
Proceedings of Symposia in Applied Mathematics

Volume 67.2, 2009

Vorticity Preserving Schemes Using Potential-Based Fluxes

for the System Wave Equation

Siddhartha Mishra and Eitan Tadmor

Abstract. We consider the wave equation system in two-space dimensions. A
new class of genuinely multi-dimensional finite volume schemes are designed,

based on using vertex-centered numerical potentials. The resulting schemes
preserve a discrete version of vorticity. Numerical experiments illustrating the

robustness of the schemes are presented.

1. Introduction

We consider the linear wave equation in two dimensions,

(1.1) ptt − c2pxx − c2pyy = 0.

with constant speed c. By setting u = px and v = py, the wave equation (1.1) can
be written in the following first-order system form,

(1.2)

pt + cux + cvy = 0,

ut + cpx = 0,

vt + cpy = 0.

Note that the above system is a special case of a two-dimensional system of con-
servation laws of the form,

(1.3) Ut + (f (U))x + (g(U))y = 0, (x, y, t) ∈ R × R × R+,

with the vector of unknowns denoted as U = {p, u, v} and the linear fluxes are
given as f (U) = AU and g(U) = BU, with matrices A,B given by

A =





0 c 0
c 0 0
0 0 0



 , B =





0 0 c

0 0 0
c 0 0



 .
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A simple calculation shows that the eigenvalues of both A and B are Λ = {−c, 0, c}.
Hence, the system (1.2) is strictly hyperbolic. It is also clearly symmetric.

We define the total energy of (1.2) as

E =
1

2
(p2 + u2 + v2).

A simple calculation shows that smooth solutions of (1.2) satisfy the energy con-
servation property,

(1.4) Et + (cup)x + (cvp)y = 0.

This bound on energy provides an estimate in L2 for the solutions of (1.2) and
paves the way for establishing existence, uniqueness and stability of weak solutions
of (1.2) by fairly standard arguments. In addition to energy preservation, another
important invariant for (1.2) is the vorticity given by,

ω = vx − uy.

Another simple calculation with (1.2) shows that

(1.5) ωt ≡ 0.

Hence, the vorticity is preserved by the flow.
Our aim in this paper is to design suitable numerical schemes for simulating

(1.2). An ideal numerical scheme for (1.2) should satisfying energy conservation
(1.4) (at least for smooth solutions). Similarly, it should also preserve a discrete
version of the vorticity ω. In addition, it should be easy to design and implement,
accurate and robust.

The most popular schemes for simulating (possibly non-linear) conservation
laws like (1.3) are the finite volume schemes (see [L] for a detailed description).
In a finite volume approximation, the domain is discretized into cells or control
volumes and an integral form of the conservation law (1.3) is approximated on
each control volume. The resulting method relies on updating cell averages of
the unknown over each control volume by the construction of suitable numerical
fluxes across each cell interface. To illustrate this method, we consider a uniform
Cartesian discretization of the domain with mesh sizes ∆x and ∆y in the x- and
y- directions respectively. Denoting xi = i∆x and yj = j∆y, a typical Cartesian
cell is denoted as Ii,j = [xi−1/2, xi+1/2)× [yj−1/2, yj+1/2) and the cell average of U
over Ii,j at time t is denoted as Ui,j(t). Then, a typical finite volume scheme for
(1.3) (see [L]) takes the form,

(1.6)
d

dt
Ui,j = δxFi,j + δyGi,j

Here, δx, δy denote the standard centered differences,

(1.7) δxFi,j :=
1

∆x

(

Fi+ 1

2
,j −Fi− 1

2
,j

)

, δyGi,j :=
1

∆y

(

Gi,j+1

2

−Gi,j−1

2

)

where Fi+ 1

2
,j = F(. . . ,Ui,j,Ui+1,j . . .) and Gi,j+1

2

= G(. . . ,Ui,j,Ui,j+1, . . .) are

any numerical fluxes in the x− and y−directions which are consistent with the
differential fluxes f , g. For notational convenience, we have suppressed the time
dependence of all the quantities.

We would like to point out that finite volume scheme (1.6) is based on using
one dimensional fluxes F,G across the cell interface in each normal direction. De-
spite the tremendous success of finite volume schemes (1.6), they are known to be
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deficient when it comes to resolving genuinely multi-dimensional behavior of the
solutions of (1.3) ([L]). This is to be expected as the schemes are based on local
one-dimensional fluxes in each direction and don’t incorporate any genuinely multi-
dimensional information, thus leading to instabilities and poor resolution when ap-
plied to multi-dimensional conservation laws. The same deficiencies are observed
when one uses a finite volume scheme like (1.6) to the wave equation (1.2) with
the resulting scheme being unable to resolve multi-dimensional waves in a robust
manner.

Furthermore, a finite volume scheme like (1.6) will not necessarily preserve
any discrete version of the vorticity. This leads to a loss of accuracy on problems
where vorticity preservation is important. The lack of vorticity preservation at
the level of the scheme is a consequence of the fact the scheme (1.6) is not gen-
uinely multi-dimensional (GMD) whereas the vorticity preservation (1.5) is a direct
manifestation of multi-dimensional effects in (1.2). Hence, this model has been sug-
gested ([MR],[LMW]) as a prototype for the design of genuinely multi-dimensional
schemes for systems of conservation laws in a manner similar to the use of linear
advection equation as a toy model to design highly efficient numerical schemes for
conservation laws in one space dimension.

Many other hyperbolic problems also involve constraints. Examples include the
equations of magneto-hydrodynamics (MHD) where the divergence of the magnetic
field is preserved by the flow. The design of numerical schemes for conservation
laws with constraints is a very active area of research and many different methods
have been suggested. A good review of methods to preserve divergence in MHD
equations is provided in [T]. Vorticity preservation for the system wave equation
(1.2) has been studied in [MR] and [JT].

We propose a different approach to designing genuinely multi-dimensional finite
volume schemes for systems of conservation laws (1.3). The framework consists of
re-writing the edge-centered numerical fluxes F,G in terms of vertex centered po-
tentials. The potentials are chosen such that the resulting scheme will be consistent.
In addition, the potentials incorporate transverse information into the scheme. This
approach leads to a simple, easy to implement, computationally inexpensive and
stable approach for designing GMD schemes. Simple modifications of the potentials
lead to preservation of interesting constraints. We have described this new approach
in the context of the magnetic induction equations (where divergence is preserved)
in [MT1], the Euler equations of gas dynamics in [MT2] and the equations of
MHD in [MT3]. We will illustrate this approach for the system wave equation in
this paper. We present potential based finite volume schemes preserving vorticity.
Some examples of these scheme also preserve energy. The performance of these
schemes is illustrated on a set of numerical experiments.

2. Potential based GMD schemes

We begin with the description of the potential-based schemes presented in
[MT2]. We let Fi+ 1

2
,j,Gi,j+1

2

be any two finite volume fluxes in the x- and y-

directions which could be expressed as averages of vector numerical potentials Φ
and Ψ,

(2.1) Fi+ 1

2
,j = µyΦi+ 1

2
,j , Gi,j+1

2

= µxΨi,j+ 1

2

.



798 SIDDHARTHA MISHRA AND EITAN TADMOR

Here, µx, µy denote the usual averaging operators in the x− and y−directions,
respectively,
(2.2)

µyΦi+ 1

2
,j =

1

2

(

Φi+ 1

2
,j+ 1

2

+ Φi+ 1

2
,j−1

2

)

, µxΦi,j+ 1

2

=
1

2

(

Φi+ 1

2
,j+1

2

+ Φi− 1

2
,j+1

2

)

,

where Φi+ 1

2
,j+ 1

2

= Φ(. . . ,Ui,j,Ui+1,j+1, . . .) and Ψi+ 1

2
,j+1

2

= Φ(. . . ,Ui,j,Ui+1,j+1, . . .)

are arbitrary vector potentials with the sole requirement that they need to be con-
sistent, i.e., Φi+ 1

2
,j+ 1

2

(u, · · · ,u) = f (u) and Ψi+ 1

2
,j+ 1

2

(u, · · · ,u) = g(u). Observe

that fluxes centered in the x- and y-edges of the computational cells are sought to
be expressed as averages of vector numerical potentials in the normal directions.
Examples of such potentials will be specified later.

The (semi-discrete) potential-based finite-volume scheme (1.6),(2.1) now reads

(2.3)
d

dt
Ui,j = −δxµyΦi,j − δyµxΨi,j.

The above scheme is clearly conservative. Since the potentials are assumed to be
consistent, the above scheme is also consistent approximation of (1.3). A glimpse
of the genuinely multi-dimensional nature of the scheme is already evident in the
form (2.3) as the potentials are differenced in the normal direction but averaged in
the transverse direction. The structure will be more explicit once we specify the
form the potentials Φ,Ψ.

The framework of potential-based schemes applies to general multidimensional
problems [MT1, MT2, MT3]. We turn our attention to the specific case of wave
system (1.2) which preserves a discrete form of vorticity. Hence, we need to choose
the potentials

(2.4a) Φ = (Φ1 = φ,Φ2 = η,Φ3 = 0)>, Ψ = (Ψ1 = ψ,Ψ2 = 0,Ψ3 = η)>.

Observe that Φ3 = Ψ2 = 0 are made consistent with f 3 = g2 = 0. Next, (1.2)
requires Φ2 = Ψ3 should be consistent with f 2 = g3 ≡ cp, hence, we choose
φ2 = ψ3 = η where η is a scalar potential satisfying

(2.4b) η(U,U, · · · ,U) = cp.

Finally, we have the freedom to choose scalar potentials φ, ψ which satisfy the
consistency conditions,

(2.4c) φ(U,U, · · · ,U) = cu, ψ(U,U, · · · ,U) = cv.

We rewrite the potential-based scheme (2.3),(2.4) for the system wave equation
(1.2) with the above potentials, obtaining the following class of semi-discrete finite
volume schemes,

(2.5)

d

dt
pi,j = −δxµyφi,j − δyµxψi,j,

d

dt
ui,j = −δxµyηi,j,

d

dt
vi,j = −δyµxηi,j.

We end up with a class of schemes, (2.5), which are clearly consistent and conserva-
tive. Moreover, this class of potential-based schemes preserve the following discrete
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vorticity operator,

ω∗

i,j = µyδxvi,j − µxδyui,j

≡
1

8∆x
((vi+1,j+1 + 2vi+1,j + vi+1,j−1) − (vi−1,j+1 + 2vi−1,j + vi−1,j−1))(2.6)

−
1

8∆y
((ui+1,j+1 + 2ui,j+1 + ui−1,j+1) − (ui+1,j−1 + 2ui,j−1 + ui−1,j−1)).

This is the content of the following lemma.

Lemma 2.1. Let ui,j, vi,j be numerical solutions given by the scheme (2.5). Let
the discrete vorticity ω+ be given by (2.6), then we have

d

dt
ω∗

i,j ≡ 0, ∀i, j.

Proof. We observe that the difference operators δx, δy and the averaging op-
erators µx, µy commute with each other. Applying the discrete vorticity operator
ω∗ to the numerical scheme (2.5), we arrive at the following form,

d

dt
ω∗

i,j + (µyδxδyµx − µxδyδxµy)ηi,j = 0.

Commutativity of the averaging and difference operators implies that

µxδyδxµy ≡ µyδxδyµx,

which implies that

d

dt
ω∗

i,j ≡ 0.

�

Thus choosing any consistent potential in (2.5) leads to a numerical scheme
that preserves the discrete vorticity (2.6).

2.1. Specifying numerical potentials. The scheme (2.5) with any consis-
tent choice of potential preserves vorticity. There are many possible choices of
potentials leading to robust results. Let F,G be any two standard finite volume
fluxes consistent with the fluxes f , g in (1.2),(1.3). We can choose potentials in the
following manner,

(1) : (Symmetric potential):

(2.7)

φi+ 1

2
,j+ 1

2

=
1

2
(F1(Ui,j,Ui+1,j) + F1(Ui,j+1,Ui+1,j+1)),

ψi+ 1

2
,j+ 1

2

=
1

2
(G1(Ui,j,Ui,j+1) + G1(Ui+1,j,Ui+1,j+1)),

ηi+ 1

2
,j+ 1

2

=
1

4
(F2(Ui,j,Ui+1,j) + F2(Ui,j+1,Ui+1,j+1)

+ G3(Ui,j,Ui,j+1) + G3(Ui+1,j,Ui+1,j+1)).

Clearly, the above choice of potential is consistent. Furthermore, the above
potential is obtained by averaging edge-centered fluxes in the transverse
direction.
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(2) (Diagonal Potential:)

(2.8)

φi+ 1

2
,j+ 1

2

=
1

2
(F1(Ui,j,Ui+1,j+1) + F1(Ui,j+1,Ui+1,j)),

ψi+ 1

2
,j+ 1

2

=
1

2
(G1(Ui,j,Ui+1,j+1) + G1(Ui+1,j,Ui,j+1)),

ηi+ 1

2
,j+ 1

2

=
1

4
(F2(Ui,j,Ui+1,j+1) + F2(Ui,j+1,Ui+1,j)

+ G3(Ui,j,Ui+1,j+1) + G3(Ui+1,j,Ui,j+1)).

The above choice of potential is also consistent. Note that it introduces
a new type of flux obtained by considering states along the diagonal.
This choice of potential in a slightly different context was introduced in
[MT1, MT3].

We will test both potentials in our numerical experiments. In-order to specify the
scheme completely, we need to choose some suitable numerical fluxes F,G used in
the definition (2.7),(2.8). We start with the following choice.

2.1.1. Central flux: We choose the following numerical flux,
(2.9)

F(Ui,j,Ui+1,j) =
1

2
(f (Ui,j)+f (Ui+1,j)), G(Ui,j,Ui,j+1) =

1

2
(g(Ui,j)+g(Ui,j+1)),

This is the standard central flux for finite volume schemes. Using (2.9) in both the
symmetric potential ((2.7)) and the diagonal potential ((2.8)) results in exactly the
same form of the scheme (2.5). The scheme takes the explicit form,
(2.10)
d

dt
pi,j = −

c

8∆x
(ui+1,j+1 + 2ui+1,j + ui+1,j−1) +

c

8∆x
(ui−1,j+1 + 2ui−1,j + ui−1,j−1)

−
c

8∆y
(vi+1,j+1 + 2vi,j+1 + vi−1,j+1,) +

c

8∆y
(vi+1,j−1 + 2vi,j−1 + vi−1,j−1),

d

dt
ui,j = −

c

8∆x
(pi+1,j+1 + 2pi+1,j + pi+1,j−1) +

c

8∆x
(pi−1,j+1 + 2pi−1,j + pi−1,j−1),

d

dt
vi,j = −

c

8∆y
(pi+1,j+1 + 2pi,j+1 + pi−1,j+1,) +

c

8∆y
(pi+1,j−1 + 2pi,j−1 + pi−1,j−1).

The above scheme is second-order accurate. In addition it also satisfies the following
discrete energy preservation identity,

(2.11)
d

dt

∑

i,j

Ei,j ≡ 0,

where discrete energy Ei,j is the discrete equivalent of energy. The proof of the
above energy identity is rather straightforward and we omit it due to constraints
of space. Note that the second-order scheme (2.10) is unstable with respect to
forward Euler time stepping and we need to use a suitable strong-stability pre-
serving Runge-Kutta time stepping for time integration. Furthermore, this scheme
preserves energy and will generate oscillations near discontinuities. Hence, we add
some numerical diffusion to obtain non-oscillatory approximation of discontinuous
solutions.
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2.1.2. Rusanov flux: A simple way of adding numerical diffusion to (2.10) is to
use the Rusanov flux of the form,

(2.12)
F(Ui,j,Ui+1,j) =

1

2
(f (Ui,j) + f (Ui+1,j) − |c|(Ui+1,j −Ui,j)),

G(Ui,j,Ui,j+1) =
1

2
(g(Ui,j) + g(Ui,j+1) − |c|(Ui,j+1 −Ui,j)).

In this simple case of constant velocity, the Rusanov flux coincides with the standard
upwind flux. We substitute this value of the Rusanov flux in the expressions of the
symmetric potential (2.7) and diagonal potential (2.8) and obtain two different
forms of the vorticity-preserving scheme (2.5). Hence, the difference between the
two potentials lies in the explicit form of the numerical diffusion. We omit the
explicit expressions of the schemes due to limited space.

Both resulting schemes are limited to first order accuracy in space. We can
easily obtain second-order accuracy by using non-oscillatory piecewise polynomi-
als employing suitable slope limiters. We follow the second-order reconstruction
procedure of Kurganov-Tadmor ([KT]).

3. Numerical Experiments

In this section, we will test the potential based vorticity preserving GMD
schemes (2.5) on a set of numerical experiments. We consider four different form
of (2.5): the second-order accurate central scheme (2.10) with second-order Runge-
Kutta time stepping, (2.5) with first-order symmetric-potential (2.7) and forward
Euler time stepping, (2.5) with first-order diagonal potential (2.8) and forward Euler
time stepping and (2.5) with second-order diagonal potential (2.8) and second-order
Runge-Kutta time stepping. The schemes will be denoted as GMDcen, GMDsym,
GMDdiag and GMDdiaghr respectively. All the schemes are updated in time with
a CFL number of 0.9.

3.1. Numerical Experiment 1: (Smooth solutions). This numerical ex-
periment was considered in [LMW] and considers the system wave equation (1.2)
in the domain [−2, 2]× [−2, 2] with the initial data,

(3.1)
p(x, y, 0) = −ce−15(x2+y2),

u(x, y, 0) = v(x, y, 0) ≡ 0,

with c = 1. The initial data is smooth and the exact solution consists of a smooth
circular wave propagating outwards. We compute the approximate solution with
all the four schemes mentioned above on a uniform 200 × 200 mesh and plot the
variable p at time t = 0.5 in figure 1. The results in figure 1 show that all the GMD
schemes do very well in approximating the circular waves. The two first-order
schemes resolve the solution without any noticeable difference. The first-order
schemes are more diffusive than the second-order schemes. Another measure of the
numerical performance are vorticity errors. We start with zero initial vorticity and
the vorticity should remain zero in time. We compute the discrete vorticity (2.6)
and show the L1 norm of the vorticity at time t = 0.5 in table 1. The table show
that all the GMD schemes preserve the discrete vorticity and the vorticity errors
are very low, at a magnitude comparable to machine precision.
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(a) GMDcen (b) GMDsym

(c) GMDdiag (d) GMDdiaghr

Figure 1. Approximate solutions of p for numerical experiment 1
at t = 0.5 on a 200×200 mesh computed with first order GMDsym,
GMDdiag and second order GMDcen, GMDdiaghr schemes.

M GMDsym GMDdiag GMDdiaghr GMDcen
50 9.3e-11 1.5e-12 3.5e-16 6.7e-16
100 2.8e-14 8.5e-15 1.3e-16 2.4e-16
200 7.9e-16 9.4e-16 1.3e-17 9.5e-17
400 2.1e-17 3.0e-17 4.5e-18 1.6e-17

Table 1. Vorticity errors in L1 for numerical experiment 1.

3.2. Numerical experiment 2 (Discontinuous solutions): We conclude
the discussion on the system wave equation by consider the following discontinuous
initial data as [LMW],

(3.2)
p(x, y, 0) =

{

1 if
√

x2 + y2 ≤ 0.4

0 otherwise,

u(x, y, 0) = v(x, y, 0) ≡ 0.

The aim of this experiment is to test how the outer propagating circular shock
is resolved by the GMD schemes and how the discrete vorticity is handled by
them. The numerical results for p for a uniform 200 × 200 mesh on the domain
[−2, 2] × [−2, 2] at time t = 0.5 for all the four schemes is shown in figure 2. As
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expected, the two first schemes are diffusive but resolve the outer circular quite
well. The second-order GMDdiaghr scheme is very robust and captures the shock
with little smearing. The GMDcen scheme is a central schemes and is oscillatory
near the shock. The vorticity errors generated by the schemes are shown in table 2
and illustrate that all the schemes preserve discrete vorticity.

M GMDsym GMDdiag GMDdiaghr GMDcen
50 3.99e-12 8.11e-13 1.5e-16 2.1e-16
100 1.73e-15 3.9e-15 0.4e-16 6.6e-17
200 1.4e-16 1.6e-16 1.9e-17 3.5e-17
400 3.8e-17 8.0e-17 0.5e-17 0.6e-17

Table 2. Vorticity errors in L1 for numerical experiment 2.

(a) GMDcen (b) GMDsym

(c) GMDdiag (d) GMDdiaghr

Figure 2. Approximate solutions of p for numerical experiment 2
at t = 0.5 on a 200×200 mesh computed with first order GMDsym,
GMDdiag and second order GMDcen, GMDdiaghr schemes.

To summarize, we design genuinely multi-dimensional finite volume schemes
for the system wave equation (1.2). The schemes are based on introducing vertex-
centered potentials. The form of potentials enables incorporation of transverse
information. The resulting schemes are GMD. Suitable choices of potentials leads to
schemes that preserve a discrete version of vorticity. Using a standard central flux in
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defining potentials leads to a scheme that preserves both vorticity and total energy.
Numerical experiments illustrating the robustness of the schemes in resolving multi-
dimensional waves are presented. This new approach based on potentials is very
promising in dealing with the simulation of conservation laws in multi-dimensions,
particularly problems with constraints. Further results on this approach can be
found in [MT1, MT2, MT3].
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