carefully chosen. This issue will be discussed
in the next two sections.

3. THE SCALAR PROBLEM

In this section, we are concerned with non-oscillatory high- resolution central differencing approximations
of the scalar conservation law

∂u

∂t
+

∂

∂x
(f(u)) = 0. (3.1)

Our family of high-resolution central differencing schemes (2.16) can be rewritten in the form

vj+ 1
2
(t + ∆t) =

1
2
[vj(t) + vj+1(t)] − λ[gj+1 − gj], (3.2a)

where the so-called modified numerical flux, gj, [18], is given by

gj = f(vj(t +
∆t

2
)) +

1
8λ

v′j , vj(t +
∆t

2
) = vj(t) − 1

2
λf ′

j . (3.2b)
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Here, 1
∆xv′j is an approximate slope at the grid point xj ,

1
∆x

v′j =
∂

∂x
v(x = xj , t) + O(∆x), (3.3a)

and 1
∆xf ′

j is the numerical derivative of the gridfunction {fj},
1

∆x
f ′

j =
∂

∂x
f(v(x = xj , t)) + O(∆x). (3.3b)

The constraints (3.3) with smooth (= Lipschitz continuous) first order perturbations on their right, guarantee
the second-order accuracy of the central differencing schemes (3.2). In order to ensure that these schemes
are also non-oscillatory in the sense to be described below, our numerical derivatives, 1

∆xw′
j , should satisfy

for every gridfunction w = {wj},

0 ≤ w′
j · sgn(∆vj± 1

2
) ≤ Const. · |MinMod{∆wj+ 1

2
, ∆wj− 1

2
}|. (3.4a)

Here, the MinMod{·, ·} stands for the usual limiter,

MM{x, y} ≡ MinMod{x, y} =
1
2
[sgn(x) + sgn(y)] · Min(|x|, |y|), (3.4b)

and can be similarly extended to include more (than two) variables. The constraint (3.4) is required in order
to guarantee the Total Variation Diminishing (TVD) property for the family of central differencing schemes
(3.2). We recall that TVD is a desirable property in the current setup, for it implies no spurious oscillations
in our approximate solution v(x, t), [7].

However, it is well known, e.g. [7], [18], that one cannot satisfy both the accuracy requirement, (3.3),
and the TVD requirement, (3.4), at the non-sonic critical gridvalues, vj , where ∆vj+ 1

2
·∆vj− 1

2
< 0 6= a(vj).

Therefore, the second-order accuracy requirement, (3.3), must be given up at these critical gridvalues.
Difference schemes with (formal) second order of accuracy at all but these critical gridvalues may be classified
as having second order resolution in the sense that the local truncation error is almost everywhere O(∆x)3,
and the overall second-order accuracy does not seem to be degraded in such cases, at least in the L1-norm.
We shall verify the TVD property of the central differencing schemes, (3.2), with the help of

Lemma 3.1. The scheme (3.2a) is TVD, if its modified numerical flux, gj, satisfies the following
generalized CFL condition,

λ|
∆gj+ 1

2

∆vj+ 1
2

| ≤ 1
2
, ∆gj+ 1

2
≡ gj+1 − gj. (3.5)

Indeed, by (3.2a), the difference vj+ 1
2
(t + ∆t) − vj− 1

2
(t + ∆t) equals

vj+ 1
2
(t + ∆t) − vj− 1

2
(t + ∆t) = ∆vj+ 1

2
(
1
2
− λ

∆gj+ 1
2

∆vj+ 1
2

) + ∆vj− 1
2
(
1
2

+ λ
∆gj− 1

2

∆vj− 1
2

).

Condition (3.5) tells us that the terms inside the parenthesis are positive and TVD follows along the lines
of [7],

TV (v(t + ∆t)) ≡
∑

j

|vj+ 1
2
(t + ∆t) − vj− 1

2
(t + ∆t)| ≤ TV (v(t)). (3.6)

Equipped with lemma 3.1 we turn to

Theorem 3.2. Let the numerical derivatives 1
∆xv′j and 1

∆xf ′
j in (3.3) be chosen such that the TVD

requirement (3.4) holds, say,

0 ≤ v′j · sgn(∆vj± 1
2
) ≤ Constv · |MM{∆vj+ 1

2
, ∆vj− 1

2
}|, Constv ≡ α, (3.7a)

0 ≤ f ′
j · sgn(∆vj± 1

2
) ≤ Constf · |MM{∆vj+ 1

2
, ∆vj− 1

2
}|. (3.7b)
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Assume that the following CFL condition is satisfied

λ · max
j

|a(vj)| ≤ β, β ≡ λ
Constf
Constv

≤ 1
2α

(
√

4 + 4α − α2 − 2). (3.8)

Then the family of high-resolution central differencing schemes (3.2), (3.3) is TVD.

Proof: By (3.2b) we have:

λ|
∆gj+ 1

2

∆vj+ 1
2

| ≤ λ|f(vj+1(t + ∆t
2 )) − f(vj(t + ∆t

2 ))
∆vj+ 1

2

| + 1
8
· |

∆v′
j+ 1

2

∆vj+ 1
2

| ≤

≤ λ|f(vj+1(t + ∆t
2 )) − f(vj(t + ∆t

2 ))
vj+1(t + ∆t

2 ) − vj(t + ∆t
2 )

| · |vj+1(t + 1
2∆t) − vj(t + ∆t

2 )
∆vj+ 1

2

| + 1
8
|
∆v′

j+ 1
2

∆vj+ 1
2

|.
(3.9)

Our CFL condition (3.8) implies that the first term on the right of (3.9) does not exceed

λ|f(vj+1(t + ∆t
2 )) − f(vj(t + ∆t

2 ))
vj+1(t + ∆t

2 ) − vj(t + ∆t
2 )

| ≤ β. (3.10)

Using the midvalue vj(t + ∆t
2 ) in (3.2b), we can estimate the second term on the right of (3.9),

|vj+1(t + ∆t
2 ) − vj(t + ∆t

2 )
∆vj+ 1

2

| ≤ 1 +
λ

2
|
∆f ′

j+ 1
2

∆vj+ 1
2

|, ∆f ′
j+ 1

2
≡ f ′

j+1 − f ′
j , (3.11a)

where in view of (3.7b) and (3.8),

|
∆f ′

j+ 1
2

∆vj+ 1
2

| ≤ max

(
| f ′

j

∆vj+ 1
2

|, | f ′
j+1

∆vj+ 1
2

|
)

≤ Constf ≤ 1
λ

αβ. (3.11b)

Finally, the TVD requirement, (3.7a), gives us an upper bound for the third term on the right of (3.9),

|
∆v′

j+ 1
2

∆vj+ 1
2

| ≤ max(| v′j
∆vj+ 1

2

|, | v′j+1

∆vj+ 1
2

|) ≤ α. (3.12)

Using (3.10), (3.11) and (3.12), we find that (3.9) boils down to the quadratic inequality

β(1 +
1
2
αβ) +

1
8
α ≤ 1

2
,

whose solution yields the CFL limitation (3.8).
Remarks. 1. The values α which permit a positive solution of (3.8), β > 0, are 0 ≤ α < 4.

2. The TVD constraints (3.7) with α = 0 yields v′j ≡ f ′
j ≡ 0, which recovers the staggered LxF scheme

(2.6) with the corresponding CFL condition β ≤ 1
2 .

3. The CFL restriction (3.5) is a sufficient but not necessary condition for the TVD property. In
practice one may use higher values of β, up to β ≤ 1

2 .
4. A similar analysis carried out for the non-staggered form, (2.18), yields

β ≤ 1
α

(
√

4 + 4α − α2 − 2)

instead of (3.8). In practice one may use β ≤ 1 in this case.

We shall now discuss a few examples of numerical derivatives, which retain both the second order reso-
lution constraint, (3.3), and the TVD constraints, (3.7). As our first example for the numerical derivative,
v′j , we choose

v′j = MM{∆vj+ 1
2
, ∆vj− 1

2
}. (3.13a)
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This choice may oversmear a strong “discontinuity”, where the order of accuracy is less significant. A
preferable second choice, which allows for a steeper slope near such discontinuities and yet retains higher
accuracy in smooth regions, is given by

v′j = MM{α∆vj+ 1
2
,
1
2
(vj+1 − vj−1), α∆vj− 1

2
}. (3.13b)

The limiting parameter α can range between the values α = 1, which corresponds to the basic MinMod
limiter in (3.13a), and up to α < 4, which is permitted by the CFL condition (3.8). Similarly, the flux
numerical derivative may be chosen as

f ′
j = MM{∆fj+ 1

2
, ∆fj− 1

2
}, (3.14a)

which is a special case of

f ′
j = MM{α∆fj+ 1

2
,
1
2
(fj+1 − fj−1), α∆fj− 1

2
}. (3.14b)

A simpler alternative for (3.14) is given by

f ′
j = a(vj)v′j , (3.15)

where v′j is already computed by (3.13). We observe that this choice saves half the computation time of the
MinMod operation; yet, it requires the computation of the Jacobian, A(vj), when dealing with systems of
conservation laws.

The numerical derivative chosen in (3.13a), (3.14a) satisfies (3.7) with α = 1, which implies the TVD
property under the CFL limitation (3.8) with β = 1

2 (
√

7 − 2) ≈ 0.32.
The numerical derivative chosen in (3.13b), (3.14b) clearly satisfies (3.7) and consequently the TVD

property, for every permissible α, 0 ≤ α < 4. We summarize the above by stating

Corollary 3.3. Let the numerical derivative 1
∆xv′j be chosen by

v′j = MM{∆vj+ 1
2
, ∆vj− 1

2
}; (3.16a)

let the flux numerical derivative be chosen either by

f ′
j = a(vj)v′j , (3.16b)

or
f ′

j = MM{∆fj+ 1
2
, ∆fj− 1

2
}. (3.16c)

Then the family of high resolution central differencing schemes (3.2), (3.16) is TVD under the CFL condition

λ · maxj |a(vj)| ≤ β, β =
1
2
(
√

7 − 2) ≈ 0.32.

Similarily we have

Corollary 3.4. Let the numerical derivative 1
∆xv′j be chosen by

v′j = MM{2∆vj+ 1
2
,
1
2
(vj+1 − vj−1), 2∆vj− 1

2
}; (3.17a)

let the flux numerical derivative be chosen either by

f ′
j = a(vj)v′j , (3.17b)

or
f ′

j = MM{2∆fj+ 1
2
,
1
2
(fj+1 − fj−1), 2∆fj− 1

2
}. (3.17c)
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Then the family of high resolution central differencing schemes (3.2), (3.17) is TVD, under the CFL condi-
tion,

λ · maxj |a(vj)| ≤ β, β =
1
2
(
√

2 − 1) ≈ 0.21.

Remarks. 1. We note that the CFL limitations in Corollaries 3.3 and 3.4 are not sharp. In the first case,
(3.16), where a limiter parameter α = 1 was used, the reconstruction step is a TVD operation; replacing the
exact TVD evolution operator by the midpoint rule in (2.11) together with the final averaging step is also
TVD, under the CFL limitation β ≤ 1

2 . Similarly, one can argue that in the second case, (3.17), where a
limiter parameter α = 2 was used, the averaging step retains the TVD property (though not necessarily the
entropy condition), as long as the CFL condition β ≤ 1

2 is met. Indeed, this CFL condition was verified as
the stabilitiy limitation, by the numerical experiments reported in Section 5.

2. Recently, non-oscillatory schemes were constructed, such that by sacrificing the TVD property,
they achieve higher (than second-order) resolution including the critical gridvalues, e.g., the UNO scheme
in [12] and the ENO class of approximations in [9]. To implement such ideas within our framework, one can
borrow their definition of numerical derivative. For example, instead of the TVD choices (3.4), our central
differencing scheme (3.2) may be augmented by the UNO choice (here ∆2vj ≡ vj+1 − 2vj + vj−1),

v′j = MM{∆vj− 1
2

+
1
2
MM(∆2vj−1, ∆2vj), ∆vj+ 1

2
− 1

2
MM(∆2vj , ∆2vj+1)}. (3.18)

Theorem 3.2 and its corollaries 3.3 and 3.4 demonstrate high- resolution central differencing methods
which satisfy the non- oscillatory TVD property, and hence are convergent to a limit solution u(x, t). To
guarantee that this limit solution is the unique entropy solution of the scalar conservation law (3.1), we shall
appeal to the following cell entropy inequality, see [10],

U(vj+ 1
2
(t + ∆t)) ≤ 1

2
[U(vj) + U(vj+1)] − λ[Gj+1 − Gj ]. (3.19)

Here U(u) is a convex entropy function and Gj ≡ G(vj+1, vj , vj−1) is the numerical entropy flux which is
consistent with the corresponding differential one

G(u, u, u) = F (u), F (u) ≡
∫ u

f ′(u)U ′(u).

We recall that Lax has verified such cell entropy inequality for the LxF scheme, [14]. Following Lax, we will
continuously deform vj into vj+1,

v(s) = svj + (1 − s)vj+1, v(0) = vj+1, v(1) = vj , (3.20a)

and in a similar manner, we will further deform v(s) into vj+1,

v(r, s) = rv(s) + (1 − r)vj+1, v(0, s) = vj+1, v(1, s) = v(s). (3.20b)

In the Appendix we prove

Lemma 3.5. Let g(v) be a piecewise differentiable interpolant of the gridfunction {gj}. Then the following
identity holds,

U(vj+ 1
2
(t + ∆t)) ≡ 1

2
[U(vj+1) + U(vj)] − λ

∫ vj+1

vj

U ′(v)g′(v)dv − RU
j+ 1

2
(g(v)). (3.21)

Here the residual term, Rj+ 1
2
(g) ≡ RU

j+ 1
2
(g(v)), is given by,

RU
j+ 1

2
(g(v)) = (∆vj+ 1

2
)2
∫ 1

0

∫ 1

0

sU ′′(v(r, s)) · [ 1
2
− λg′(v(r, s))] · [ 1

2
+ λg′(v(s))]dsdr. (3.22)

Adding and subtracting ∫ vj+1

vj

U ′(u)f ′(u)du ≡ F (vj+1) − F (vj),
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then after integration by parts, the right hand side of (3.21) will amount to:

U(vj+ 1
2
(t + ∆t)) =

1
2
[U(vj+1) + U(vj)] − λ[F (vj+1) − F (vj)] − λU ′(v) · (g(v) − f(v))|vj+1

vj

+λ

∫ vj+1

vj

U ′′(v) · (g(v) − f(v))dv − RU
j+ 1

2
(g(v)).

Consequently, the inequality

λ

∫ vj+1

vj

U ′′(v) · (g(v) − f(v))dv − RU
j+ 1

2
(g(v)) ≤ 0, (3.23)

provides us with a sufficient condition for the family of central differencing schemes (3.2) to satisfy the cell
entropy inequality, (3.19), with numerical entropy flux Gj = F (vj) + U ′(vj) · (g(vj)− f(vj)). This brings us
to

Lemma 3.6. Let g(v) be the piecewise linear interpolant of the modified flux gridfunction {gj},

g(v) =
∆gj+ 1

2

∆vj+ 1
2

(v − vj) + gj, min(vj , vj+1) ≤ v ≤ max(vj , vj+1). (3.24)

Assume that the central differencing schemes (3.2), satisfy the TVD constraint (consult (3.7)),

0 ≤ v′j · sgn(∆vj± 1
2
) ≤ Constv · |MM{∆v+

j+ 1
2
, ∆v+

j− 1
2
}|, Constv ≡ α ≤ 1, (3.25a)

where
∆v+

j+ 1
2
≡ ∆vj+ 1

2
· [1 − λ · (max

x
f ′′(v(x)) · ∆vj+ 1

2
)+]+. (3.25b)

The entropy dissipative limiter in (3.25b), is introduced in order to prevent the nonexpansive entropy violating
rarefactions, consult [18, Section 8].

Moreover, assume that the flux numerical derivative satisfies the TVD constraint:

0 ≤ f ′
j · sgn(∆vj± 1

2
) ≤ Constf · |MM{∆vj+ 1

2
, ∆vj− 1

2
}|, λ · Constf

Constv
≡ β, (3.25c)

so that the CFL condition (3.8) holds.
Then the following inequality holds

λ

∫ vj+1

vj

(g(v) − f(v))dv − RU
j+ 1

2
(g(v)) ≤ 0, U(u) =

1
2
u2. (3.26)

Remarks. 1. We observe that in the Genuinely Non-Linear (GNL) case, where, say, f ′′ > 0, the entropy
entropy (3.25b) becomes effective only in rarefaction cells where ∆vj+ 1

2
> 0, in agreement with [18]. It

retains the second-order resolution of the central differencing schemes (3.2), except for a finite number of
critical cells which contain strong rarefactions, (∆vj+ 1

2
)+ ∼ 1, where it reduces (3.2), (3.3) to the original

LxF scheme.
2. Lemma 3.6 applies to choices of numerical derivatives, v′j , subject to the TVD constraint (3.7a)

with 0 < α ≤ 1. In practice, higher values, α > 1, can be used.

Lemma 3.6 - which is proved in the appendix, shows that our central differencing TVD schemes (3.2),
(3.7) fulfill the sufficient condition (3.23) and consequently the cell entropy inequality (3.19), with respect
to the quadratic entropy function U(u) = 1

2u2. Thus, the limit solution of our central TVD schemes, u(x, t),
satisfies

∂

∂t
(
1
2
u2) +

∂

∂x
(F (u)) ≤ 0, F (u) =

∫ u

uf ′(u)du.

This singles out u(x, t) as the unique entropy solution of (3.1), at least in the GNL case [2]. We have shown

Theorem 3.7. Consider the GNL scalar conservation law (3.1). It is approximated by the family of high
resolution central differencing schemes (3.2), (3.3) which satisfy the TVD and entropy constraints, (3.25).
Then, if the CFL condition (3.8) holds, we have:
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1. Second-order resolution;

2. Total Variation Diminishing property;

3. A consistent quadratic cell-entropy inequality;

and, as a consequence of 2. and 3.:

4. the corresponding central differencing schemes converge to the unique physically relevant solution of
the GNL conservation law (3.1).

We shall close this section with some scalar numerical examples. We consider the approximate solution
of the inviscid Burger’s equation

ut + (
1
2
u2)x = 0. (3.27)

using several of the previously mentioned central differencing schemes. They include:

1. The first-order LxF scheme in its non-staggered form (2.17).

2. The second-order non-oscillatory central differencing scheme (2.18), (3.13a), (3.15). This is the ordinary
non-staggered version of our central differencing which will be referred to as ORD.

3. The second-order non-oscillatory central differencing scheme (3.2), (3.13a), (3.15). This is the staggered
version of our central differencing which will be referred to as STG.

Equation (3.27) is solved with two sets of initial conditions. In the first case, we have the smooth 1-periodic
initial data,

u(x, 0) = sin(πx). (3.28a)

The well known solution of (3.27), (3.28a), e.g. [15], develops a shock discontinuity at tc ≈ 0.31. Table I
shows us the L1 norm of the errors at the pre-shock time t = 0.15. It indicates the first order accuracy of the
LxF scheme in contrast to the second order accuracy of our central differencing, ORD and STG. In Table I
we also recorded the same L1 errors at the post-shock time t = 0.4. The presence of a shock discontinuity
reduces the global L1 error to first order. However, the central differencing STG scheme performs somewhat
better than the central differencing ORD scheme and they both have better resolution than the first-order
LxF scheme in shock-free zones.

TABLE I

L1-Norm of the Errors for Numerical Solutions of ut + uux = 0, u(x, 0) = sin(πx)

t = 0.15 t = 0.4

N LxF ORD STG LxF ORD STG

40 0.023702 0.002620 0.000859 0.044449 0.003612 0.000849
80 0.012249 0.000667 0.000232 0.023486 0.001291 0.000277

160 0.006246 0.000169 0.000061 0.011383 0.000498 0.000098
320 0.003158 0.000043 0.0000016 0.005235 0.0000209 0.000038
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Figure 3.1:
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This behavior is amplified in the second case of solving the Rieman problem (3.27), with Rieman initial
data:

u(x, 0) =
{

1 x < 0
0 x ≥ 0 .

(3.28b)

In this case the steady shock solution is resolved by the numerical schemes as a viscous profile shoen in Fig.
3.1. Figure 3.1 illustrates the over-smearing of the LxF profile, when compared with those of the ORD and
STG schemes. Once more, we observe that the STG scheme has somewhat better resolution then its non-
staggered counterpart ORD. Yet, the CFL limitation in the non-staggered form, β

<∼ 1, results in a better
time preformance than the STG scheme which is subject to the CFL limitation β

<∼ 1
2 . (We recall that

the sufficient TVD constraint in Theorem 3.2 is more restrictive than the usual CFL limitation; indeed, we
note that the numerical solution by the ORD version of our scheme is TVD under CFL limitation β ≤ 0.75,
yet its variation slightly increases with β = 0.95.) In either case, these easily implemented non-oscillatory
central differencing outperform the first-order LxF one.

4. SYSTEMS OF CONSERVATION LAWS

In this section, we describe how to extend our scalar family of central differencing schemes to the one-
dimensional system of conservation laws,

∂u

∂t
+

∂

∂x
(f(u)) = 0. (4.1)

Here u(x, t) is the unknown N -vector of the form

u = (u1(x, t), u2(x, t), . . . , uN (x, t))T ,

and f(u) is the flux vector,
f(u) = (f1(u), f2(u), . . . , fN (u))T ,

with an N × N Jacobian matrix,

Apq(u1, . . . , uN) =
(

∂fp

∂uq

)
p, q = 1, . . . , N.

Our approximate solution at the gridpoint xj is given by the N -vector

vj = (vj,1, vj,2, . . . , vj,N )T ,

and the corresponding vector of differences, ∆vj+ 1
2

= vj+1 − vj , consists of N -components denoted by
∆vj+ 1

2 ,k = vj+1,k − vj,k.
Equipped with these notations, our family of high-resolution central differencing schemes (3.2), (3.3),

takes the form,

vj+ 1
2
(t + ∆t) =

1
2
[vj(t) + vj+1(t)] − λ[gj+1 − gj], (4.2a)

where the modified numerical flux, gj, is given by

gj = f(vj(t +
∆t

2
)) +

1
8λ

v′j , vj(t +
∆t

2
) = vj(t) − 1

2
λf ′

j . (4.2b)

As before, the computation of gj and vj(t + ∆t
2 ) requires the numerical derivatives of the gridfunctions {vj}

and {fj}. This time we have to choose two N-vectors of numerical derivatives,

1
∆x

v′j = (v′j,1, v
′
j,2, · · · , v′j,N )T , (4.3a)

1
∆x

f ′
j = (f ′

j,1, f
′
j,2, · · · , f ′

j,N )T . (4.3b)
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In the rest of this section, we shall describe the pros and cons of several choices for these vectors of numerical
derivatives.

Our first choice is a component-wise extension of the scalar definition in Section 3. To this end we may
use either (4.4a),

v′j,k = MM{∆vj+ 1
2 ,k, ∆vj− 1

2 ,k}, k = 1, . . . , N, (4.4a)

or the more general (4.4b),

v′j,k = MM{α∆vj+ 1
2 ,k,

1
2
(vj+1,k − vj−1,k), α∆vj− 1

2 ,k}, k = 1, . . . , N, (4.4b)

or instead, use the UNO-like numerical derivative in (3.18),

v′j,k = MM{ ∆vj− 1
2 ,k + 1

2MM(∆2vj−1,k∆2vj,k),

∆vj+ 1
2 ,k − 1

2MM(∆2vj,k, ∆2vj+1,k)}, k = 1, . . . , N.
(4.4c)

A possible choice for the vector of numerical flux derivative may be

f ′
j = A(vj)v′j . (4.5)

This approach involves multiplication of the Jacobian matrix by the vector of derivatives, v′j . This multipli-
cation may be avoided if we use a component-wise definition for the vector of numerical flux derivatives, fj ,
in analogy to (3.14). For example, we may use

f ′
j,k = MM{∆fj+ 1

2 ,k, ∆fj− 1
2 ,k} (4.6a)

or alternatively,

f ′
j,k = MM{α∆fj+ 1

2 ,k,
1
2
(fj+1,k − fj−1,k), α∆fj− 1

2 ,k} (4.6b)

We observe that the Jacobian Free Form (JFF), (4.4), (4.6) avoids the use of the Jacobian matrix A(v)
required by (4.4), (4.5), at the expense of carrying out the MinMod operation twice.

The resulting central differencing schemes, (4.2), which are based upon the component-wise definition of
the numerical derivatives in (4.4)-(4.6), share the simplicity of the scalar framework. Namely, no Riemann
problems are solved and consequently characteristic decompositions–required in order to distinguish between
the left and rightgoing waves inside the Riemann fan, are avoided. At the same time, our central differencing
approach is flexible enough so that it enables us to incorporate characteristic information, whenever available,
in order to achieve improved resolution.

Our next choice shows how to incorporate the characteristic information into the definition of the nu-
merical derivatives. To this end we shall employ a Roe Matrix, Âj+ 1

2
= A(vj , vj+1), namely, an averaged

Jacobian, Âj+ 1
2
, satisfying, e.g. [11], [19],

f(vj+1) − f(vj) = Âj+ 1
2
· (vj+1 − vj), (4.7)

and having complete real eigensystem {âj+ 1
2 ,k, R̂j+ 1

2 ,k}, k = 1, . . . , N. Let us project the vector of differences

∆vj+ 1
2

onto {R̂j+ 1
2
}, i.e. we use the characteristic decomposition

∆vj+ 1
2

=
∑

k

α̂j+ 1
2 ,k · R̂j+ 1

2 ,k, k = 1, . . . , N, (4.8a)

where
α̂j+ 1

2 ,k = L̂j+ 1
2 ,k · ∆vj+ 1

2
, L̂j · R̂j = δij , k = 1, . . . , N. (4.8b)

Then the corresponding projection of the flux vector of differences is given by

∆fj+ 1
2

=
∑

k

α̂j+ 1
2 ,kâj+ 1

2 ,kR̂j+ 1
2 ,k. (4.9)
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Now, a possible characteristic-wise choice for the numerical derivatives in analogy with (4.4), may be (here
R̂j,k is denotes the averaged eigenvector centered at x = xj),

v′j,k =
∑

k

MM{α̂j+ 1
2 ,k, α̂j− 1

2 ,k}R̂j,k, (4.10)

and the numerical flux derivatives can be calculated as

f ′
j = Âj+ 1

2
v′j . (4.11)

Once again we can use the JFF and avoid the multiplication of Roe’s matrix by the vector of numerical
derivatives, if instead of (4.11) we employ, consult (4.9),

f ′
j,k =

∑
k

MM{α̂j+ 1
2 ,kâj+ 1

2 ,k, α̂j− 1
2 ,kâj− 1

2 ,k}R̂j,k. (4.12)

As an example, let us consider the Euler equations,

∂

∂t


 ρ

m
E


+

∂

∂x


 m

ρu2 + p
u(E + p)


 = 0, p = (γ − 1) · (E − 1

2
ρu2). (4.13)

Here ρ, u, m = ρu, p and E are respectively the density, velocity, momentum, pressure and total energy.
The corresponding Roe matrix, Â(vj , vj+1), is associated with the eigensystem {âj+ 1

2 ,k, R̂j+ 1
2 ,k}, where the

eigenvalues âj+ 1
2 ,k are given by

âj+ 1
2 ,1 = ûj+ 1

2
− ĉj+ 1

2
, âj+ 1

2 ,2 = ûj+ 1
2
, âj+ 1

2 ,3 = ûj+ 1
2

+ ĉj+ 1
2
, (4.14)

and the right eigenvectors are given by

R̂j+ 1
2 ,1 =


 1

û − ĉ

Ĥ − ûĉ




j+ 1
2

R̂j+ 1
2 ,2 =


 1

û
1
2 û2




j+ 1
2

R̂j+ 1
2 ,3 =


 1

û + ĉ

Ĥ + ûĉ




j+ 1
2

. (4.15)

The average quantities on the right of (4.14)-(4.15) given in [19] are,

û =
<

√
ρu >

<
√

ρ >
, Ĥ =

<
√

ρH >

<
√

ρ >
, ĉ =

√
(γ − 1)(Ĥ − 1

2
û2), Hj =

Ej + pj

ρj
, (4.16)

where < w >= 1
2 (wj + wj+1) denotes the usual arithmetic mean. This brings us to the characteristic

decomposition (4.8), where the characteristic projections,

α̂j+ 1
2 ,1 =

1
2
(η1 − η2), α̂j+ 1

2 ,2 = ∆ρj+ 1
2
− η1, α̂j+ 1

2 ,3 =
1
2
(η1 + η2), (4.17a)

are expressed in terms of η1, η2, which are given by

η1 = ∆pj+ 1
2
/ĉ2

j+ 1
2
, (4.17b)

η2 = (∆mj+ 1
2
− ∆ρj+ 1

2
ûj+ 1

2
)/ĉj+ 1

2
. (4.17c)

We note that the second contact field associated with R̂j+ 1
2 ,2 is independent of the square root which is

required only in the computation of the mean value sound speed ĉj+ 1
2
. Since this field is a linearly degenerate,

it lacks the strong entropy enforcement typical to the other two genuinely non-linear field, and therefore,
is usually smeared by numerical schemes. In our next choice of numerical derivatives, we incorporate only
partial characteristic information. Namely, we isolate the less expensive (i.e., square root-free) characteristic
projection on the contact field, and use the component-wise approach for the other two fields.
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Thus, we first separate the contact field,


∆ρ̃j+ 1
2

∆m̃j+ 1
2

∆Ẽj+ 1
2


 ≡


 ∆ρj+ 1

2

∆mj+ 1
2

∆Ej+ 1
2


− α̂j+ 1

2 ,2 ·

 1

û
1
2 û2




j+ 1
2

, (4.18)

and then define the vector of numerical derivative as
 ρ′j

m′
j

E′
j


 = MM{α̂j+ 1

2 ,2, α̂j− 1
2
} ·

 1

< û >
< 1

2 û2 >




j

+ MM




∆ρ̃j+ 1
2
, ∆ρ̃j− 1

2

∆m̃j+ 1
2
, ∆m̃j− 1

2

∆Ẽj+ 1
2
, ∆Ẽj− 1

2


 . (4.19)

Similarly, computing the numerical flux derivative with a characteristic approach applied only to the isolated
contact wave, 


∆f̃j+ 1

2 ,1

∆f̃j+ 1
2 ,2

∆f̃j+ 1
2 ,3


 ≡


 ∆fj+ 1

2 ,1

∆fj+ 1
2 ,2

∆fj+ 1
2 ,3


− α̂j+ 1

2 ,2 · âj+ 1
2 ,2 ·


 1

û
1
2 û2
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, (4.20)

amounts to
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 . (4.21)

The latter approach enables us to use effectively the Artificial Compression Method (ACM) on the isolated
contact field, e.g. [6], [7]. To this end, the contact wave isolated in (4.19) is modified by
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 , (4.22a)

where θj and rj are given by

θj =
|α̂j+ 1

2 ,2 − α̂j− 1
2 ,2|

|α̂j+ 1
2 ,2| + |α̂j− 1

2 ,2|
, (4.22b)

rj = MM

{
1
2
(1 − λûj+ 1

2
)2 · α̂j+ 1

2 ,2,
1
2
(1 − λûj− 1

2
)2 · α̂j− 1

2 ,2

}
. (4.22c)

Finally, we shall mention an alternative approach to the characteristic implementation of the ACM in
(4.22). To this end, the Artificial Compression is implemented as a further corrector step to the component-
wise approach presented in (4.2a)-(4.2b). This corrective type ACM takes the form,

v∗j (t + ∆t) = vj(t + ∆t) − ε(Wj+ 1
2
− Wj− 1

2
), 0 ≤ ε ≤ 1. (4.23a)

Here, the compression coefficient, ε, and Wj are given by

Wj+ 1
2

=




wj , ∆wj+ 1
2
· ∆vj+ 1

2
> 0,

wj = MM{∆vj− 1
2
, vRL, ∆vj+ 1

2
},

wj+1, ∆wj+ 1
2
· ∆vj+ 1

2
< 0,

(4.23b)

where vRL is related to subcell resolution information (Harten, private communication, [8]),

vRL = |vj+1(t + ∆t) − vj−1(t + ∆t) − ∆xj+ 1
2
(δj+1 + δj−1)|, δj = MM{∆vj− 1

2
, ∆vj+ 1

2
}. (4.23c)
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The result is the central differencing scheme (4.2), appended by the component-wise definitions of numer-
ical derivatives in (4.10) - (4.12), and complemented by the ACM corrector step (4.23). This scheme, unlike
the characteristic-wise implementation of the ACM in (4.22), enjoys the simplicity of the component-wise
approach, and at the same time, enables us to deal effectively with the delicate contact wave. We remark
that one should be careful not to overcompress discontinuities using such corrective type Artificial Com-
pression: it should be implemented after the rarefaction waves have evolved using an appropriately chosen
compression coefficient ε.

5. NUMERICAL EXAMPLES

In this section, we will present numerical examples which demonstrate the performance of our family of
high resolution central differencing schemes for systems of conservation laws. We consider the approximate
solution of the Euler equations of gasdynamics, see section 4,

∂

∂t


 ρ

m
E


+

∂

∂x


 m

ρu2

u(E + p)


 = 0, p = (γ − 1) · (E − 1

2
ρu2), m = ρu. (5.1)

We experiment with the following members from our family of high- resolution central differencing schemes:

1. The central differencing scheme (4.2), (4.4a), (4.5). This is the component-wise extension of the scalar
STG scheme presented in Section 3 and is therefore referred to by the same abbreviation.

2. The central differencing scheme (4.2), (4.4b), (4.5) with a limiter value α = 2. This scheme is referred
to as STG2.

3. The component-wise UNO-type version of our scheme, (4.2), (4.4c), (4.5). It is referred to as STGU.

4. The scheme STG with the addition of the corrective type ACM described by (4.23) is referred to as
STGC.

All the above examples use component-wise definitions for the vectors of numerical derivatives, and
are based on the staggered grid formulation. Our last example is based on non-staggered LxF scheme,
namely,

5. The central differencing scheme (2.18), (4.4a), (4.5). This is the component-wise extension of the scalar
ORD scheme presented in section 3 and is therefore referred to by the same abbreviation.

For the purpose of performance comparison we include here the results of several well known upwind and
central schemes as well. These schemes include:

1. The first order central non-staggered LxF scheme, (2.17), [13].

2. The first order accurate Godunov-type scheme of Roe, e.g. [7].

3. Harten’s second order accurate upwind ULT1 scheme, [7].

4. Harten’s second order accurate upwind ULT1C scheme, [7], where Artificial Compression is added to
ULT1 in the linearily degenerate contact field. It is referred to as ULTC.

We solve the system (5.1) with three sets of initial conditions. Our first example is the Riemann problem
proposed by Sod [21] (abbreviated hereafter as RIM1), which consists of initial data

v(x, 0) =
{

v`, x < 0, v` = (1, 0, 2.5)T

vr, x > 0, vr = (0.125, 0, 0.25)T .
(5.2)

Table II shows the L1 norm of the errors. Though the results are field dependent, the “quantitative picture”
is favourable with the central differencing schemes. Table III shows the time performance of the various
schemes. All the schemes have time performances of order O(NX)2, where NX is the number of spatial
cells. Figures 5.1-5.4 include a comparison between the numerical solution and the exact solution (shown by
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the solid line), e.g. [3], [20], at t = 0.1644. As expected, the overall resolution of the first order schemes is
outperformed by the second order schemes.

We observe that our second order staggered schemes, STG, STG2, and STGU, and similarily, the second
order upwind ULT1 scheme, smear the shock discontinuity over two cells. The contact discontinuity, however,
is more delicate: here we observe smearing of about 5-6 cells by the second order schemes, both in the central
and upwind cases. We can also observe the over- and undershoots generated by both the upwind ULT1 and
central ORD. These unsatisfactory results suggest to introduce ACM in the contact field. For this purpose
we present the upwind ULTC scheme and the central component-wise STGC scheme in Fig. 5.4. We note
that the ACM is applied in STGC only at the last 10% of the time steps with the compression coefficient
ε = 0.625. This results in 2 cells resolution of the contact wave, and somewhat better resolution in the other
waves as well. Yet, small over- and undershoots which are due to overcompression, still remain.

Our second Riemann test problem (abbreviated hereafter as RIM2), is the one proposed by Lax [5]. It is
initiated with,

v` = (0.445, 0.311, 8.928)T , vr = (0.5, 0, 1.4275)T , (5.3)

and the results at t = 0.16 can be found in Fig. 5.5 - 5.8. The density profile in RIM2 lacks the monotonicity
we had in RIM1, and therefore, it is more difficult for “non-oscillatory” numerical schemes to recover the
contact wave and the intermediate “plateau” which follows. Consequently, the upwind schemes perform here
somewhat better than the central schemes: ULTC resolution is better than STGC which has more over- and
undershoots than before. We note that STG2 has better resolution and L1 errors than STGU in all fields.
This is due to the fact that STG2 has steeper slope near discontinuities, consult Section 2.

Finally, the results of the nonstaggered central difference scheme ORD for both RIM1 and RIM2 problems
are presented in Figure 5.9. We recall that the CFL limitation in the staggered case, β

<∼ 1
2 , is now doubled

to be β
<∼ 1, consult Section 3. Moreover, a component-wise reconstruction of the vector of numerical

derivatives, enabled us to avoid any Riemann solver in this nonstaggered case. Consequently, the ORD
scheme is twice faster than the staggered central versions based on STG, as well as the upwind scheme ULT1
which necessitates the (approximate) solution of a Riemann problem at each cell. However, the resolution
of this nonstaggered version, ORD, deteriorates, when compared to the staggered versions and the upwind
methods.

Our third problem, discussed by Woodward-Collela in [25], consists of initial-data,

u(x, 0) =




v` 0 ≤ x < 0.1,
vm 0.1 ≤ x < 0.9,
vr 0.9 ≤ x < 1,

(5.4)

where ρ` = ρm = ρr = 1, ml = mm = mr = 0, p` = 100, pm = 0.01, pr = 100. A solid wall boundary
conditions (reflection) is applied to both ends. The results are compared with the fourth order ENO scheme
[9], in Fig. 5.10-5.12.∗ The continous line is the result of the ENO scheme with 800 cells. We present the
results of STG2 and ULT1 with 400 cells in Fig. 5.13-5.15 at t = 0.01, t = 0.03, and t = 0.038 respectively.
We observe that the upgrade from the first order LxF scheme to the second order STG2, results in a
substantial improvement of resolution, see Fig. 5.10-5.15; moreover, STG2 compares favourably with the
second order upwind ULT1 scheme.

In summary, we may conclude that when strong discontinuities are present, STG2 seems to offer the best
results, STGC can be tuned to obtain sharp resolution at the expense of overcompression, and ORD version
was found to be the most economical. Further extensive numerical experiments done along these lines are
reported in [16].

∗We thank A. Harten for allowing us to use his ENO results in [9].
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TABLE II
Computation Time of Riemann Problems, results at t = 1.0

ULT1/C STG ROE ORD LxF STGC STGU STG2 NX

RIM1
1.23 1.23 0.74 0.69 0.22 1.43 1.47 1.37 50
4.93 4.75 2.92 2.71 0.85 5.67 5.88 5.43 100
19.81 19.32 11.68 10.71 3.37 22.74 23.49 21.66 200

RIM2
2.87 2.74 1.72 1.55 0.48 3.24 3.35 3.07 50
11.54 10.93 6.83 6.16 1.90 12.88 13.30 12.22 100
46.34 43.50 27.27 24.40 7.52 51.46 53.20 48.83 200

Notes. 1. Due to our method of implementation, ULT1 and ULTC have the same computation time. In
fact ULT1 is somewhat faster then ULTC.

2. All the above schemes use a CFL number of 0.95, except for the versions, STG*, which use a CFL
number of 0.475.

TABLE III
Riemann Problems, L1 Norm Errors

Density Velocity Pressure
Nx 50 100 200 50 100 200 50 100 200

Scheme Rieman Problem - RIM1, t = 0.1644

LxF .03121 .02460 .01769 .06651 .04583 .02814 .03602 .02458 .01582
ROE .01918 .01308 .00836 .03224 .02090 .01145 .01762 .01109 .00666
ORD .01868 .01026 .00578 .03315 .01807 .00959 .01630 .00861 .00460
STG .01495 .00741 .00409 .02812 .01105 .00550 .01232 .00581 .00294
ULT1 .01338 .00806 .00437 .02933 .01177 .00820 .01285 .00736 .00362
STG2 .01241 .00619 .00297 .02449 .01132 .00494 .01019 .00487 .00228
STGU .01146 .00544 .00291 .02300 .00816 .00403 .00961 .00432 .00216
STGC .00982 .00322 .00172 .01994 .00481 .00276 .00705 .00270 .00153
ULTC .01269 .00715 .00361 .02923 .01761 .00804 .01283 .00735 .00362

Rieman Problem - RIM2, t = 0.16

LxF .12162 .09044 .06165 .13523 .09294 .05557 .15860 .10767 .06537
ROE .06630 .04334 .02827 .07397 .04144 .02192 .08399 .04826 .02655
ORD .06791 .03824 .02231 .07158 .03623 .01709 .07836 .04056 .01995
STG .04972 .02903 .01776 .04392 .02416 .01307 .05118 .02669 .01426
ULT1 .04518 .03572 .01477 .05570 .02603 .01094 .06075 .02841 .01206
STG2 .03473 .02129 .01151 .03369 .01655 .00849 .03956 .02037 .00988
STGU .03668 .02152 .01302 .03323 .01657 .01046 .03907 .02031 .01121
STGC .02764 .01291 .00647 .02285 .01356 .00836 .02355 .01409 .00873
ULTC .03001 .01566 .00872 .05504 .02545 .01074 .05997 .02784 .01183

Notes. 1. All the above schemes use CFL number of 0.95, except for the staggered versions, STG*, which
use a CFL number of 0.475.

2. The underlined results indicate the smallest L1 norm errors in every column.
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Figure 5.1: RIM1 - ROE vs. ULT1
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Figure 5.2: RIM1 - LXF vs. STG2
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Figure 5.3: RIM1 - STG vs. STGU
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Figure 5.4: RIM1 - ULTC vs. STGC
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Figure 5.5: RIM2 - ROE vs. ULT1
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Figure 5.6: RIM2 - LXF vs. STG2
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Figure 5.7: RIM2 - STG vs. STGU
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Figure 5.8: RIM2 - ULTC vs. STGC
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Figure 5.9: RIM1 and RIM2 by ORD
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Figure 5.10: WC-BANG T=0.01 - ENO vs. LXF (the ENO results are in [9])
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Figure 5.11: WC-BANG T=0.03 - ENO vs. LXF (the ENO results are in [9])
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Figure 5.12: WC-BANG T=0.038 - ENO vs. LXF (the ENO results are in [9])
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Figure 5.13: WC-BANG T=0.01 - STG2 vs. ULT1
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Figure 5.14: WC-BANG T=0.03 - STG2 vs. ULT1
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Figure 5.15: WC-BANG T=0.038 - STG2 vs. ULT1
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APPENDIX: ON A CELL ENTROPY INEQUALITY

In this section, we provide the promised proofs for Lemmatta 3.7 and 3.8, which verify the cell entropy
inequality for our scalar family of high-resolution central difference methods.

We begin with a proof of Lemma 3.7.
Let Rj+ 1

2
(g) denote the difference,

Rj+ 1
2
(g) =

1
2
[U(vj+1) + U(vj)] − λ

∫ vj+1

vj

U ′(v)g′(v)dv − U(vj+ 1
2
(t + ∆t))). (A.1)

We now continuously deform vj(s) ≡ v(s) = svj + (1 − s)vj+1, between vj = v(0) and vj+1 = v(1), see
(3.20a). With this in mind, Rj+ 1

2
(g) may be rewritten in the form

Rj+ 1
2
(g) =

∫ 1

0

d

ds
[RHS]ds. (A.2)

¿From (3.2a) we may find the dependence of vj+ 1
2
(t + ∆t) on the continuation parameter s (for simplicity

we omit the explicit dependence on time):

vj+ 1
2
(s) =

1
2
[v(s) + vj+1] − λ[gj+1 − g(v(s))], (A.3)

which in view of
d

ds
v(s) = −∆vj+ 1

2
, (A.4)

yields
d

ds
U(vj+ 1

2
(s)) = −U ′(vj+ 1

2
(s))[

1
2

+ λg′(v(s))] · ∆vj+ 1
2
. (A.5)

In a similar manner, we have
d

ds
U(v(s)) = −U ′(v(s)) · ∆vj+ 1

2
, (A.6)

and Leibnitz rule gives us

d

ds
[−λ

∫ vj+1

v(s)

U ′(v)g′(v)dv] = −λU ′(v(s))g′(v(s)) · ∆vj+ 1
2
. (A.7)

Substitution of (A.5), (A.6), and (A.7) into (A.2) yields

Rj+ 1
2
(g) = −∆vj+ 1

2

∫ 1

0

[
1
2

+ λg′(v(s))] · [U ′(v(s)) − U ′(vj+ 1
2
(s))]ds. (A.8)

Next, we use the continuation v(r, s) = rv(s) + (1 − r)vj+1 in (3.20b) in order to express the last difference
on the right as

U ′(v(s)) − U ′(vj+ 1
2
(s)) =

∫ 1

0

d

dr
U ′(vj+ 1

2
(r, s))dr. (A.9)

This equality comes about as follows: in view of (3.20b), (3.2a), vj+ 1
2
(r, s) is given by

vj+ 1
2
(r, s) =

1
2
[v(s) + v(r, s)] − λ[g(v((r, s)) − g(v(s))]; (A.10)

hence, vj+ 1
2
(1, s) = v(s), vj+ 1

2
(0, s) = vj+ 1

2
(s) and (A.9) follows.

Noting that
d

dr
v(r, s) = −∆vj+ 1

2
· s, (A.11)

then by carrying out the differentiaton on the RHS of (A.9) we obtain,

d

dr
U ′(vj+ 1

2
(r, s)) = −U ′′(vj+ 1

2
(r, s)) · [ 1

2
− λg′(v(r, s))] · s∆vj+ 1

2
. (A.12)
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Substituting (A.9), (A.11) and (A.12) into (A.8), we will end up with the desired identity (3.22) .

We close this section with the proof of Lemma 3.8.
The piecewise linear interpolant of the gridfunction, {gj}, chosen in (3.24),

g(v) =
∆gj+ 1

2

∆vj+ 1
2

(v − vj) + gj (A.13)

has a fixed slope at each cell:

g′(v(r, s)) = g′(v(s)) =
∆gj+ 1

2

∆vj+ 1
2

. (A.14)

¿From (A.14) and (3.22) we obtain that in the case of quadratic entropy function where U ′′ ≡ 1,

Rj+ 1
2
(g) =

1
2
(∆vj+ 1

2
)2


1

4
−
(

λ
∆gj+ 1

2

∆vj+ 1
2

)2

 . (A.18)

Moreover, the difference g(v) − f(v) between two neighboring values vj and vj+1, covers an area of size,

λ

∫ vj+1

vj

(g(v) − f(v))dv =
λ

2
[gj+1 + gj]∆vj+ 1

2
− λ

∫ vj+1

vj

f(v)dv. (A.16)

Thus, in view of (A.15) and (A.16), the desired inequality, (3.26), boils down to

λ

2
[gj+1 + gj ] · ∆vj+ 1

2
− λ

∫ vj+1

vj

f(v)dv +
1
2
(λ

∆gj+ 1
2

∆vj+ 1
2

)2 − 1
8
(∆vj+ 1

2
)2 ≤ 0. (A.17)

To verify the inequality (A.17), we recall that by (3.2a), (3.2b) we have

gm = f(vm(t +
∆t

2
)) +

1
8λ

v′m = f(vm(t) − λ

2
f ′

m) +
1
8λ

v′m, m = j, j + 1, (A.18)

and Taylor’s expansion yields

gm = fm +
1
8λ

v′m(1 − 4β2) + O(∆vj+ 1
2
)2, β ≡ λa(vj+ 1

2
(t)). (A.19)

This enables us to write the first two terms on the left of (A.17) as

λ

2
[gj+1 + gj ] · ∆vj+ 1

2
− λ

∫ vj+1

vj

f(v)dv =
1
8
(1 − 4β2) · (v′j+1 + v′j

2∆vj+ 1
2

) · (∆vj+ 1
2
)2 + O(∆vj+ 1

2
)3. (A.20)

Consider now the third term on the left of (A.17): by (A.19) we have

λ∆gj+ 1
2

= λ∆fj+ 1
2

+
1
8
(1 − 4β2) · (

∆v′
j+ 1

2

∆vj+ 1
2

) · ∆vj+ 1
2
; (A.21a)

inserting λ∆fj+ 1
2

= β∆vj+ 1
2

+ O(∆vj+ 1
2
)2 into (A.21a), squaring the result and rearranging we obtain

1
2
(λ∆gj+ 1

2
)2 =

β2

2
(∆vj+ 1

2
)2 +

β

8
(1 − 4β2) · (

∆v′
j+ 1

2

∆vj+ 1
2

) · (∆vj+ 1
2
)2+

+
1

128
(1 − 4β2)2 · (

∆v′
j+ 1

2

∆vj+ 1
2

)2 · (∆vj+ 1
2
)2 + O(∆vj+ 1

2
)3. (A.21b)
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We note that the cubic term on the right of (A.20), (A.21b), consists of the error in the trapezodial rule

λ

2
[f(vj+1) + f(vj)]∆vj+ 1

2
− λ

∫ vj+1

vj

f(v)dv =
λ

12
f ′′(v(x)) · (∆vj+ 1

2
)3,

as well as additional contributions which are of the same order of magnitude

O(∆vj+ 1
2
)3 < λ · [f ′′(v(x))] · (∆vj+ 1

2
)3. (A.22)

Inserting (A.20), (A.21b), and (A.22) into the inequality (A.17) gives us

1 − 4β2

8
(∆vj+ 1

2
)2 ·
[

v′j+1 + v′j
2∆vj+ 1

2

− 1 + β
∆v′

j+ 1
2

∆vj+ 1
2

+
1 − 4β2

16

(
∆v′

j+ 1
2

∆vj+ 1
2

)2

+

+ λ · max
x

[f ′′(v(x))] · (∆vj+ 1
2
)3 ≤ 0.

(A.23)

Finally, since v′j and v′j+1 agree in sign with ∆vj+ 1
2
, the expression inside the left brackets can be upper

bounded by

[· · ·] ≤
[

1
∆vj+ 1

2

(
v′j+1 + v′j

2
± |v

′
j+1 − v′j

2
|
)
− 1 + (β − 1

2
)|

∆v′
j+ 1

2

∆vj+ 1
2

| + 1 − 4β2

16
|
∆v′

j+ 1
2

∆vj+ 1
2

|
]

. (A.24)

By the CFL limitation, β < 1
2 , the sum of the last two terms is nonpositive, and we are left with the

inequality [
max

(
v′j

∆vj+ 1
2

,
v′j+1

∆vj+ 1
2

)
− 1

]
+ λ · max

x
[f ′′(v(x))] · ∆vj+ 1

2
≤ 0,

which is met by the choice of entropy satisfying limiter in (3.25a), (3.25b).
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