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LOCAL ERROR ESTIMATES FOR DISCONTINUOUS SOLUTIONS
OF NONLINEAR HYPERBOLIC EQUATIONS*

EITAN TADMOR!

Abstract. Let u(z,t) be the possibly discontinuous entropy solution of a nonlinear scalar
conservation law with smooth initial data. Suppose uc(z,t) is the solution of an approximate viscosity
regularization, where € > 0 is the small viscosity amplitude. It is shown that by post-processing the
small viscosity approximation ue, pointwise values of u and its derivatives with an error as close to
€ as desired can be recovered.

The analysis relies on the adjoint problem of the forward error equation, which in this case
amounts to a backward linear transport equation with discontinuous coefficients. The novelty of our
approach is to use a (generalized) E-condition of the forward problem in order to deduce a W1->°-
energy estimate for the discontinuous backward transport equation; this, in turn, leads to e-uniform
estimate on moments of the error ue — u.

The approach presented does not “follow the characteristics” and, therefore, applies mutatis
mutandis to other approximate solutions such as E-difference schemes.

Key words. conservation laws, viscosity approximation, one-sided Lipschitz continuity, post-
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1. Introduction. Consider the scalar, genuinely nonlinear conservation law

(11) 2 e, 0]+ [ (ule, )] = 0.
It is well known, (e.g., [8]), that (1.1) may admit many possible weak solutions.
To guarantee uniqueness (and in fact L!-stability), we therefore have to restrict our
attention to a subclass of possible weak solutions. Namely, we select weak solutions
of (1.1) which are realizable as small viscosity solutions of

0 0 0?
1.2 a, LUe a. e\Ly =E&55 e(z,t))], ! .
(1) e 0] + 5[ uele )] =55 QQuc(m, )], <@ 10
With this in mind, we recall that u.(-,t) converges strongly in L' to u(-,t), where
u(-,t) is the unique, so-called entropy solution of (1.1). The L! convergence rate in
this case is upper bounded by

(1.3) lue(,t) — u(-,t)|| L < const.\/e.

Consult [6] and [12] for the discrete analogue of monotone difference schemes and [14]
for spectral viscosity approximations.

We are not satisfied with this error estimate for two related reasons.

1. Ideally, we would like to recover the entropy solution u(z,t) within O(e) error.
Although the estimate (1.3) is sharp, it fails to do so because of the following reason.

2. The error estimate (1.3) is a global one, while in many practical cases we are
interested in the local behavior of u(z,t). Consequently, when the error is measured
by the L'-norm, there is a loss of information due to the “poor” resolution of shock
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892 EITAN TADMOR

(and, in the general case, also contact) waves in u(z,t), by the corresponding viscous
layers in u.(z,t).

In this paper we are concerned with the local convergence rate of the small vis-
cosity solutions u.(z,t) towards the entropy solution u(z,t). Assume that initially,
at t = 0, the initial conditions of the small viscosity problem wu.(-,0) are consistent
with smooth initial conditions of the conservation law (1.1). Then for any ¢t > 0 we
show, in §4, that by post-processing the small viscosity solution u.(-,t), we can re-
cover pointwise values of the (possibly discontinuous) entropy solution u(-,t) and its
derivatives, with error as close to ¢ as desired. It should be emphasized that our ap-
proach does not “follow the characteristics” and therefore could be extended to certain
discrete approximations for nonlinear conservation laws such as E-difference schemes
[10]. Indeed, the present study was originally motivated by recent numerical experi-
ments reported in [17]. By post-processing of spectral viscosity (SV) approximations
[16], we were able to recover the pointwise values of discontinuous conservative solu-
tions with spectral accuracy, in agreement with the formally spectrally small viscosity
regularization of the SV method.

The paper is organized as follows. In §2 we study linear transport equations
with possibly discontinuous coefficients. We show that these discontinuous transport
equations are well posed in W1, provided their coefficients are one-sided Lipschitz
continuous.

Such (backward) transport equations arise as the adjoint problems for the forward
error equation governing the difference u. — u. The coefficients of these backward
transport equations are indeed upper-sided Lipschitz continuous, in view of Oleinik’s
E-condition which characterizes the entropy solution. This enables us, in §3, to derive
e-uniform estimate on the Wlf)’:"—moments of the error u. — u, which in turn, leads
to the local recovery of the entropy solution discussed in §4. Finally, we note that
our W-* upper bound on the moments of the error provides an independent one-

loc
dimensional proof of the usual O(+/¢)—L!-convergence rate mentioned earlier in (1.3).

2. Linear equations with discontinuous coefficients. In this section we
study the linear transport equation

0 0
(2.1) 59 0] +a(z,t) 5[, )] = 0,
subject to prescribed initial conditions

(2.2) ¢(z,t = 0) = ¢o().

Assume that the initial data, ¢o(x), are Lipschitz continuous. The standard the-
ory tells us that if a(-,t) is sufficiently smooth, say C!, then there exists a unique
generalized solution ¢(,t) of (2.1), (2.2), which remains Lipschitz for all time,!

(23) 6(,t)llLip < constr - [|¢o()llLip, T <t <T.

The key issue that we address in this section is, roughly speaking, the following
question. What is the minimal degree of smoothness required from a(-,t) in order to
retain the Lipschitz continuity of the solution ¢(-,t) in (2.1)? The answer provided
in our next theorem is the heart of the matter.

1 We use the notation, |@|lLip = ess sUpg»y [(6(2) — ¢(¥))/(z —y)|, and ||Blywieo =
max (||@llze, [|pllLip)-
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THEOREM 2.1. Consider the linear transport equation (2.1) with Lipschitz con-
tinuous initial data (2.2). We assume that

(i) (Uniform boundedness.) a(z,t) is uniformly bounded.

(ii) (OSLC.) a(z,t) satisfies the following one-sided Lipschitz condition:

(2.4) L7 [a(-,t)] = ess inf (M) > —m(t), m € L0, T).
THY r—y

Then for t > 0, there erists a unique Lipschitz continuous solution, ¢(z,t), of (2.1),

(2.2), such that the following estimate holds:

t
@25) 60,8l < o) lwroe - MO, M(t) = /0 m(r)dr, t>0.

Before we turn to the proof of this theorem, a couple of remarks are in order.

1. Theorem 2.1 allows the coefficient a(-, t) to be discontinuous; in fact, increasing
jumps are permitted. The OSLC assumption (2.4) requires only the decreasing part
of a(+,t) to be Lipschitz.

2. Theorem 2.1 asserts that the transport equation (2.1) is well posed only for
positive time. In general, the linear hyperbolic equation with smooth coeflicients is
a prototype of reversible process. However, since in our case the augmenting OSLC
assumption (2.4) is irreversible, so is the final conclusion of the theorem. Indeed,
simple counterexamples can be constructed (see below), which demonstrate that the
backward solution ¢(-,t) may cease to be Lipschitz in a finite negative time ¢ < 0.

Proof. The proof consists of the usual three steps of regularization, a priori energy
estimate, and compactness arguments.

Step 1 (Regularization). Let (s(z) = }((%) be a standard positive C§°-mollifier
with unit mass. We regularize a(-,t) by spatial convolution, as(-,t) = a(:,t) * (s, and
consider the regularized equation

(2.) 2 6o(a, ) + as(@ 0 5 Bs(2,0] =0, £20,

(2.7) ¢s(z,t =0) = dos(z),  Pos = o * Cs-

Since we now have a smooth and uniformly bounded coefficient as(-,t), there exists a
classical C* solution ¢;5(-,t) of (2.6), (2.7). Since this solution propagates with finite
speed, a further approximation by truncation (which is omitted) can be used, so that
we may restrict our attention to the compactly supported case where ¢s(-,t)eC§°.
Clearly, we have

(2.8) l#s(-, )L < lldo(-)llLoe-

Step 2 (Wl ™-energy estimate). We want to show that O¢s/0z is uniformly
bounded with respect to z,t, and §. To this end we shall carefully iterate on the
LP-norms of (8/0zx)¢s(-,t). Differentiation of (2.6) implies that

0 0 9
&["/’6(37, t)] + %[(I&(.’L’, t)1/}6(x’ t)] =0, ¢'6 = %7

or, equivalently,

(2.9) %[’l/ag(:ﬂ, t)] + as(z, t)%[’lﬁg(x, t)] = —%[ag(x, t)]’(/}g(x,t).
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Integrating (2.9) against p’l/)g_l, p even, over the compact support, we find

GO + [ astet) - W@ 01 do = p [ - laa(a, 01wz, 0) o,

and after further integration by parts on the left we arrive at

(210) G0l = 0= 1) [~ las(e, Dlfa,1)da.

T

We now invoke the OSLC assumption on the coefficient a(-,t). Since (s was chosen
as a positive mollifier, as = a * (5 satisfies the same OSLC (2.4), namely,

i)
. - < t).
(2.11) 55 26 (@, )] < m(?)
Inserting this into the right-hand side of (2.10) yields for p even

(2.12) d%“%(',t)”’ip < (0= Dm(@)l1bs (-, )L

Therefore,
(2.13)

-1 t
(s D)llze < [ds(-+t = O)]] 2o - exp (EP—M(t)) M@= [ man, t>0,
0
and by letting p T co we conclude

. eM(t) S ”¢0(')”Lip N eM(t), t>0.
Leo

(2.14) ”(%%(-,t)

0
’a%a(‘)

<
Loe

Since a (and likewise as) is assumed to be uniformly bounded, we can use (2.6) to
upper bound the temporal derivative as well,

0
@19) | gostet)| < laCoolm - lnlun O, >0
Leo
Step 3 (Compactness). By (2.14), (2.15), the uniformly bounded family {¢s}
is equicontinuous—in fact equi-Lipschitz, and shares a common compact support.
Therefore, we can extract a subsequence, still denoted by ¢s(z,t), which converges
uniformly to a Lipschitz limit function, ¢(z,t). We observe that

0 Fi] o
Efi’&(',t) — &d)(-,t) weak — * in L,

3} p)] e
%456(‘,":) - £¢(~,t) weak — * in L™,

as(-,t) - a(,t) strongly in L'.

Passing to the limit 6 | 0 in (2.6) we conclude that ¢(z,t) is a Lipschitz (generalized)
solution of the transport equation (2.1), (2.2). Similarly (2.5) follows from (2.8),
(2.14) and we are done. 0

Remarks. (1) The W1>-energy estimate revisited. Consider the LP a priori
estimates in (2.13). The case p = 1 (odd p’s can be justified by further approximation
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argument which we omit), leads to the usual bounded variation (BV) contraction
of the solution operator associated with (2.6). The proof of Theorem 2.1 hinges on
the observation that with the help of the OSLC assumption (2.4), we can iterate on
higher L? norms at the expense of an additional bounded (with respect to § ) exponent.
An alternative proof of this essential L> bound, (2.14), is provided by the following
duality argument. If a compactly supported As(z,t) solves the adjoint equation of
(2.6)

o o
E[Ag(z, t)] + %[a,s(x, t)As(z,t)] =0, t<T,
then As(z,t) = [ ® Xs(&,t) d¢ satisfies the backward transport equation
(216) 2 (Mol 0] + as@ ) Z(As(@ ) =0,  t<T
. ot s\ T, as\T, oz §\Z, — Y, > 4.

Integrating this against sgnAs(z,t), we obtain?—in view of the OSLC assumption
(24),

(2.17) A5 )llze > A6, 0)llzs - e~ ™), ¢t >0,

which is the dual estimate of (2.14).
(2) Characteristics. The transport equation (2.1) is governed by the evolution of
the characteristics

(2.18) & = a(z,t).

If a(,t) is at least Lipschitz continuous, then the ordinary differential equation (ODE)
(2.18) leads to a “nice” unique reversible flow. For our purpose, however, we need
less. Namely, in order for ¢(-,t) to remain Lipschitz for ¢ > 0, we have to guarantee
that while tracing characteristics backward in time, different characteristics are not
pulled apart. The OSLC assumption is sufficient to guarantee that (2.18) generates
such a “nice” Lipschitz flow backward in time. The following examples demonstrate
our point.
Ezample 1. We set

(2.19) a(z,t) = sgnz.

Then the Lipschitz continuous solution of (2.1) is given by

(2.20) ¢(z,t) = do((z =)™ + (z +1)7).
Ezxample 2. We reverse the sign in (2.19),

(2.21) : a(z,t) = —sgnr.

Now a(-) has a decreasing jump, and this case is not covered by Theorem 2.1. Indeed,
different forward characteristic solutions of

(2.22) T=—sgnzc

2 Boundary contributions from integration by parts can be neglected since As(,t) is compactly

supported and we can fix its primitive so that Ag(z,t) — 0.
Tr— 00
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may impinge one on each other at finite time. Hence, the hyperbolic solution trans-
ported along these characteristics cannot remain Lipschitz for ¢ > 0.
Ezample 3. We consider the equation

(2.23) z = (T — z)%, 0<a<l,

which is “solved” backwards (of course, the solution is not unique in this case), starting
with the final time T' > 0. Here, a(z) = (T —z)* fails to satisfy the OSLC assumption
(2.4), although the analogue one-sided Holder condition holds. Consequently, the
corresponding forward transport solution will be only Hélder continuous. In contrast
to (2.23), let us consider the case

(2.24) z=a(z), alz)=—-(T-2)% 0<a<l.

Although a(z) is only Holder (but not Lipschitz) continuous, the OSLC assumption
(2.4) is now fulfilled thanks to the judicious minus sign in (2.24), and the result of
Theorem 2.1 is valid.

In the next section we study the error equation associated with the conservation
law (1.1) and its viscous regularization in (1.2). The dual problem of such an error
equation leads to a backward transport equation like (2.1). For future reference we
therefore state the following theorem.

THEOREM 2.2 (The backward transport equation). Consider the linear transport
equation

(2.29) S 16(z,0)] +alz, ) o 6@ 0] =0, t<T,

with Lipschitz continuous data prescribed att =T,

(2.26) o(z,t =T) = ¢(z).
We assume that
(i) (Uniform boundedness.) a(z,t) is uniformly bounded.
(ii) (OSLC.) a(z,t) satisfies the following one-sided Lipschitz condition:

a@t) —aw)\ o p
pra— ) < m(t), € L'[t,T).

(2.27) L*[a(-,t)] = esssup (

z#y
Then fort < T, there exists a unique Lipschitz continuous solution, ¢(z,t), of (2.25),
(2.26), such that the following estimate holds:

T
(228)  llgC, t)llwree < 16C)llwre - M, M(2) E/t m(r)dr, t<T.

3. A priori estimate on moments of the error. We return to the scalar,
genuinely nonlinear (say, strictly convex) conservation law

(3.1) %[u(z,t)] + (%[f(u(z,t))] =0, t20, f'>a>0.

It is well known [8], [15] that the unique entropy solution of (3.1) is characterized by
Oleinik’s E-condition [11]
u(x7 t) — u(:‘/,t) < i’

3.2
(3.2) -y at

t>0.
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Later on we shall need a slightly stronger version of this E-condition—interesting for
its own sake, which is the content of our next result.

THEOREM 3.1. Consider the (possibly degenerate) parabolic regularization of
3.1),

63 Dpuela ]+ o fue(e )] = e Q@ )], 6@ 20
. at € ? ax € b - az2 € b b — .
Then the following estimate holds:

Lt (Q(uc(-, 0))]
+ BtLH[Q(ue (-, 0))]

f0)
Q')

8 = min > 0.

(G4 LY(Quel-1)] < 5

Proof. Let us first assume that Q' is strictly positive, so that the uniformly
parabolic equation (3.3) admits a smooth solution. Multiplying (3.3) by Q' (uc(z,t))
we obtain

(3.5) %[Q(ue)lﬁ%(ue) [Q(ue)] = eQ'(ue) 5 2[Q( Jl,  al)=f0).

Next we denote

0 o 0
(36) we(z,1) = 5o[Que(, )] = @ (ue) 5 uela, 1)
Differentiation of (3.5) with respect to z yields

ow, _EQ”(ue)w ow, a(us)
B+ o) <G | e+ G

By a standard regularization argument of the Heaviside function (which we omit),
(3.7) implies for w} = H(we)we,

wt " (ue w
(3.8) aate + [a(ue) - 6?2,((%))1115] aa;

The maximum principle shows that (3.8) is dominated by the Riccati equation

(3.7)

=eQ'(u E)a we.

0wt

ox2

:)2 < €Q’(u€)

2
gf [supw;"(z, t)] +8 [sup wi(z, t)] <0,

which in turn leads to (3.9),

1
+Q(ue (-, = supwl(z, —_——
L@ = sputled S =
(3.9) N
L [Q(u6(70))]
1+ BtLH[Q(ue(+,0))]

Finally, we treat the possibly degenerate case where Q' > 0. As in [18], we introduce
a further regularization where Q(u,) is replaced by Q°(us) = Q(ue) + 6u., and (3.4)
is then recovered by letting § | 0. 0

Remarks. 1. Theorem 3.1 covers the convective porous medium equation where

Q(ue) = |ue|Tue, v > 0.
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2. In view of the convexity assumption on f, we may set Q(us) = a(u.) and
obtain

L*[a(ue (-, 0))]
+ tL¥ [a(ue (-, 0))]

(3.10) L*[a(ue(, )] < 7

Since in this case (where Q'(u.) > a > 0),u.(z,t) converges strongly to the entropy
solution, u(z,t), of (3.1), the £ | 0 limit of (3.10) also gives us

L*[a(u(:,0))]
+tL[a(u(-,0)))

(311) L*la(u(, )] < 7

The a priori estimate (3.11), stated in somewhat weaker form, can be found in The-
orem 1 of [5]. It shows that the compact solution operator of the nonlinear problem
(3.1) tends to “linearize” the problem as a(-,t T co) = 0. As noted in [5], the in-
equality (3.11) requires f to be merely C', and is sharper than both Oleinik’s result
(3.2) as well as its generalization in Proposition 1 of [2] which apply to C? fluxes.

3. Theorem 3.1 implies, in particular, that the positive variation of Q(u.(:,t))
supported on any compact domain is bounded. Consequently, the total variation of
Q(ue(-,t)) over such domains is upper bounded by

L¥[Q(ue(-,0))]
1+ BtL¥[Q(ue(-,0))]

ma.xQ' ] L+[a(ue('70))]
mina’ 1+ tLt[a(ue(:,0))]’

“Q(us(, t)) ”BV < constg
(3.12a)

< constg

where constg equals twice the size of supp Q(uc(-,t)). We note that (3.12a) holds for
BV initial data, u.(-,0), over arbitrary domains (with a different coefficient consty),
namely,

(3.12b) 1Q(ue(-,1)llBv < max Q' - [lue (-, 0)||Bv-

Equipped with Theorem 3.1, we now turn to the main of this section—the local
convergence rate of small viscosity solutions for uniformly parabolic equations

(313) luelz,] + 5 f(ueln )] =cpsQue@ ), 20, @2a>0.

0z?
The difference between u. and its entropy limit u,
65(.’1!, t) = U’e(xv t) - U,(.’L‘,t),

satisfies the error equation

(3.14a) gz[ee(x, £ + ;%[@(z, Bee(z, )] = 5%[Q(u€(z,t))], £>0,

where @.(z,t) denotes the mean-value

(3.14b) a.(z,t) = / a(€uc(z,t) + (1 — Hu(z, t)) dE.



LOCAL ERROR ESTIMATES FOR NONLINEAR EQUATIONS 899

We recall that Theorem 3.1 applies to both u.(z,t) and its entropy limit u(z,t). In
particular, in view of the strict convexity of @, (3.4) implies

(- 1 L+[Q(u€('>0))]
el < 0 g Qo (2%

and in view of the strict convexity of a, (3.11) implies

1 _ L¥a(u(,0))]
LT [u(,,t)] < = - - t>0.
o e A P CTO0)) M
Inserting the last two inequalities into (3.14b) and using the convexity of a(-,t) once
more, we find after little rearrangement the following.

PROPOSITION 3.2 (OSLC). The averaged convective velocity a.(z,t) given in
(3.14b) satisfies the OSLC

nL{

(3.15) L*[ac(-,t)] < m(t), m(t) = Tr et
0

Remark. The constants L < oo and n > 1 are given, respectively, by
(3.16a) L§ = max (L*[a(ue(+0))], L* [a(u(-, 0))]),
maxa’ - maxQ’
1 =7 TR
(3.16b) " mina’ - min Q'

Let us now form the dual problem of the error equation (3.14). This is given by
the backward linear transport equation

0 0
1 o LPel\dy _E y V) q [Pel\dy =Y t S Ta
(3.172) 2 e, )] + 32, ) 2 60, ] =0
with, say C§ data, independent of ¢ prescribed at t = T,

(3.17b) ¢e(z,t =T) = ().

Although a.(-,t) may—and in the generic case, will—be discontinuous, Proposition
3.2 tells us that Theorem 2.2 applies in this case; namely, by (2.28) we have

1+TL3“)" dgp
1+tLg dzx

We are now ready to proceed with our main result announced earlier.
We integrate the error equation (3.14a) against ¢.(-,t) over its compact support;
we integrate the adjoint equation (3.17a) against e.(-,t); their sum results in

) 0<t<T.
Lo

(3.18) 16 (-, H)lluip < (

(319 G600 =< s QM D))

Equation (3.19) governs the evolution of moments of the error. By (3.12b) and (3.18),
its right-hand side is upper-bounded by (here Ky = max Q' - ||uc(-,0)||sv/L{)
(3.20)

o (10t )] 6ute0)

IN

ellQCuc (- )l Bv lIde (-, 1) lLip

dé

(LTI
EKO L dz

SO+ tLE)m

IA

0<t<T.

)

Loo




900 EITAN TADMOR

The last estimate is, of course, invariant under translations of the prescribed data
¢(x) in (3.17b). Therefore, temporal integration of (3.19) together with (3.20) yields
the following result.

THEOREM 3.3. Let u(z,t) and uc(z,t) be the entropy solution and the corre-
sponding viscosity solution of (3.1) and (3.13), respectively. Then there ezist constants
Kt >0 andn > 1 such that for any C3-function, ¢(z), the following estimate holds:

d¢

(321) ||ue(’T)*¢_u(’T)*¢”L°° < KT dr

L= [5 1 [ .00 - u(-,0)>||u] .

Here,

1+TLH)In(1+TL), n=1,

Kr=Kg- 1
T 0 T’_]_(1+TL3-)1” 'I']> 1.

The dependence of the error estimate (3.21) on the initial data, u(-,0) and u.(-,0), is
reflected by the following two quantities:

(1) The Lip' size of the initial error. Of course, in order to obtain the desired
O(e) convergence rate, we shall need a rather weak consistency assumption in this
direction, requiring

(3.22) |lue(:,0) — u(-,0)||Lipr < const - e.
(2) The one-sided Lipschitz size of the initial data, measured by
L§ = max (L*[a(uc(,0))], L*[a(u(:,0))).

We restrict our attention to initial data for which Lg is finite, i.e.,

_ + _ +
(3.23) ess sup (ue (2,0) — uely, 0)> ,esssup (w) < const.
z#y -y z#y -y

In other words, (3.23) assumes general initial data as long as they do not contain
non-Lipschitzian increasing discontinuities; in particular, arbitrary C* initial data are
permitted. It would be desirable to extend our result to arbitrary BV initial data.
In this context, the reader is referred to [4] for an almost optimal convergence result
for the case of monotonically increasing initial data, corresponding to n = 1 and
L =e1in (3.21).

We have shown the following.

THEOREM 3.4 (Uniform estimate on the moments). Let u(z,t) and u.(z,t) be
the entropy solution and the corresponding viscosity solution of (3.1) and (3.13) re-
spectively. We assume that

(a) The initial viscosity data, uc(-,0), is consistent with the initial entropy data,
u(,0), in the sense that (3.22) holds.

(b) The increasing part of the viscosity and entropy initial data is Lipschitz, i.e.,
(3.23) holds.

Then for any T > 0, there exists a constant K = K(T) such that for all C§-
functions, ¢(x), we have
d¢

(3.24) lue(-;T)* ¢ —u(-,T)* p|lpo < K -£-

Loe
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Remark. Theorem 3.4 suggests Lip’ as a possible weak topology to study the
convergence of u.. Lax [7, p. 191] used a similar setup to prove convergence (without
a rate estimate) already in 1954.

The estimate on the moments of the error in Theorem 3.4 can be converted into
an L! error estimate at the expense of “losing” an additional factor of V€. This results
in the usual O(4/€) L'-convergence rate in agreement with [6] and [12]. We close this
section with the following corollary.

COROLLARY 3.5 (LP-error estimate). Assume that the conditions of Theorem 3.4
hold. Then for any T > 0 and p > 1 there exists a constant K (which depends on T
and (p — 1)/p, but otherwise is independent of €) such that

(3.25) lue,T) = u(, Tz S K -6,  p>1.

Proof. Let {(z) be a C} function with unit mass. For any compactly supported
0 y Y
¢eL>® we consider

1 /-
(326) e T)xp=el- T xds+e(T)x(6—0s)  d6=0+3(;5)-
By Theorem 3.4, the first term on the right does not exceed

d
I P T e

< const. - ||| oo -
Lo 6

By (3.12), u.(:,T), and likewise, u(-,T’), have bounded variations, and hence the
second term on the right-hand side of (3.26) is upper bounded by

(3.28)
ee('7T) * (d’ - ¢6)

/ ec(y, T)(- — y) dy

- /,, . T) [ o —y-23¢(5) deay

_ / [ / lec(®, T) — ee(y — %, T)]$(- — y) dy] 5¢(5) &=

const. 8||P|| e -

INA

Inserting (3.27) and (3.28) into (3.26), we obtain

(3.29)

/z e(z, T)p(z) dz

< const. (% + 6) ||l oo

Choosing the free parameter § ~ /¢, (3.29) with truncated ¢ = e2~1(-, T) yields
(3.30) lec(-, )11, < const.v/ellec(-, T)|IZ,

and the result (3.25) follows. 0
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4. Local error estimates. In the previous section we proved that the error
between W'li’cw-moments of u. and the corresponding I/Vli’:"—moments of u is of order
€. In this section we show that given u., we can use its moments in order to recover
pointwise values of u (and any of its derivatives) with an error as close to ¢ as desired.

The idea of such recovery technique is not new. The reader is referred to Mock and
Lax [9] who post-processed difference approximations in order to recover accurately
the pointwise values of discontinuous solutions for linear hyperbolic equations. Their
approach was later extended in [1] and [3] to include spectral and pseudospectral
approximations for such equations. We shall give a bird’s eye view of both approaches
to the post-processing technique in the present context of nonlinear equations.

Assume that u(-,T) is smooth in some fired 6-neighborhood of z, say

(4.1) u(-, T)eCP(z — 0,z + 6), p>1.
Let ¢(z) be a C§° function supported on the (-1,1) interval such that
1 1
(4.2) / o(z)dx =1, / *p(x) = 0, k=1,2,---,p—1
-1 -1

With ¢5(z) = 56(§), where 6¢(0,0) is a free parameter to be chosen later, we have

(4.3) (u(:-, T) * ¢s)(z) — u(z, T)| < glkﬁllu Nul, T)lwe. z—6,0+6)-

The error bound in (4.3) can be made small in two ways: by decreasing 6—the size
of supp ¢s, as was done in [9]; and by increasing p—so that further cancellation due
to the oscillatory behavior of ¢ occurs, as was done in [3]. We shall sketch the details
of both ways.

By Theorem 3.4 we have

(14) |(we(,T) » 9)(@) — (u( 1) » o)) < K || 25 < k. £ [|92
Lo L

We now have two types of error estimates: mollification in (4.3) and approximation
in (4.4). If we choose the free parameter § as

c 1/(p+2) )
— - - p = .
(4.5) 6=20 (1 T |u(p)|loc) ) Iu |loc = ”u( 7T)“W"‘°°(E—9yz+9)’

then the contribution of the two error terms is of the same order and (4.3), (4.4) yield
(4.6) |(ue (-, T) * ¢6)(z) — u(, T)| < consty, - (14 |uP|1pc) 2/ P+2) . P/ (P+2),

Thus, the ¢s-moments of u, (-, T') recover the pointwise values of u(-, T') with accuracy
as close to € as the local smoothness of u(-, T) permits.

The estimate (4.6) makes use of a dilated localizer ¢(z) whose support lies in the
interval (—1,1). If, instead, we choose the support of ¢(z) to lie in, say (0,1), then
(4.6) holds with |u(P)|,. restricted to [z+,z+0), i.e., |uP|,c = lu(-, T) lwe.oo (z+,2+6)-
Thus we are able to recover pointwise values of u(-,T') up to the discontinuity.

In a similar manner, we can recover any spatial derivative of the entropy solution,
(8¢ /08z°)u(-,T). Indeed, Theorem 3.4 gives us

(4.7)
8° 0° d**'¢s
K?us(-,T) * d),s) (z) — (%u(,T) * ¢6) (r)] £ K-e- Az ||
< k._£ . |&re
= §s+2 dxst1 Loo
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Hence, by choosing

€

S (p+s)
1+ [u@+ )10 ™ lioc

1/(p+s+2)
) = ”u("T)”W"‘*""“’(z-&—G supp ¢)»

(4.8) 5=o<

we obtain a generalization of (4.6) to higher derivatives, which we summarize in
Theorem 4.1.

THEOREM 4.1. Assume that the conditions of Theorem 3.4 hold. Then if we
choose ¢s(x) as described above in (4.2), (4.8), the ¢s-moments of (0°/0z*)u.(-,T)
recover the pointwise values of u(-,T) and its derivatives, and the following estimate
holds:

(4.9) (L5 ue(,T) * ¢s) () — Zou(z, T)|
< const, - (1 + |u(p+3)|loc)(3+2)/ (p+s+2) | gp/(P+5+2)

Next, let us consider the case of smooth initial data u(z,0) € S. Then, there
exists a dense subset of S such that the corresponding entropy solution of (3.1) (with
C* convex flux f) is piecewise smooth [13], and we are able to recover the pointwise
values of (0°/0z°)u(z,T) with error as close to € as desired, if we take p large enough
in (4.9).

We close this section with a brief description of the spectral post-processing tech-
nique [3] which enables the pointwise recovery of u(-,T) and its derivatives.

We restrict our attention to the case (4.1) where the symmetric interval (z+6,z+
0) is free of discontinuities of u(-,T). Let {(z) be a C§°(—1, 1) function, normalized
such that

(4.10) ((z=0)=1,
and we set

T

@) on@=1c(E)ox(Z),  Da@= 0D

2t sin %6
We note that in this case the support of the regularization kernel ¢x(z) is kept
fixed. Instead, by increasing /N, we obtain a highly oscillatory kernel whose monomial

moments satisfy (4.2) modulo a spectrally small negligible error.
Standard error estimates for the truncated Fourier projection Sy give us [3, §3]

(-, T) * ¢n)(@) — u(e,T)| = [(I - Sn)[ulz—0:,T)() - u(z, T)](0)|

(4.12) n N
< consty - = [lu(, T)lweee (o-0,2+0)-

Applying Theorem 3.4 with ¢ = ¢n we find

(413) |(ue(-,T) * dn)(z) — (u(-, T) *dn)(z)| < K - €- H%ﬂg— < const - £ - N2,
Loe
Hence, by choosing
w® |10 1/(p+2)
@ N~ (B Ol = D lwem e

we recover from (4.12), (4.13) the local error estimate we had in (4.6), namely, we
have

(4.15) (e (-, T) * 6n) (@) — u(z, T)| < const,, - [u® |2/ (P2 . gp/(+2),
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5. Concluding remarks. The results of §4 hinge on the a priori estimate of
the moments in Theorem 3.4, which, in turn, is based on the W' *®-energy estimates
for the OSLC satisfying linear transport equations studied in §2. In this section we
provide still another derivation of Theorem 3.4 which amplifies the direct linkage
between the OSLC and Theorem 3.4. To demonstrate our point we will concentrate
on the, say 2w, periodic case.

Let

(5.1) E (z,t) = /w ue(€,t)dg — /z u(€,t) d¢

denote the difference between the primitives of the small viscosity approximation,
Ue(z,t) = [ uc(€ t)dE, and that of the entropy solution, U(z,t) = JPu(é, t) de.
Integration of the error equation (3.14a) gives us

(5.2) 2 1B, 0]+ B, ) B2, 8] = e Qe ).

We shall now energy estimate (5.2) along the lines of our study of irreversible linear
transport equations in §2, compare (2.16). Integrating (5.2) against sgnE,, we obtain

d _ )
SNE Ol + [ aule )5 Bl )| do

x

(5.3) 5
—c / sen B (2, 1) - [Q(ue(, 1) do.
Integration by parts of the second term on the left-hand side of (5.3), together with

the upper bound of the right-hand side by the BV estimate of Q(u.(:,t)) in (3.12),
yields

d o ._
(5.4) E”Ee(Bt)“Ll < /.T 5{;[ae(m, t)] - |Ec(z, t)|dz + const - €.

Thanks to the judicious positive sign on the right, we may now use the OSLC (3.15)
to obtain

(5.5) |E(, )12 < m(t)||Ee(- 1) p2 + const - €.

a
dt
By integration of the last inequality we conclude—in agreement with Theorem 3.4—
that

(5.6) NU(t) ~ UG )lr <K-e,  0<t<T.

Using this we can derive L™ (and consequently, L?) estimate as follows. Let E.(z,t)
assume the Fourier expansion

(5.7) E.(z,t)= Y E(k,t)e*.

|k|<oo

By (5.6) we have

. 1 K
. < — . 1< — €.
(58) |Belh,t) < 5= |1Bel )l < 5
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Moreover, since both u.(-,t) = U (-,t) and u(-,t) = 5 2 U(.,t) are uniformly BV
(with respect to €), their kth Fourler coefficients decay like <|k|~!, and hence

(5.9) |E.(k,t)| < const— |k| > 1.

Ikl"”

Inserting (5.8), (5.9) into (5.7) we find

(5.10) IE(, )|l L < Z e+ ) const—
IkI<1/f lk|>1/ve

|k|2 < const+/e.

Standard interpolation between the L! error estimate in (5.6) and the L™ estimate
in (5.10) gives us our final result.

THEOREM 5.1. Assume that the conditions of Theorem 3.4 hold. Then for any
T > 0 there exists a constant K = K(T') such that

(5.11) NU(ot) = UG t)||lee < K -e®¥D/2 0 p>1, 0<t<T.
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