Pointwise convergence rate for nonlinear con-
servation laws
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Abstract. We introduce a new method to obtain pointwise error estimates for
vanishing viscosity and finite difference approximations of scalar conserva-
tion laws with piecewise smooth solutions. This method can deal with finitely
many shocks with possible collisions. The key ingredient in our approach is an
interpolation inequality between the ' and Lipt-bounds, which enables us
to convert a global result into a (non-optimal) local estimate. A bootstrap ar-
gument yields optimal pointwise error bound for both the vanishing viscosity
and finite difference approximations.

1. Introduction

We study solutions to the single hyperbolic conservation laws with small viscosity
of the form

ui + f(u)e = €euz,,  TER,1>0,6>0 (1)
subject to the initial condition
ug(z) = uo(x). (2)

We are interested in the relation between its solution, u¢, and the solution u of
the corresponding conservation laws without viscosity

uw+ f(w)e =0, z€R,t>0. (3)
The initial condition for (3) is given by
u(z,0) = uo(x). (4)

We will investigate in this paper the pointwise error estimates between u and €,
when u has finitely many shocks.

It is well-known that u¢(-,t) converges strongly in L' to u(-,t), where u(-,t)
is the unique, so-called entropy solution of (3)-(4). It is shown in [8] that if the
flux f is strictly convex,

>8>0, (5)
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then the L' convergence rate in this case is upper bounded by
[[uf(+, 1) — u(-,)]|p1 < const.c. (6)

It is understood that the L! error estimate is a global one, while in many practical
cases we are interested in the local behavior of u(z,t). Consequently, when the
error is measured by the L'-norm, there is a loss of information due to the poor
resolution of shock waves in u(z,t). In this work, we will provide the optimal
pointwise convergence rate for the viscosity approximation. The previous results
for the optimal order one convergence rates, in both L' and L spaces, are all
based on a matching method and traveling wave solutions, see e.g. [1, 2, 8]. In this
work, however, we will not use the traveling wave solutions; instead our arguments
are based on energy-like estimates. The proof of our results is based upon two
ingredients: (1): Lip*-boundedness along [4] which enables us to “convert” a global
result into a local estimate, (2): A weighted quantity of the error satisfying a
transport inequality such that the maximum principal applies.

Unlike previous work on pointwise estimates [1, 2], this framework can deal
with finitely many shocks with possible collistons. The extensions to the general
case can be found in [6]. Moreover, although we only consider the Lax-Friedrichs
scheme the idea can be used to obtain the same results for monotone schemes [7].

The paper is organized as follows. In §2 we consider the viscosity methods
when there are finitely many shocks. In §3 we discuss the extensions to the Lax-
Friedrichs scheme.

2. Viscosity methods

To begin with, we let || ® ||z;,+ denote the LipT-seminorm

w(z) —w(y) ]
r—y ’
where [w]*t = H(w)w, with H(e) the Heaviside function.

To convert global Ll-error bounds (for Lipt bounded solutions) into local
pointwise error estimates, the following lemma is at the heart of matter.

Lemma 2.1. Assume that v € L*(\LipT(I), and w € CL (z — 6,2 + §) for an
interior ® such that (z — 6,z + &) € I. Then the following estimate holds:

||wl|pip+ 1= ess sup
TEy

1
o(2) = w()| < Const | o = s + 6{ollipsto s + lolep oosrv} ]

loc
In particular, if the size of the smoothness neighborhood for w can be chosen so

that 1/2
1/2 -
6o =l (Il + oley ) <

then the following estimate holds:

1
§|I|

]1/2 e

1/2
|v(z) — w(z)| < Const - ||v — w||L/1(I) : [||v||Lip+ + |w|Czloc(z_5,z+5)
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Thus, (7) tells us that if the global L-error ||v — wl|p: is small, then the
pointwise error |v(z) — w(z)| is also small whenever w, is bounded. This does not
require the Cl-boundedness of v; the weaker one-sided Lip™ bound will suffice.
The detailed proof of the above lemma can be found in [6].

In this section, we first assume that the entropy solution of (3)-(4) has only
one shock discontinuity. The shock curve z = X (¢) satisfies the Rankine-Hugoniot
and the Tax conditions:

| (0]
A= (®)
F(X(O)=1) > X'(1) > Fu(X(O+.1). ©

Owing to the convexity of the flux f, the viscosity solutions of (1) satisfy
a LipT-stability condition, similar to the familiar Oleinik’s E-condition, which
asserts an a priori upper bound for the LipT-seminorm of the viscosity solution

! (10)

0 || T ——
e Ol = e

where u€ is the solution of (1)-(2), 3 is the convexity constant of the flux f given
by (5). The above result suggests that if the initial data do not contain non-
Lipschitzian increasing discontinuities then the viscosity solution of (1) will keep
the same property. The same is true for entropy solution of (3)-(4). Equipped with
(7), together with the global error bound (6) and the Lip*-boundedness (10), we
obtain the following pointwise error bound:

|u(z,t) —u(z,t)| < Cfe, for dist(z,S(t)) > Ve (11)

The basic idea of the pointwise error estimate in this section is as follows:
e Step #1: Set

E(z,t) .= (uf(z,t) — u(z,1))p(z, 1), (12)

where p is a suitably defined distance function to the shock curve = X (t).
We will also choose a suitable domain of smoothness, D, such that the
following differential equation holds:

Ei+h(z,t)E; — €Eyp = plx, ) E + q(z,t)e, (z,t) € D. (13)

Here h,p and ¢ are smooth functions in D.
e Step #2: The functions p and ¢ in (13) can be (uniformly) upper bounded
and bounded, respectively:

p(z,t) < Const., lg(z,t)| < Const., for all (z,t) € D. (14)

e Step #3: Let 0D denote the usual boundary for this domain of smoothness,
it will be shown that,

< .
(xgl)%)gD|E(x,t)| < Ce (15)
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The inequality (15), together with the maximum principal for (13)-(14), yield
|E(z,t)| < Ce, for all (z,t) € D, which in turn implies the pointwise estimate
[uf(z,t) — u(z, )| < Ce, for (z,t) away from the shock curve z = X(#).

In Step #1 mentioned above, the function F is a weighted error function
which is continuous for (z,t) € R x (0, T]. The key point in this step is to introduce
the distance function p, which satisfies p — 0 as dist(z,S(t)) — 0 and p ~ O(1)
when dist(z, S(t)) ~ O(1). The proof for Step #2 is based upon the interpolation
between the global Ll-error estimate and the LipT-stability that leads to a local
pointwise estimate. The proper use of the Lax entropy condition (9) is also crucial
in this step. The third step is dependent on the choice of the weighted distance
function, p.

We first consider the pointwise error estimate in the region # > X(¢). Let
e(z,t) := u® —u and set the weighted error

E(z,t) = e(z,t) ¢(z — X(1)).

Here, ¢(x — X (t)) is a weighted distance to the shock set. The function ¢(z) €
C%([0, c0)) satisfies

z%, if 0<zxl

o~ 10 105 19
with o > 1 to be determined later. More precisely, the function ¢ satisfies
#(0) =0, ¢'(z) >0, ¢(z) <z for z>0; (17)
z¢'(z) < ag(x), for z>0; (18)
|6 (2)| < Const, >0, (19)

e.g., ¢(z) = (1 — e~*)*. Roughly speaking, the weighted function behaves like
é(x) ~ min(|z|*, 1). Direct calculations using the definition of F give us

Ei+ f/(u®)Ey — €Eypy = (et + f(u)e, — ﬁem)qﬁ
I,
+ (— X'(t) + f’(uf)) ¢'e —2ed'e, —ede. (20)

Iz

For ease of notation, ¢ denotes ¢(xz — X (t)) in the remaining of this section. Tt
follows from the viscosity equation (1) and the limit equation (3) that

I, = (— f(uue + F (w)u, + GUM)QS
= —¢f'(&)(uf — u)uy + €Uz,
= —f'(O)uy F + eduyy (21)

where (and below) e denotes some intermediate value between —||uo]|oo and ||uo||oo-
Let us(t) = u(X(t) £0,t) and let

Is(t) = =X'() + f'(uy).
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Observing that v — uy = u,((1)(z — X(¢)), where {; is an intermediate value
between = and X (t), we obtain
L= (Is= Flu)+ £ () = Fu)+ F(u)) g'e
= el t e (o)(u—uy) + 0 (o)
! _ X t !

= (1n+ @) S B+ (e T g,
where in the last step we have used the fact £ = e¢. It is noted that e, =
(Ey — ¢'e)/¢. This, together with (20)-(22), yield the first desired result, (13):

where the coefficient of the convection term is given by

(22)

h(z,t) = f'(u®) + 26%, (23)
and the functions p := py + po and ¢ are given by
P =16 4 e (2 (21)
@ @ @
oo ) = = (0) e+ (ouatcn) (25)
o) = e — &' e (26)

We have then finished the Step #1.

Next we move to Step #2, verifying the boundedness of the coefficients p and
g inside a suitable domain. We now choose a proper domain of smoothness, D,
inside the region # > X(¢). Let

D::{(m,t) ‘ xZX(t)-I-Gl/Z,Ogth}. (27)

Using Lax geometrical entropy condition (9), uy(¢) < u_(t), and the convexity of
f, it follows that I3 is nonpositive

B(O) = X0+ )= [ [F) - £+ (-] as

_ /0 F(o)(1 = 8)d6 (uy — u_) < 0.

For (z,t) € D,z > X(t) + /¢, and hence by the property (18) of the weighted
distance function ¢ we have

i < _c <Ce Y2 for (x,t) € D.
o —ax—X() — ’ ’
The last two upper bounds, together with (11), lead to the following estimate for

P1

0<

P <04 Cet2e2 L Ceemt <€, for (z,t)€D. (28)
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By the property of ¢, (z — X(#))¢'(z — X(2))/¢(z — X(t)) < Const and the
regularity of u, |u,| < Const for all (z,t) € D, we obtain that p, is also upper
bounded. Again, due to the C2-smoothness assumption on u, ¢ is bounded in the
domain of smoothness, D. This completes Step #2.

Finally, we need to verify Step #3, upper bounding F on dD. We first check
that the maximum value for £ on the left boundary is bounded by O(e). On the left
boundary, we have # — X (t) = ¢*/2; hence by || < %, and by |e(z,1)| = O(e!/?),
we have

|E(z,1)] < ¢/ ?le(, )] < Ce*/? 2

Choosing & = 1, we have E(z,t) = O(¢) on the left boundary of the domain D. On
the right and the bottom of D, E(z,t) vanishes. This completes Step #3. Hence,
the maximum principal gives

|F(z,t)| < Ce, for (z,t) € D.

This implies that the weighted error u®(z,t) — u(z,t) ¢(x — X(¢)) is bounded by
O(¢), in particular for (z,t) bounded away from the shock curve £ = X(¢) we have
O(€) pointwise error bound. Similarly, we can show that the same is true when
(z,t) is on the left side of the shock. The argument can be extended when there
are finitely many shocks.

We summarize what we have shown by stating the following:

Theorem 2.2. Let u®(z,t) be the viscosity solutions of (1)-(2). Let u(z,t) be the
entropy solution of (3)-(4), and assume it has finitely many shock discontinuities,
then the following error estimates hold:

o For a weighted distance function ¢, ¢(2) ~ min(|z|, 1),

|(u® = u)(z, )|¢ (Jz — X(#)]) = O(e). (29)
o In particular, if (z,t) is bounded away from the singular support of u, then
[(u® — u)(z,t)] < C(h)e, for dist(z,S(t)) > h > 0. (30)

o Since the weighted function ¢(z) ~ |z|, it follows from (29) that
|(u€ — u)(x,1)| ~ edist(z, S(t))7?. (31)

This implies that the thickness of the shock layer is of order O(e).

3. The Lax-Friedrichs scheme
The Lax-Friedrichs (LxF) scheme is of the following form:

= %(U;H +o0) - %(f(v?H) — F7)). (32)
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It is well known that the truncation error of the LxF scheme is O(At?). This, and
the assumption that wu,, is uniformly bounded in the region » > X (¢), imply that
Uptt = S (U + U ) + S (PO - FUL)) = 0(a), (33

where Ul := u(z;,tn), z; = jAz,t, = nAt. We require that A := At/Ax satisfies
the standard CFL condition

Amﬁx|f’(v§1)| <1 (34)
For a fixed integer n, we define
J(n) = min{; ‘ 7y > X(t) + AtH4} (35)

The following lemmas are useful in obtaining our error bounds. However, due to
the limitation of space we will omit the detail proofs. They can be found in [7].

Lemma 3.1. For any given T > 0 and given integer m > 0, there exists a positive
constant C(m,T) > 0 such that

WP —UP| < C(m, T)AtY:, j>J(n)—m, n<T/At, (36)
where U := u(x;,t,), J(n) is defined by (35).

The above lemma is established by using Lemma 2.1, the interpolation be-
tween L and LipT estimates. The uniform LipT-bounds are obtained by Nessyahu
and Tadmor [5]. In the discrete case, the optimal L' error bounds for the case with
finitely many shocks are not available. The best result was obtained by Kuznetsov

[3]:
[|[v" = U™ = ZAm|v§‘—Uj"| < Const - At*/? (37)
J
With the above non-optimal L!-error bound, the order of the pointwise error bound

(36) is even less than 1/2. However, it will suffice to derive the optimal error bound
by a bootstrap argument.

Lemma 3.2. Let e} = v} — UL and

1
o :/0 (07, + (16", )d.
In the smooth reqion of u, the following result holds:
n 1 n n A ‘) n n i N
et §(ei+1 + e]»_l) t b (ey’+1 - e]»_l) = AT} +O(AF?), j > J(n),
(38)
where the term T7 can be bounded by

|T7| <C (|e.?+1| + |e,?—1|) . (39)
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The above lemma is established by using Taylor expansions. The main part
of our error analysis is to estimate

Er 1(E+1—|—E" )—I—)‘p] (E]"+1 E]”_l), i>J(n), (40)

where E? = ¢(z;—X(tn))-€}, ¢ is given in §2 (with o = 3). Let ¢7 = ¢(z; — X (,))
The followmg facts will be used frequently

{ ¢Puy = 07 + Az(8")} + O(Az?),

Q71 — 207 + 971 = (¢>H) Az? + O(Az?).

(41)

The following Taylor expansion
¢"+1 o7 — AtX’(tn)(qS’)? + O(Az?).
together with Lemma 3.2, lead to
Ef*E — (E i+ B ) + 505 (Ey+1 Ey’—l)
n ! nn 1 n n A (i n n
(¢j — AtX'(t,) (¢ )j + O(Az )) (§(ej+1 + ej—l) - 5/’;’ (@j+1 - ej—l)
+ALT; + O(Atz)) - _(E'+1 + E; 1) + PJ (E]-I-l Ej—l)

¢n J+1 ¢n n
E™ ;
2¢7+1 ok T, ¢.7— -

A n n 7‘7.1 n n
20 (Bl = By ) = AL ()67 5 (e +e1y)

A n .n n n n
—|—§AtX’(tn)(¢’)j p7 (e, — ef_1) + T O(At) + O(At?) .

- §¢?P?(@?+1 - e?—l) (42)

It follows from (41) that
5%’ pi(ef —ef_y)+ P] (E]+1 Ej—l) = —5% pi(elys —eji_y)
A (] n n n n n n
+4; [ej+1<¢j + Ax(qa')j )= e (87 — Aa(s))])] +O(Az?)
(] 7741
= At Pj (¢/)j 5(

where in the last step we have used the fact AAz = At. This result, together with
(42), lead to

el e+ O(A#?).

1 A
Ef*E — §(E}L+1 +Ej- 1) + 505 (Eyn+1 E}‘_l)

= L+J+DL+J+1I3-J3+ TFO(At) + O(At?) (43)
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for j > J(n), where

11—¢ _¢J+1, J1=L_n ?_1;
2¢.7+1 2¢'
At (¢')7 , n At (¢')7 ) n
L= ¢>7+1( X'(t)+0}), To= X (= x't) + )
nn nn
= Aaexe) Ol T = 2aex () O0 e
2 T4 2 ¢
It follows from (43) that
. 1A, . 1A,
Ert = (S-St 4 bt l) B+ (54 500+ 0
+72 = J3 ) EP_, + T} O(AY) + O(AF?), (44)

for j > J(n). We can further show that for j > J(n),

L+J <CAt¥? [, <CAt, Jy<CAt, Is—Js<CAt3¥?,
(45)
|| < O(AY) 1] SOARY),  k=1,2,3.
It follows from (34) and the fact f” > 0 that
A max|p§~‘| < 1. (46)

This and the last two inequalities of (45) imply that the coefficients for E7,, in
(44) are nonnegative, provided that At is sufficiently small. This result 1mphes
that from (44) and the first three inequalities in (45) we have

+1 2
B < (140AL) max [BP|+ OAM(|efys] + |efi]) + OAt

< (1 + CAt) max |E}|+ CAt* for j > J(n). (47)
j>J(n)-1
In other words, we have proved that
max [F74 < (14 CAt) max |E}|+CAE. (48)
ji2J(n) jzJ(n)-1

The above inequality is not an exact Gronwall type inequality. By using the infor-
mation on the numercal boundary j = J(n), it can be improved to the standard
Gronwall type inequality which yields
 max |ET| < CAt. (49)
j>J(n),0<n<N
This result implies that v} — u(z;,t,) can be bounded by CA¢t, if (;,1,) is on
the right side of the shock and is of any O(1) distance away from the shock curve.
Similarly, we can show that the same is true if (z;,t,) is on the left side of the
shock curve. The argument can be extended when there are finitely many shocks.
We summarize what we have shown by stating the following:
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Theorem 3.3. Let {v}'} be the solution of the Laz-Friedrichs scheme (32). Let
u(z,t) be the entropy solution of (3)-(4), and assume it has finitely many shock
discontinuities, then the following error estimate holds:

o For a weighted distance function ¢, ¢(z) ~ min(|z|3, 1),

|v.? - U(l‘j,tn)| ¢(|CL‘] - X(tn)|) = O(At) . (50)
o In particular, if (x;,t,) is bounded away from the singular support, then
o7 — u(z;,t")| < C(h)At,  dist(z;,S(tn)) > h > 0. (51)
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