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Potential based, constraint preserving, genuinely
multi-dimensional schemes for systems of conservation laws

Siddhartha Mishra and Eitan Tadmor

Abstract. We survey the new framework developed in [33, 34, 35], for de-
signing genuinely multi-dimensional (GMD) finite volume schemes for systems
of conservation laws in two space dimensions. This approach is based on refor-
mulating edge centered numerical fluxes in terms of vertex centered potentials.
Any consistent numerical flux can be used in defining the potentials. Suitable
choices of the numerical potentials yield finite-volume schemes which preserve
discrete form of constraints such as vorticity and divergence. The schemes are
very simple to code, flexible and have low computational costs. Numerical ex-
amples for the Euler equations of gas dynamics and the ideal MHD equations
are presented to illustrate the computational efficiency of the schemes.

1. Introduction

Many interesting phenomena in physics, engineering and biology are modeled
by hyperbolic systems of conservation laws. In two space dimensions, these equa-
tions take the form

(1.1) Ut + f(U)x + g(U)y = 0, (x, y, t) ∈ R× R× R+,

where U is the vector of unknowns and f ,g are the flux vectors in the x- and y-
directions respectively.

A frequently cited example of the system (1.1) are the Euler equations of gas
dynamics,

(1.2a)

ρt + (ρu1)x + (ρu2)y = 0,

(ρu1)t + (ρu2
1 + p)x + (ρu1u2)y = 0,

(ρu2)t + (ρu1u2)x + (ρu2
2 + p)y = 0,

Et + ((E + p)u1)x + ((E + p)u2)y = 0,
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with ρ being the density of the gas, u1, u2 are the velocity components in the x-
and y-direction respectively and p and E are the pressure and the energy. The
equations are augmented by an ideal gas equation of state, which is expressed in
terms of the gas constant γ:

(1.2b) E =
p

γ − 1
+

1

2
(ρu2

1 + ρu2
2).

Other interesting examples for hyperbolic systems are the shallow water equations
of oceanography and the equations of non-linear elasticity.

It is well known that solutions of (1.1) (even in one space dimension) develop
discontinuities in the form of shock waves, even for smooth initial data. Hence,
the solutions sought for (1.1) are defined in a weak sense. Weak solutions are not
necessarily unique and (1.1) has to be supplemented by additional admissibility
criteria, the so-called entropy conditions [12]. The existence and uniqueness theory
for multi-dimensional scalar conservation laws and for some special cases of one-
and multi-dimensional systems is well developed. A corresponding theory for multi-
dimensional systems is still “work in progress”.

1.1. Finite-volume schemes. Explicit formulas for the solution of (1.1) are
not available, except in the simplest cases. Consequently, numerical methods are
heavily used for approximating (1.1). The most popular numerical methods in this
context are the finite volume schemes, see e.g., [28, 45] and references therein for a
detailed description. In a finite volume approximation, the computational domain is
discretized into cells or control volumes and an integral form of the conservation law
(1.1) is approximated on each control volume. This method relies on constructing
suitable numerical fluxes in the normal direction, across each cell interface. For
simplicity, a uniform Cartesian discretization of the domain is considered, with
mesh sizes Δx and Δy in the x- and y- directions respectively. It consists of
the discrete cells, Ci,j := [xi− 1

2
, xi+ 1

2
) × [yj− 1

2
, yj+ 1

2
), centered at the mesh points

(xi, yj) = (iΔx, jΔy), (i, j) ∈ Z
2. The cell average of U over Ci,j (at time t),

denoted Ui,j(t), is updated with the semi-discrete scheme [28, 45]:

(1.3)
d

dt
Ui,j = − 1

Δx
(Fi+ 1

2 ,j
− Fi− 1

2 ,j
)− 1

Δy
(Gi,j+ 1

2
−Gi,j− 1

2
).

The time dependence of all the quantities in the above expression is suppressed for
notational convenience. Classical schemes employ two-point numerical fluxes,

Fi+ 1
2 ,j

= F(Ui,j ,Ui+1,j), Gi,j+ 1
2
= G(Ui,j ,Ui,j+1).

A canonical example is provided by the first-order Rusanov numerical flux:
(1.4)

Fi+ 1
2 ,j

=
1

2

(
f(Ui,j) + f(Ui+1,j)

)
−max{|(α)i,j |, |(α)i+1,j |}

(
Ui+1,j −Ui,j

)
,

Gi,j+ 1
2
=

1

2

(
g(Ui,j) + g(Ui,j+1)

)
−max{|(β)i,j |, |(β)i,j+1|}

(
Ui,j+1 −Ui,j

)
.

Here, αi,j and βi,j are the maximal eigenvalues of the Jacobians A = ∂Uf and
B = ∂Ug respectively, for a given state Ui,j :

αi,j := argmaxλ{|λ| : λ = λ
(
A(Ui,j)

)
}, βi,j = argmaxλ{|λ| : λ = λ

(
B(Ui,j)

)
}.

Note that the only characteristic information in the Rusanov flux is a local estimate
on the wave speeds. This flux is almost Jacobian free, very simple to implement
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and has a very low computational cost. But its resolution is limited by the first-
order accuracy. But the first-order schemes (1.3),(1.4) can be extended to higher
order accuracy by employing numerical fluxes based on wider, 2p-point stencils,
Ii+ 1

2
:= {i′

∣∣ |i′− i− 1/2| < p} and Jj+ 1
2
:= {j′

∣∣ |j′− j− 1/2| < p} along the x- and

y-axis, respectively,

(1.5) Fi+ 1
2 ,j

= F
(
{Ui′,j}i′∈I

i+1
2

)
, Gi,j+ 1

2
= G

(
{Ui,j′}j′∈J

j+1
2

)
.

The building blocks for such extensions are still the 2-point numerical fluxes,
F(·, ·) and G(·, ·). As a prototype example, we recall the class of second-order
schemes based on piecewise bilinear MUSCL reconstruction [27]

(1.6a) pi,j(x, y) := Ui,j +
U′

i,j

Δx
(x− xi) +

U�
i,j

Δy
(y − yj);

Here, U′ and U� denote the numerical derivatives

(1.6b)
U′

i,j = minmod(Ui+1,j −Ui,j ,
1

2
(Ui+1,j −Ui−1,j),Ui,j −Ui−1,j),

U�
i,j = minmod(Ui,j+1 −Ui,j ,

1

2
(Ui,j+1 −Ui,j−1),Ui,j −Ui,j−1),

which utilize the minmod limiter
(1.6c)

minmod(a, b, c) =

{
sgn(a)min{|a|, |b|, |c|}, if sgn(a) = sgn(b) = sgn(c),

0, otherwise.

In this manner, one can reconstruct in each cell Ci,j , the point values

(1.7a)

{
UE

i,j := pi,j(xi+ 1
2
, yj), UW

i,j := pi,j(xi− 1
2
, yj),

UN
i,j := pi,j(xi, yj+ 1

2
), US

i,j := pi,j(xi, yj− 1
2
),

from the given neighboring cell averagesUi,j ,Ui±1,j andUi,j ,Ui,j±1. The resulting
second-order fluxes are then given by

(1.7b) Fi+ 1
2 ,j

= F(UE
i,j ,U

W
i+1,j), Gi,j+ 1

2
= G(UN

i,j ,U
S
i,j+1).

The use of minmod limiter ensures the non-oscillatory behavior of the second-order
schemes (1.3),(1.6). Observe that the second-order MUSCL fluxes (1.7b) are based
on 4-point stencils

Fi+ 1
2 ,j

= F(Ui−1,j ,Ui,j ,Ui+1,j ,Ui+2,j), Gi,j+ 1
2
= F(Ui,j−1,Ui,j ,Ui,j+1,Ui,j+2)

Similar reconstructions together with upwind or central averaging yield a large
class of high-resolution finite-volume semi-discrete schemes, e.g., [23],[44],[25],
which could then be integrated in time using standard stable high order Runge-
Kutta methods [22].

1.2. Genuinely multi-dimensional (GMD) schemes. Despite their con-
siderable success in many applications, finite volume schemes (1.3) are known to
be deficient [28] in resolving genuinely multi-dimensional waves in the solution of
(1.1). A possible explanation lies in the structure of the scheme (1.3). The nu-
merical fluxes Fi+ 1

2 ,j
,Gi,j+ 1

2
are defined in each normal direction and lack explicit

transverse information. Considerable effort has been devoted to devising genuinely
multi-dimensional (GMD) finite volume schemes for approximating (1.1). We pro-
vide a very brief summary of some of the available methods:
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(i) Dimensional splitting. This procedure is based on sequentially updating
the cell average with flux Fi+ 1

2 ,j
(in the x-direction) and then updat-

ing with the numerical flux Gi,j+ 1
2
(in the y- direction). Second order

accuracy results from Strang splitting [28]. Despite the splitting, the re-
sulting method may still fail to resolve genuinely multi-dimensional waves
(examples are provided in [29]).

(ii) Multi-dimensional wave propagation. This method is based on the Corner
Transport Upwind (CTU) method [11] for linear equations. Contribu-
tions from waves in the transverse direction are explicitly calculated. It
was extended to non-linear systems in [29] by solving transverse Riemann
problems. The method is implemented in the CLAWPACK software pack-
age [28]. A related scheme was proposed in [8].

(iii) Method of Transport. In [17, 18, 38], the non-linear conservation law
(1.1) is reformulated locally as a system of transport equations. Explicit
solutions of the transport equations define a genuinely multi-dimensional
scheme. Complicated formulas for specific wave models may be a major
disadvantage of this method.

(iv) Finite volume Evolution Galerkin (FVEG) methods. In [30, 31] (and
other references therein), the conservation law (1.1) is linearized locally
and the linearized system is solved in terms of bi-characteristics. The re-
sulting evolution operator defines genuinely multi-dimensional finite vol-
ume fluxes by a Galerkin type approximation. The task of deriving ex-
plicit solutions in terms of bi-characteristics for specific models may be
quite complicated.

(v) Residual
methods for unstructured meshes were proposed in
volve computing a cell residual at each time step and

the cell nodes by using some suitable upwinding
flow directions.

The absence of an optimal strategy for genuinely multi-dimensional schemes leaves
room for designing stable GMD schemes that are easy to formulate and code, have a
low computational cost and preserve other desirable properties shared by the multi-
dimensional structure of the system (1.1). Their numerical fluxes take a general
form

(1.8a) Fi+ 1
2 ,j

= F({U(i′,j′)∈S
i+1

2
,j
}), Gi,j+ 1

2
= G({U(i′,j′)∈S

i,j+1
2

}).

Here, Si+ 1
2 ,j

and Si,j+ 1
2
are two-dimensional stencils which, in contrast to (1.5),

allow us to incorporate information from both the normal and transverse directions,
(1.8b)
Si+ 1

2 ,j
:=

{
(i , j′ ′)

∣∣ |i′−i−1/2|+|j′−j| < q
}

Si,j+ 1
2
:=

{
(i′, j′)

∣∣ |i′−i|+|j′−j−1/2| < q
}

We present such a family of GMD schemes in section 2.

Conservation laws with constraints.Many interesting multi-dimensional
systems of conservation laws also involve intrinsic constraints. A representative ex-
ample for such a system are the magnetohydrodynamic (MHD) equations of plasma
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physics:

(1.9)

ρt + (ρu1)x + (ρu2)y = 0,

(ρu1)t + (ρ(u1)
2 + p̃− 1

2
(B1)

2)x + (ρu1u2 −B1B2)y = 0,

(ρu2)t + (ρu1u2 −B1B2)x + (ρ(u2)
2 + p̃− 1

2
(B2)

2)y = 0,

(ρu3)t + (ρu1u3 −B1B3)x + (ρu2u3 −B2B3)y = 0,

(B1)t + (u2B1 − u1B2)y = 0,

(B2)t + (u1B2 − u2B1)x = 0,

(B3)t + (u1B3 − u3B1)x + (u2B3 − u3B2)y = 0,

Et + ((E + p̃)u1 − (u ·B)B1)x + ((E + p̃)u2 − (u ·B)B2)y = 0,

where the density of the plasma is denoted by ρ, u = (u1, u2, u3)
� and B =

(B1, B2, B3)
� are the velocity and magnetic fields, respectively. E is the total

energy and p̃ := p+ 1
2 |B|2 is the total pressure, with p being the thermal pressure.

The unknowns are related by an ideal gas equation of state similar to (1.2b). The
ideal MHD equations (1.9) form a (non-strictly) hyperbolic system of conservation
laws, which combine the conservation laws for mass, momentum and energy with
the magnetic induction equations (a special form of the Maxwell’s equations):

(1.10) Bt + curl(B× u) = 0, (x, y, t) ∈ R× R× R+,

which implies the divergence constraint,

(1.11a) div(B)t ≡ 0.

In the particular two-dimensional setup of (1.9), the divergent constraint is reduced
to the two-component statement

(1.11b) div
(
(B1, B2)

�)
t
≡ 0.

Since magnetic monopoles have not been observed in nature, the initial magnetic
field is assumed to be divergence free. The divergence constraint (1.11) implies that
the divergence of the magnetic field remains zero. Hence, the ideal MHD equations
are an example for multi-dimensional systems of conservation laws with an intrinsic
constraint.

Other interesting examples for systems with constraints are the system wave
equation [36] (with vorticity as the constraint) and the Einstein equations of general
relativity.

A major issue for the numerical approximation of multi-dimensional ideal MHD
equations (1.9) is the divergence constraint (1.11). The failure of standard finite
volume schemes to preserve discrete versions of that constraint may lead to numer-
ical instabilities [48, 19]. Different approaches have been suggested to handle the
divergence constraint in MHD codes. We describe some of them briefly.

(i) Projection method. This method [10, 7, 6] is based on the Hodge de-
composition of the magnetic field B. The update Bn, at each time
step, may not be divergence free and is corrected by the decomposition:
Bn = ∇Ψ+curlΦ. Applying the divergence operator to the decomposition
leads to the elliptic equation:

−ΔΨ = div(Bn).
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The corrected field B∗ = Bn − ∇Ψ is divergence free. This method can
be very expensive computationally as an elliptic equation has to be solved
at every time step.

(ii) Source terms. Adding a source term, proportional to the divergence, in
(1.10) results in

Bt + curl(B× u) = −u(div(B)).

Applying the divergence operator to both sides:

div(B)t + div(u(divB)) = 0.

Hence any potential divergence errors are transported away from the com-
putational domain by the flow. This procedure for “cleaning the diver-
gence” was introduced in [39, 40] and it needs to be discretized in a
very careful manner in order to avoid two main difficulties: to keep nu-
merical stability [19, 20] and to avoid a wrong shock speed due to the
non-conservative form of the source term [48]. A variant of this approach
is the Generalized Lagrange multiplier method [15].

(iii) Design of special divergence operators/staggering. This popular method
consists of staggering the discretizations of the velocity and magnetic fields
in (1.10). A wide variety of strategies for staggering the meshes has been
proposed, [16, 5, 13, 43, 48, 4] and references therein. The presence of
different sets of meshes leads to problems when parallelizing this method
and using adaptive mesh refinement. Unstaggered variants of this ap-
proach have also been proposed in [47, 46, 1].

The above discussion suggests there is ample scope for a simple, computa-
tionally cheap finite volume scheme for the MHD equations that resolves gen-
uinely multi-dimensional waves and preserves a discrete version of the divergence
constraint. Our aim in this paper is to summarize the results of recent papers
[33, 34, 35] and present a new framework for approximating the two-dimensional
conservation law (1.1) in a genuinely multi-dimensional manner. The GMD scheme
is designed by rewriting the standard finite volume scheme (1.3) in terms of vertex
centered numerical potentials. Standard edge centered numerical fluxes serve as
building blocks of the GMD scheme as the numerical potential is defined in terms
of them. The choice of potentials is very general and a specific choice of potential
results in an entropy stable GMD scheme [34, §3]. In particular, in section 4 we
discuss potential-based GMD schemes that preserve a discrete version of the diver-
gence in the MHD equations. Numerical experiments illustrating the robustness
of the schemes in approximating the Euler equations (1.2a) and the ideal MHD
equations (1.9) are presented.

2. Genuinely multi-dimensional (GMD) schemes

Following the presentation of [34], we introduce the numerical potentials φi+ 1
2 ,j+

1
2

and ψi+ 1
2 ,j+

1
2
at each vertex (xi+ 1

2
, yj+ 1

2
), with the sole requirement that these po-

tentials are consistent with the differential fluxes, i.e,

φi+ 1
2 ,j+

1
2
(U, · · · ,U) = f(U), ψi+ 1

2 ,j+
1
2
(U, · · · ,U) = g(U).
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We need the following notation for standard averaging and (undivided) difference
operators,

(2.1)
μxaI,J :=

aI+ 1
2 ,J

+ aI− 1
2 ,J

2
, μyaI,J :=

aI,J+ 1
2
+ aI,J− 1

2

2
,

δxaI,J := aI+ 1
2 ,J

− aI− 1
2 ,J

, δyaI,J := aI,J+ 1
2
− aI,J− 1

2
.

A word about our notations: we note that the above discrete operators could be used
with indexes I, J which are placed at the center or at the edge of the computational
cells, e.g., I = i or I = i+ 1

2 . In either case, we tag the resulting discrete operators
according to the center of their stencil; thus, for example, μxwi+ 1

2
employs grid

values placed on the integer-indexed edges, wi and wi+1, whereas δywj employs the
half-integer indexed centers, wj± 1

2
.

We now set the numerical fluxes:

(2.2)
Fi+ 1

2 ,j
= μyφi+ 1

2 ,j
,

Gi,j+ 1
2
= μxφi,j+ 1

2
.

The resulting finite volume scheme written in terms of the numerical potentials
reads

(2.3)

d

dt
Ui,j = − 1

Δx
δxμyφi,j −

1

Δy
δyμxψi,j ,

= − 1

Δx

(1

2
(φi+ 1

2 ,j+
1
2
+ φi+ 1

2 ,j− 1
2
)− 1

2
(φi− 1

2 ,j+
1
2
+ φi− 1

2 ,j− 1
2
)
)

− 1

Δy

(1

2
(ψi+ 1

2 ,j+
1
2
+ ψi− 1

2 ,j+
1
2
)− 1

2
(ψi+ 1

2 ,j− 1
2
+ ψi− 1

2 ,j− 1
2
)
)
.

The potential based scheme (2.3) is clearly conservative as well as consistent as
the potentials φ, ψ are consistent. The genuinely multi-dimensional nature of the
scheme is evident from (2.3): the potentials are differenced in the normal direction
but averaged in the transverse direction. We claim that the family of potential-
based schemes (2.3) is rich: any standard finite volume flux can be used as a
building block for constructing the numerical potentials in (2.2), and the result-
ing potential-based scheme inherits the accuracy of the underlying numerical flux.
There are several ways to pursue the construction of numerical potentials and we
outlined four of them below.

2.1. Symmetric potentials. In this approach, the potentials are defined by
averaging the finite volume fluxes neighboring a vertex:

(2.4)
φi+ 1

2 ,j+
1
2
= μyFi+ 1

2 ,j+
1
2
,

ψi+ 1
2 ,j+

1
2
= μxGi+ 1

2 ,j+
1
2
,

where Fi+ 1
2 ,j

and Gi,j+ 1
2
are any numerical fluxes consistent with f and g respec-

tively. An explicit computation of (2.3) with potentials (2.4) leads to the revealing
form,
(2.5)

d

dt
Ui,j = − 1

2Δx
(μyFi+ 1

2 ,j+
1
2
+ μyFi+ 1

2 ,j− 1
2
− μyFi− 1

2 ,j+
1
2
− μyFi− 1

2 ,j− 1
2
)

− 1

2Δy
(μxGi+ 1

2 ,j+
1
2
+ μxGi− 1

2 ,j+
1
2
− μxGi+ 1

2 ,j− 1
2
− μxGi− 1

2 ,j− 1
2
).
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Comparing the potential based scheme (2.5) with the standard finite volume scheme
(1.3), we observe that the potential based scheme modifies (1.3) by averaging the
fluxes in the transverse direction. Hence, it incorporates explicit transverse infor-
mation in each direction. When employing two-point fluxes, the local stencil for
the GMD scheme (2.5) consists of nine points instead of the standard five point
stencil for the finite volume scheme (1.3). One can use wider stencils to achieve
higher-order of accuracy; for example, the symmetric potential-based scheme based
on second-order four-point MUSCL flux (1.6) yields a second-order GMD scheme
based on a stencil of twenty-three points.

2.2. Weighted symmetric potentials. Weighted averages of the neighbor-
ing fluxes can be considered in place of the simple averaging used in (2.4). For
prescribed θi+ 1

2 ,j+
1
2
, κi+ 1

2 ,j+
1
2
∈ (0, 1), the weighted potential is defined as

(2.6)
φi+ 1

2 ,j+
1
2
= θi+ 1

2 ,j+
1
2
Fi+ 1

2 ,j+1 + (1− θi+ 1
2 ,j+

1
2
)Fi+ 1

2 ,j
,

ψi+ 1
2 ,j+

1
2
= κi+ 1

2 ,j+
1
2
Gi+1,j+ 1

2
+ (1− κi+ 1

2 ,j+
1
2
)Gi,j+1/2.

The weights can be chosen based on the local characteristic speeds,

(2.7)

θi+ 1
2 ,j+

1
2
=

max{−(β1)i+ 1
2 ,j+

1
2
, 0}

max{−(β1)i+ 1
2 ,j+

1
2
, 0}+max{(βN )i+ 1

2 ,j+
1
2
, 0} ,

κi+ 1
2 ,j+

1
2
=

max{−(α1)i+ 1
2 ,j+

1
2
, 0}

max{−(α1)i+ 1
2 ,j+

1
2
, 0}+max{(αN )i+ 1

2 ,j+
1
2
, 0} .

Here, αl and , βl, l = 1, 2, · · · , N are the real eigenvalues ofA = ∂Uf(μyμxUi+ 1
2 ,j+

1
2
)

and B = ∂Ug(μxμyUi+ 1
2 ,j+

1
2
), sorted in an increasing order. This choice of weights

means that the potential (2.6) is “upwinded” i.e, takes local flow directions into ac-
count.

2.3. Staggered potentials. We define the numerical potential as
(2.8)
φi+ 1

2 ,j+
1
2
= F(μyUi,j+ 1

2
, μyUi+1,j+ 1

2
), ψi+ 1

2 ,j+
1
2
= G(μxUi+ 1

2 ,j
, μxUi+ 1

2 ,j+1)

for any consistent numerical fluxes F,G.

2.4. Diagonal potentials. We define the diagonal potentials [33] ,

(2.9a)
φi+ 1

2 ,j+
1
2
=

1

2

(
F+

i+ 1
2 ,j+

1
2

+ F−
i+ 1

2 ,j+
1
2

)
,

ψi+ 1
2 ,j+

1
2
=

1

2
(G+

i+ 1
2 ,j+

1
2

+G−
i+ 1

2 ,j+
1
2

).

Here, F±,G± are the diagonal fluxes

(2.9b)
F+

i+ 1
2 ,j+

1
2

:= F(Ui,j ,Ui+1,j+1), F−
i+ 1

2 ,j− 1
2

= F(Ui,j ,Ui+1,j−1)

G+
i+ 1

2 ,j+
1
2

:= G(Ui,j ,Ui+1,j+1), G−
i− 1

2 ,j+
1
2

:= G(Ui,j ,Ui−1,j+1).

which amount to rotating the x- and y-axis by angles of π
4 and −π

4 and F(·, ·) and
G(·, ·) are any two-point numerical fluxes consistent with f and g.

We conclude our list for recipes of GMD schemes with an example which is not
rendered by a numerical potential, but nevertheless, highlights the use of a GMD
stencil.
Let F(·, ·) and G(·, ·) are any two-point consistent numerical fluxes and let F±,G±
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be the corresponding diagonal numerical fluxes in (2.9a). We define the isotropic
fluxes,

(2.10a)
F̃i+ 1

2 ,j
=

1

4

(
F+

i+ 1
2 ,j+

1
2

+ 2Fi+ 1
2 ,j

+ F−
i+ 1

2 ,j− 1
2

)
,

G̃i,j+ 1
2
=

1

4

(
G+

i+ 1
2 ,j+

1
2

+ 2Gi,j+ 1
2
+G−

i− 1
2 ,j+

1
2

)
.

The resulting finite volume scheme reads as
(2.10b)
d

dt
Ui,j = − 1

Δx
δxF̃i,j −

1

Δy
δyG̃i,j ,

= − 1

4Δx

(
δ/F

+
i,j + 2δxFi,j + δ\F

−
i,j

)
− 1

4Δy

(
δ/G

+
i,j + 2δyGi,j − δ\G

−
i,j

)
;

here, δ/ and δ\ denote the diagonal difference operators,

(2.11) δ/aI,J := aI+ 1
2 ,J+

1
2
− aI− 1

2 ,J− 1
2
, δ\aI,J := aI+ 1

2 ,J− 1
2
− aI− 1

2 ,J+
1
2
.

The GMD structure of the scheme is clear from (2.10b): the scheme averages
the fluxes along transverse directions. In contrast to the symmetric scheme (2.5),
however, the explicit transverse information in (2.10b) is obtained by “rotating”
the fluxes. We term (2.10b) as the isotropic GMD scheme.

The stencil of the isotropic scheme consists of nine points. Second-order accu-
racy can be obtained by the piecewise bilinear reconstruction (1.6). In addition to
(1.7), we also need the corner point values,

(2.12a)
UNE

i,j := pi,j(xi+ 1
2
, yj+ 1

2
), UNW

i,j := pi,j(xi− 1
2
, yj+ 1

2
),

USE
i,j := pi,j(xi+ 1

2
, yj− 1

2
), USW

i,j := pi,j(xi− 1
2
, yj− 1

2
),

and the corresponding diagonal fluxes,

(2.12b)
F+

i+ 1
2 ,j+

1
2

:= F(UNE
i,j ,USW

i+1,j+1), F−
i+ 1

2 ,j− 1
2

:= F(USE
i,j ,U

NW
i+1,j+1),

G+
i+ 1

2 ,j+
1
2

:= G(UNE
i,j ,USW

i+1,j+1), G−
i− 1

2 ,j+
1
2

:= F(UNW
i,j ,USE

i−1,j+1),

to define the second order accurate version of the isotropic GMD scheme.

Remark 2.1. The isotropic GMD scheme (2.10b) is a desirable form of the
GMD scheme as we can prove that it is entropy stable provided that the building
block numerical fluxes F,G in (2.10b) are entropy stable. A precise statement of
the stability theorem and details of the proof are presented in [34].

3. Numerical Experiments

The semi-discrete first (second) order GMD schemes (2.5), (2.10b) are inte-
grated in time with the standard forward Euler (strong stability preserving Runge-
Kutta [22]) method. The time step is determined by a standard CFL condition.
All simulations reported here, are performed with a CFL number of 0.45. We test
the following schemes:

SYM (SYM2) First (second)-order version of the symmetric GMD scheme (2.5).
ISO (ISO2) First (second)-order version of the isotropic GMD scheme (2.10b).
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3.1. Numerical experiment #1. We begin with a test case for the Euler
equations, reported in [34]. The two-dimensional radially symmetric version of the
standard Sod shock tube [28] considers (1.2a) with initial data:

(3.1)
ρ(x, y, 0) = p(x, y, 0) =

{
1.0 if

√
x2 + y2 < 0.4,

0.125 otherwise,

u(x, y, 0) = v(x, y, 0) ≡ 0.

in the computational domain [−2, 2]×[−2, 2]. The initial radial discontinuity breaks
into an outward propagating shock wave, a contact discontinuity and a rarefaction
wave. The waves are radially symmetric and the standard finite volume scheme is
known to be deficient, [28]. We plot the approximate density at time t = 0.2, on
a 200 × 200 mesh in figure 1. The first-order SYM and ISO schemes are diffusive,
particularly at the contact discontinuity. The radially symmetric structure is re-
tained and no grid aligned effects or spurious waves are observed. The second-order
SYM2 and ISO2 schemes are much more accurate with good resolution at the shock
and the contact. The SYM2 scheme leads to small oscillations at the outer shock,
indicating that the scheme doesn’t contain enough diffusion (similar examples were
presented in [33]). The second-order ISO2 scheme results in non-oscillatory and re-
solves the circular waves quite well. The results are comparable to those presented
in [31] and references therein.

3.2. Numerical experiment #2. As a second example for the Euler equa-
tions, we consider a benchmark test described in [8, 17, 29, 31] and references
therein. The two dimensional initial Riemann data is

(3.2)

ρ = 0.5313, u = 0, v = 0, p = 0.4, if x > 0, y > 0,

ρ = 1.0, u = 0, v = 0.7276, p = 1.0, if x > 0, y < 0,

ρ = 1.0, u = 0.7276, v = 0, p = 1.0, if x < 0, y > 0,

ρ = 0.8, u = 0, v = 0, p = 1.0, if x < 0, y < 0,

in the computational domain, [−1, 1] × [−1, 1]. The exact solution consists of two
forward moving shocks, two slip lines and a Mach reflection. Some standard finite
volume schemes approximate a regular reflection instead of a Mach reflection, [17].
The approximate density at time t = 0.5, on a 200×200 mesh, is plotted in figure 2.
The results are very similar to the previous numerical experiment. The first-order
SYM and ISO schemes resolve the multi-dimensional features with some diffusion.
The second-order ISO2 and SYM2 schemes attain considerably better resolution,
particularly at the slip lines and at the reflection. The SYM2 scheme has a slight
overshoot at the top right corner, indicating the absence of sufficient diffusion. The
ISO2 scheme is very stable and accurate. The results are comparable to the ones
obtained in [17, 29, 31]. The above numerical experiments demonstrate that the
GMD schemes presented in this paper are robust. The first order schemes can
be diffusive. A possible reason is the use of the Rusanov flux (1.4). Experiments
with more accurate fluxes like the Roe flux led to a reduction in the amount of
numerical diffusion. We prefer the Rusanov flux as it is very simple to code and is
computationally cheap. Furthermore, accuracy is recovered at second-order.
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Figure 1. Approximate solutions of density for numerical exper-
iment #3 at t = 0.2 on a 200×200 mesh computed with the GMD
schemes.

4. Divergence preserving schemes

The divergence of the magnetic field in the MHD equations (1.9) is preserved
(1.11a). Despite incorporating explicit transverse information, the GMD schemes
(2.5) and (2.10b) may not necessarily preserve a discrete version of the divergence
constraint. A possible explanation lies in the special structure of the 8-vectors
fluxes f and g in (1.9). Note that

f5 = g6 ≡ 0, −f6 = g5 = u2B1 − u1B2.

This interaction between the fluxes f ,g is responsible for the divergence constraint
(1.11a). We must incorporate this information in the structure of the numerical
potentials.

Let φ, ψ be the potentials. Following [35], we require that potential components
φ5, φ6, ψ5 and ψ6 satisfy:

(4.1)
(
φ5

)
i+ 1

2 ,j+
1
2

=
(
ψ6

)
i+ 1

2 ,j+
1
2

≡ 0,
(
φ6

)
i+ 1

2 ,j+
1
2

=
(
ψ5

)
i+ 1

2 ,j+
1
2

= χi+ 1
2 ,j+

1
2

for some consistent scalar potential χ, i.e,

χ(U, · · · ,U) = u1B2 − u2B1.
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Figure 2. Approximate density for numerical experiment #4 at
t = 0.5 on a 200× 200 mesh computed with the GMD schemes.

Introducing

V = {ρ, u1, u2, u3, B3, E}, Φ = {φ1, · · · , φ4, φ7, φ8}, Ψ = {ψ1, · · · , ψ4, ψ7, ψ8}
for any consistent potentials φ, ψ. The potential based scheme (2.3) with the choice
of potential (4.1) reads as

(4.2)

d

dt
Vi,j = − 1

Δx
δxμyΦi,j −

1

Δy
δyμxΨi,j ,

d

dt

(
B1

)
i,j

= − 1

Δy
δyμxχi,j ,

d

dt

(
B2

)
i,j

=
1

Δx
δxμyχi,j .

The constraint preserving property of the scheme is described in following lemma.

Lemma 4.1. Define the discrete divergence operator:

(4.3) div∗
(
(B1, B2)

�)
i,j

:=
1

Δx
μyδx

(
B1

)
i,j

+
1

Δy
μxδy

(
B2

)
i,j
.

Then, the potential based GMD scheme (4.2) satisfies the discrete divergence con-
straint, analogous to (1.11b)

d

dt
div∗

(
(B1, B2)

�)
i,j

≡ 0, ∀i, j.

306



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CONSTRAINT PRESERVING GENUINELY MULTI-DIMENSIONAL SCHEMES 13

Proof. The difference operators δx, δy and the averaging operators μx, μy

commute with each other. Applying the discrete divergence operator div∗ to the
numerical scheme (4.2),

ΔxΔy
d

dt
div∗

(
(B1, B2)

�)
i,j

= (μxδyδxμy − μyδxδxμx)χi,j ≡ 0.

�
A similar scheme preserves a discrete version of vorticity for the system wave

equation [34]. The scalar potential χ can be chosen in the following ways.

4.1. Divergence preserving symmetric GMD scheme. The potentials
Φ,Ψ are defined by (2.4). A natural choice [35] of the potential χ is the symmetric
potential:

(4.4) χi+ 1
2 ,j+

1
2
=

1

4

((
F6

)
i+ 1

2 ,j
+

(
F6

)
i+ 1

2 ,j+1
+

(
G5

)
i,j+ 1

2

+
(
G5

)
i+1,j+ 1

2

)
with F5,6,G5,6 being components of any consistent numerical fluxes F,G. Let

H = {F1, · · · ,F4,F7,F8}, K = {G1, · · · ,G4,G7,G8}
for any consistent fluxes F,G. The divergence preserving symmetric GMD scheme
has the explicit form:
(4.5)

d

dt
Vi,j = − 1

2Δx
(μyHi+ 1

2 ,j+
1
2
+ μyHi+ 1

2 ,j− 1
2
− μyHi− 1

2 ,j+
1
2
− μyHi− 1

2 ,j− 1
2
)

− 1

2Δy
(μxKi+ 1

2 ,j+
1
2
+ μxKi− 1

2 ,j+
1
2
− μxKi+ 1

2 ,j− 1
2
− μxKi− 1

2 ,j− 1
2
),

d

dt
(B1)i,j = − 1

4Δy

(
μx

(
F6

)
i,j+1

− μx

(
F6

)
i,j−1

)
− 1

4Δy

(
δy(μx

(
G5

)
i+ 1

2 ,j+
1
2

+ μx

(
G5

)
i− 1

2 ,j+
1
2

)
)
,

d

dt
(B2)i,j =

1

4Δx

(
μy

(
G5

)
i+1,j

− μy

(
G5

)
i−1,j

) +
1

4Δx
(δx(μy

(
F6

)
i+ 1

2 ,j+
1
2

+ μy

(
F6

)
i+ 1

2 ,j− 1
2

))
.

4.2. Divergence preserving isotropic GMD scheme. Following [33], we
define a diagonal form of the potential χ:

(4.6) χi+ 1
2 ,j+

1
2
=

1

4

((
F+

6

)
i+ 1

2 ,j+
1
2

+
(
G+

5

)
i+ 1

2 ,j+
1
2

+
(
F−

6

)
i+ 1

2 ,j+
1
2

+
(
G−

5

)
i+ 1

2 ,j+
1
2

)
for diagonal fluxes F±,G± defined in (2.9b). Denote

H± = {F±
1 , · · · ,F±

4 ,F
±
7 ,F

±
8 }, K± = {G±

1 , · · · ,G±
4 ,G

±
7 ,G

±
8 }

The divergence preserving modification of the isotropic GMD scheme (2.10b) based
on the potential (4.6) is
(4.7)

d

dt
Vi,j = − 1

4Δx

(
δ/H

+
i,j + 2δxHi,j + δ\H

−
i,j

)
− 1

4Δy

(
δ/K

+
i,j + 2δyKi,j − δ\K

−
i,j

)
,

d

dt
(B1)i,j = − 1

4Δy

(
μxδy

((
F+

6

)
i,j

+
(
F−

6

)
i,j

+
(
G+

5

)
i,j

+
(
G−

5

)
i,j

))
,

d

dt
(B2)i,j =

1

4Δx

(
μyδx

((
F+

6

)
i,j

+
(
F−

6

)
i,j

+
(
G+

5

)
i,j

+
(
G−

5

)
i,j

))
.

4.3. Numerical Experiments. In addition to the SYM (SYM2) and ISO
(ISO2) schemes of the last section, we also test the following two divergence pre-
serving GMD schemes:
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SCP (SCP2) —
First (second)-order version of the divergence preserving symmetric GMD scheme (4.5);

ICP (ICP2) —
First (second)-order version of the divergence preserving isotropic GMD scheme (4.7).

Figure 3. The pressure p for the Orszag-Tang vortex computed
at t = π on a 200× 200 mesh with first-order GMD schemes.

4.4. Orszag-Tang vortex. The Orszag-Tang vortex is a widely reported
benchmark for multi-dimensional MHD equations [48]. The initial data is

(ρ, u1, u2, u3, B1, B2, B3, p) =
(
γ2,− sin(y), sin(x), 0,− sin(y), sin(2x), 0, γ

)
,

in the computational domain, (x, y, t) ∈ [0, 2π]2 × [0, π] with periodic boundary
conditions.

Although the exact solution is not known, some qualitative features have been
reported [48]. The solution consists of shocks along the diagonals and interesting
smooth features including a vortex near the center of the domain. The approximate
pressures, computed on a 200× 200 mesh, are shown in figures 3 and 4.

Figure 3 shows the approximate pressure computed with the first-order GMD
schemes. The solution is smeared at this resolution, but the qualitative features
are captured quite well. The shocks and the central vortex are approximated,
without any spurious waves or oscillations. The divergence preserving SCP and
ICP schemes are clearly more accurate than the SYM and ISO schemes. The
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Figure 4. The pressure p for the Orszag-Tang vortex computed
at t = π on a 200× 200 mesh with second-order GMD schemes.

results for the second-order schemes are plotted in figure 4. There is a considerable
improvement in the resolution with second-order schemes. The gain in accuracy is
evident, both at the shocks and at the central vortex. The divergence preserving
SCP2 and ICP2 are slightly more accurate than the SYM2 and ISO2 schemes.

The initial data is divergence free and the divergence constraint (1.11a) implies
that it remains zero during the evolution. We show the errors in the discrete
divergence operator div∗ (4.3) in Table 1. The standard GMD schemes lead to

M SYM ISO SCP ICP SYM2 ISO2 SCP2 ICP2
50 0.53 0.42 4.7e-12 4.4e-12 1.49 1.32 5.8e-13 3.4e-13
100 0.89 0.70 2.1e-12 1.7e-12 3.39 3.07 5.1e-13 3.8e-13
200 1.23 1.11 1.0e-12 6.9e-13 5.57 5.12 5.7e-13 3.0e-13
400 1.61 1.52 1.3e-12 6.0e-13 8.08 11.3 6.0e-13 3.1e-13

Table 1. Discrete divergence div∗ (4.3) in L1 for the Orszag-Tang
vortex with all the GMD schemes on a M×M mesh at time t = π.

O(1) divergence errors, with large amounts of discrete divergence being generated
near the shocks. The divergence error is even larger for the second-order SYM2
and ISO2 schemes. This behavior is to be expected as the second-order schemes
resolve the shocks more sharply. The SCP, SCP2, ICP and ICP2 schemes preserve
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the discrete divergence to machine precision. We would like to point out that
preserving div∗ to machine precision would imply that other discrete versions of
the divergence operator like the standard central divergence will be of the order of
machine precision for smooth solutions. Since, the above example contains strong
shocks, large values for the standard central divergence may be observed even if
div∗ is preserved to machine precision.

Numerical stability (particularly on fine meshes) for the MHD equations is
delicate [19]. Standard schemes (even those with divergence cleaning) may crash
due to instabilities and negative pressures on fine resolutions [19]. In spite of the
large divergence errors, the SYM (SYM2) and ISO (ISO2) schemes are stable. The
genuinely multi-dimensional structure of the schemes imparts additional numerical
stability.

4.5. Cloud-Shock Interaction. Another benchmark test case for the MHD
equations involves the interaction of a high density cloud with a shock. The initial
data for this cloud-shock interaction problem [42] consists of a shock located at
x = 0.05 with

(4.8) (ρ, u1, u2, u3, B1, B2, B3, p)

=

{
(3.86859, 11.2536, 0, 0, 0, 2.1826182,−2.1826182, 167.345), if x < 0.05

(1.0, 0, 0, 0, 0, 0.56418958, 0.56418958, 1.0), if x < 0.05.

and a circular cloud of density ρ = 10 with radius 0.15, centered at (x, y) =
(0.25, 0.5) in the computational domain [0, 1] × [0, 1]. The test is configured in
such a way that a right moving shock violently interacts with a high density cloud.
The solution has a extremely complex structure, consisting of bow shock at the
left, trailing shocks at the right and a complicated smooth region with turbulent
like features in the center. We plot the approximate density, on a 200× 200 mesh
, at time t = 0.06 in figures 5 and 6.

The first-order results in figure 5 show that although diffusive, the first-order
GMD schemes are stable and resolve the shock structure in the correct qualitative
manner. The divergence preserving SCP and ICP schemes are more accurate than
the SYM and ISO schemes. The second-order results are plotted in figure 6 and
show a dramatic increase in resolution. Both the bow shock and the trailing shock
are captured accurately. The smooth region with turbulent features is also resolved
quite well. In fact, a clear difference between the first- and second-order schemes lies
in the fact that the second-order schemes resolve some of the turbulent features on
very coarse meshes. The divergence errors for discrete divergence div∗ are shown
in Table 2 and demonstrate quite large divergence errors for the SYM (SYM2)
and ISO (ISO2) schemes. The divergence errors increase with reduction in mesh
size, indicating production of divergence at the shocks. The SCP (SCP2) and ICP
(ICP2) schemes preserve discrete divergence to machine precision.

5. Conclusion

The structure of solutions of conservation laws in several space dimensions is
very rich and consists of complex multi-dimensional waves. Standard finite volume
methods are based on edge centered fluxes and do not incorporate any explicit
transverse information. Consequently, they are deficient in resolving genuinely
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Figure 5. The density ρ for the cloud-shock interaction computed
at t = 0.06 on a 200× 200 mesh with first-order schemes.

M SYM ISO SCP ICP SYM2 ISO2 SCP2 ICP2
50 4.56 2.59 2.8e-12 2.1e-12 5.79 5.38 3.4e-13 2.27e-13
100 4.47 3.3 1.2e-12 8.7e-13 12.58 11.75 2.1e-13 1.14e-13
200 5.19 4.05 5.0e-13 3.7e-13 27.1 26.48 1.4e-13 1.34e-13
400 7.5 6.4 2.3e-13 1.5e-13 38.0 41.3 1.8e-13 2.2e-13

Table 2. Discrete divergence div∗ (4.3) in L1 for cloud shock
interaction with all the eight schemes on a M ×M mesh at time
t = 0.06.

multi-dimensional waves. These deficiencies are particularly evident for conserva-
tion laws with intrinsic constraints like vorticity and divergence. Finite volume
schemes may not preserve discrete versions of the constraint and may lead to spu-
rious numerical waves and oscillations.

We summarize the results of a recent series of papers [33, 34, 35] where a new
framework for genuinely multi-dimensional (GMD) schemes was presented. These
schemes are based on vertex centered numerical potentials. Standard edge centered
fluxes are used to define the potentials. A particular version of the GMD schemes,
he isotropic GMD scheme (2.10b) is entropy stable if its building block numerical
fluxes are entropy stable.
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Figure 6. The density ρ for the cloud-shock interaction computed
at t = 0.06 on a 200× 200 mesh with second-order schemes

A suitable choice of potentials leads to a GMD scheme that preserves discrete
version of the divergence constraint for the ideal MHD equations (1.9). Higher order
of spatial accuracy is obtained by employing the non-oscillatory reconstruction
procedure of [25]. A choice of the Rusanov flux as the building block for the GMD
schemes leads to genuinely multi-dimensional and constraint preserving versions of
the popular central schemes of Kurganov and Tadmor [25].

Numerical experiments for the Euler and the MHD equations are presented.
They show that the GMD schemes are robust and resolve the multi-dimensional
waves with high accuracy. Preserving the divergence constraint leads to higher
resolution, particularly at first-order. The computational cost of the schemes are
very low and they are very simple to implement in a code. Hence, the GMD
framework constitutes an unified and highly effective strategy for approximating
multi-dimensional conservation laws. Future papers consider higher than second-
order versions of the GMD schemes on unstructured grids.
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