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RECOVERING POINTWISE VALUES OF
DISCONTINUOUS DATA WITHIN SPECTRAL ACCURACY

David Gottlieb and Eitan Tadmor

1. INTRODUCTION

Let f(x) be a bounded 2m-periodic function whose Fourier coeffi-

cients are given by
y 17 ike
£(k) = 5 [ £(y)e™ Ydy , o<k <o, (1.1)
-

It is well-known that whenever f 1is a smooth function, then its

spectral approximation - consisting of the partial sums

S f00 = B0 = [ EeX, (1.2)
|k|<N
converges pointwise to f(x). A typical error estimate in this case,
asserts that for any x in the domain we have

00 - gyl < cgllgl] N1, s> 1. (1.3)

Here and below, C5 stands for (possibly different) generic constant
bounds, and ||f]] (s) denotes the largest maximum norm of f and its
first s derivatives, the maximum taken over the whole domain.

. We thus see that the decay rate of the truncation error on the

left of (1.3), is restricted only by the degree of smoothness of the
function f . In this sense, the spectral approximation is termed to

be spectrally accurate. If, in particular, f is a Cw-function, the

truncation error is rapidly decaying, faster than any fixed (= indepen-
dent of N ) polynomial rate. Thus, the spectral approximation of c -
functions, enjoys the so called infinite order of accuracy; this is in
constrast to the usually slower convergence rate due to a fixed degree

polynomial accuracy.

Next, assume only the gridvalues fv = f(yv] are known, at the
2N equidistant gridpoints y = -m + vh , h = 2n/2N , v = 0,1,...,2N-1,

Invoking the trapezoidal rule, the (exact) Fourier coefficients in (1.1)

357
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are approximated by discrete sums of these known gridvalues

2N-1 ~-ikey
1 v
o) =5 ] fle , NgsksgN. (1.4)
v=0
The difference between the exact Fourier coefficients and their

discrete approximation is also known to be spectrally small
p -5
[£00 - ¥ | < C £l N, s>1. (1.5)

As a substitute to the (exact) Fourier coefficients appearing in the
spectral approximation (1.2), f(k) , let us use their discrete counter-
part, ?(k) . The resulting new approximation is found to be exact at

the gridpoints x = Y, In other words, we arrive at the trigonometric

intergolant(l).
L) = Ex) = |k|£; Froel® X | (1.6)

The two type of errors committed in this case - the original trun-
cation error in (1.3) padded with the aliasing errors in (1.5) - both
are spectrally small. Hence, if f is smooth over the whole domain,
then its pseudo-spectral approximation (1.6) is spectrally accurate

even in between the gridpoints
£ - ¥l < Cs]|f|](S)N'S+1 , s> 1. (1.7)

We also note that as in the spectral and pseudo-spectral cases
(1.3) and (1.7), similar error decay is obtained with higher derivatives
and in more space variables; the norm on the right hand-side of (1.3),
(1.5) and (1.7) should be "raised" accordingly. Moreover, if the func-
tion is in particular analytic, then the spectral accuracy is further
improved to be exponential: 1let 2n > 0 be the width of analyticity
strip with maximum modulus |]f]]n then an error bound of the form
Cn||f||ne_Nn follows, e.g. [7].

Unfortunately, the pointwise errors associated with the spectral or
pseudospectral approximations, suffer from the limitation of being
dependent on the smoothness of the function f over the whole domain
(real or complex), and not just on its local behavior in the neighbor-

hood of the point of interest. This dependence of the local conver-
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gence rate on the global smoothness, which is reflected by (though not
a consequence of) the error estimates (1.3) and (1.7), is indeed in-
herent in both approximations. That is, the roughness of the function
in one part of its domain, decelerates the convergence rate in the
smoother part of it. Most notably is the case of piecewise smooth
functions: not only that Gibbs phenomennn is recorded at points of
discontinuity, but in addition, the spectral accuracy is lost at re-
gions where the function is smooth.

In this paper we show how pointwise values of the function f(x)

can be recovered from the information contained in either its spectral
or pseudo-spectral approximations, so that the accuracy solely depends
on the local smoothness of f , that is, its smoothness in the neigh-
borhood of the point of interest x . If, in particular, f is in-
finitely smooth in that neighborhood, then the value f(x) is approx-
imated within infinite order of accuracy. Most notably, we rocover
pointwise values within spectral accuracy, despite the possible pre-
sence of discontinuities scattered 'in the domain,

For such pointwise recovery, we should dismantle the above local-
global coupling limitation, associated with the (pseudo-) spectral

approximations. To this end, we employ a regularization kernel which

is convoluted against the (pseudo-) spectral approximation in the
usual fashion. Our regularization kernel consists of the product of
two terms: first we introduce a cut-off function to localize the ker-
nel in the spirit advocated above; secondly, it is multiplied by the
spectral approximation of the delta function (= Dirichlet kernel), so

that spectral accuracy is guaranteed., Convolution with the resulting

kernel has then the effect of (locally) smoothing the spectral and
pseudo-spectral approximations.

The paper is organized as follows: in Section 2 we briefly dis-
cuss those fundamentals of Fourier summation which will be later
needed. Smoothing of the spectral approximation is described in
Section 3. In Section 4, we similarily treat the pseudo-spectral
approximation. It should be emphasized that the latter case, directly

involves only neighboring gridvalues, so that the construction of the

pseudo-spectral approximation can be avoided altogether. In other

words, (intermediate) pointvalues are recovered here, via a locally
supported yet spectrally accurate interpolation recipe. We remark

that more general orthogonal families - other than the treated above
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trigonometric one - can be used as well, to yield spectral smoothing:
the notable examples of Legendre and Tchebyshev are brielfy sketched in
Section 5. We conclude with numerical evidence which back up on theore-
‘tical considerations.

In [6], Mock and Lax have shown how to recover within polynomial
accuracy, pointwise values of discontinuous solutions to linear hyper-
bolic equations. They have employed a locally suppoerted unit mass
post-processing kernel with a finite number of vanishing higher moments.
Our spectral smoothing is motivated by Mock and Lax discussion- indeed,
our regularization kernel based on the Legendre spectral approximation
is intimately related to their kernel. Majda and McDonough and Osher
[5] on the other hand, extending their previous study [4] with regard to

the same problem, have employed a spectrally accurate smoothing proce-

dure by operating directly in the Fourier space. Our smoothing in the
real space rather than in the transformed one seems to offer more ro-
bustness, resulting from the use of physical space localization; the
latter is in fact the key element which enables us to apply our smooth-
ing procedure to pseudo-spectral approximations. Moreover, it is also
applicable in conjunction with orthogonal families other than the trig-
onometric one.

This work has been motivated by the numerical studies of (pseudo-)
spectral simulation of shock waves. However, in this paper we restrict
our attention to the level of approximation only; applications to P.D.E.

will be discussed elsewhere.
2. PRELIMINARIES ON FOURIER SUMMATION

Given a 2m-periodic function ¢ with Fourier coefficient
(k) = (Zn]'l IT“ ¢(y)e'1k.ydy , its spectral approximation ¢p(x) is
ik

. 5ol ‘f' ikey
® (x) ) o(y)e” dye
P Ix|sp 2 ln

m
- f 2(x=-y)D My 5 (2.12)

=T

here Dp(y) stands for the Dirichlet kernel

ikey _

sin (p+1/2)

1
2r "~ sin y/2 (2.1b)

=
~
‘=
—
n
31
0~
@

normalized so that it has a unit mass
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™
[ Ddy = 1. (2.1c)
-m

An (a' postriori) bound on the truncation error is given by

| T ew0e™ X« T IKISleca kIS < [loll gy T KT <
[k[>p [k[>p [k[>p
slloll ™™ s>, 2.2

in agreement with (1.3), taking (%,p) = (£f,N). Thus we have

m -s+1

[ e cenydy-00 | < clloll p™" s> 15 (2.3a)

-T
for later purpose, we quote here the special case x = 0,

1 -s+l

|f 2D, dy - ¢ (@ | < cllell(p™>, s> 1. (2.3b)

-

The above error bound is not the sharpest bound possible: let w( ; )

denotes the function's modulus of continuity, then Kolmogorov's result

yields an asymptotrially exact bound[z)
T /2
] oD (x-y)dy-0(x)| « BER T w(Z2;0%0)sinkde + o(p‘sw(la).
. p T ps 0 P p

(2.4)
Turning to the pseudo-spectral approximation, we have encountered the
additional source of aliasing errors, due to discretization of the
(exact) Fourier coefficients' integral. Invoking the aliasing rela-

tions, e.g. [3],

LIOIES) o (k+2jp) , pskep, (2.5)

J=-W

(2p equidistant point's interpolant is assumed). The aliasing errors

do not exceed

l20-800] « T lecke2ip)| < Ilol] gy~ ] lke2ip|™ <
i#0 340

< Cs||¢|](5Jp-S , s> 1, (2.6)
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in agreement with (1.5), taking (¢,p) = (f,N). Hence, the aliasing
error |¢[k) - %[k)l , k=-p,...,p , adds up to a contribution

similar to that of the truncation error, yielding in view of (2.5)

3 -000] | T 000X+ T ] + F1¥Cp¥@) <
P k|>p k|<p
ccllellp™t,  s»1, (2.7)

in agreement with (1.7), taking (¢,p) = (f,N). It should be noted,
(e.g. [3]), that there is no qualitative difference between the spectral

and pseudo-spectral approximations.
3. RECOVERING POINTWISE VALUES FROM THE SPECTRAL APPROXIMATION

In this section, we show how to extract highly accurate approxima-
tion to the point values of a discontinuous function from its first N
Fourier coefficients in regions where the function is smooth. The basic
idea is that these coefficients are moments of the functions and conse-
quently, integral of any smooth function against the spectral approxima-
tion is highly accurate with that against the function itself. We
therefore construct an auxilliary function such that when the spectral
approximation is integrated against it, the desired original point value
at a given point is recovered.

To do that, let p(y) be a c®-function vanishing outside the

interval (-m,m) and normalized to take the value one at the origin
p(y=0) =1 . (3.1)
We recall that the Dirichlet kernel in (2.1b) is given by
_ 1 ikey _ 1 sin (p+1/2)y .
DY) = 5 ]kl*zfp € I Tsin /D) ¢ (5.2)
multiplying the two we obtain

WIP(y) = JOLRON (3.3)

We now set as our regularization kernel
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WPy = oy PeTly) = e'lp(e'lyJDpte'ly) , (3.4)

depending on a yet to be determined free parameter 6 , 0 <6 <1,

Given the spectral approximation, fN , we smooth its value via

convolution with the above regularization kernel, computing

~

TrA
£ P00 = [ R Py (3.5)
-

In order to estimate the error, we decompose

-~

0,p _ (s 76,p p * 8,p - “8,p
fN * d’ - f= ( fN_ f) * le + (fN_ f) W’ ‘JJN } +
+ (£ % 9%P - p), (3.6)

The first term on the right vanishes in view of the orthogonality be-
tween the N-degree (trigonometric) polynomial wg’p and the truncated
sum fN - £,
~ !\e p
—f) * yo°P -
(Ey-8) ™ wy 0. (3.7a)

Thus we are left with two sources of error in this case: the truncation

error in the second term
0P = (BB * %P - i) (3.7b)
N B N N *

and the regularization error in the third term,

ROP = £ x 8P ¢ (3.7¢)
With regard to the truncation error Tg’p,Young inequality implies
p e, 9. P 0 ~0
G = 6FP - iDL« R I1P-0PI L Gusa)
and in the view of (1.3) we conclude that this term is spectrally small

e,
1972 |

1

(g6 * 0®P - 92D <

p 0,p -s+1
CsllfN-f|1L1||¢ 1I(S]N [3.8b]

A
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Turning to the regularization error, Re’p , we compute at a given

fixed point x

X+0m .
RGP = £ %Py - £ = [ £yne e A A dy -£(x) .
(x) x-0m 8 p o
(3.9a)
Changing variables y = E%ZL and making use of (2.1c), the regulariza-
tion error is simplified into
0,p - £ & ,8.p i 0,x
Rix) = £frypPx) - f(x) = [ o (y]Dp(y)dy (3.9b)
-
where the auxiliary function ¢e’x(y) is given by
6,X =
e’ (y) = f(x-0y)p(y) - £(x) . (3.9¢)

In view of the normalization (3.1), ¢B’x(y] vanishes at y = 0 , and
by appealing to the truncation error estimate quoted in (2.3b), we end
up with

0,
IR7:P|

(x)

T 40X 0,x ~s+1
I_{ ¢ T Myl < C e T p (3.94)

Added together, we have shown in (3.6) - (3.9) the following:

Proposition 3.1 (Main Error Estimate)

Let we,p be the regularization kernel (3.4). Fix a point x in

the domain, and set ée’x to be the auxiliary function in (3.9c).

Then, the following error estimate holds

|%N * 9Py - £(0)] < CS||f||.||¢9,P||(S)N—s+1 .

-s+1

8,x
e e l1o™ 11 yp

(3.10)
The following two lemmas whose technical proofs are postponed to

the end of this section, provide us with the necessary explicit bounds

on the two terms appearing on the right of (3.10).

Lemma 3.2

Let ws’p denote the regularization kernel in (3.4). The follow-
ing estimate holds

s+l

075 o] | gy (1em)** (3.11)

8,p
[ v [I(s] <
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Lemma 3.3
Let ¢6,x denote the auxiliary function in (3.9c). The following

estimate holds

8,x < s, . k
o™ 1 gy = #0710l gy _lyliizxsenln £ . (3.12)
Ogkss

Choosing p = NB , 0<B <1, we conclude from (3.6), (3.8b),

(3.9d) and the last two lemmas, the main result of this section, stating

THEOREM 3.4
Let f be a bounded 2m-periodic function with a given N-degree

spectral approximation fN . Setting the regularization kernel

B sin (NB + 1/2)y/6

0,N 1 -1
(y) = 7?5'9(8 y) sin (y/20) ’

] (3.13)

then for any x in the domain, we have the pointwise error estimate

-~ B _ N _ _
15 * v 0 - £ < csl]p]](s).NB[N.e s||fn'f||L1'N (1-p)s ,

+ Max |D*E(y)|-NBS) . (3.14)
y-XxX|g6érw
Ogkss

Choosing 6 = B =1 brings us back to the exactly same global error
estimate we had in (1.3). Taking R = 1/2 on the other hand, the
truncation and aliasing errors' contributions in (3.14) are balanced,
and we are led to the following:

Corollary 3.5 (Spectral Smoothing)

Let p(y) be a Czs—function, supported in [-m,m] and satisfy-

ing (2.1). Then, for any x in the domain, the value f(x) can be

recovered via the spectral smoothing of fN , which obeys the following

error estimate

N

£y * 42N - 2001 € cprllpl] g - IN-0T25 [[£]] +

+  Max ]Dkf(y]l]-n‘S+1 , s>1. (3.15)

y-x|<6m
O<kg2s
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In general, of course, the choices of the cut-off function, p , and
the RB-exponent, 0 < B < 1 , provide us with a whole variety of admis-
sible kernels, for which we have:

Corollary 3.6 (Infinite Order of Accuracy)

Let p(y) be a Cm—function, supported in [-w,w] and taking the

value one at the origin. Assume the function f is c¢® in the e-

neighborhood of a point x in the domain. Then the spectral smoothing

:ooB 1 m(x-y)
A B X+E . sin(N +5)————
0=¢/m,N _ 1 w(x~y)\ 27 g
fN * Y {X) - E _ I fN(Y)D( € } K Tl(}(—y) dY F)
y=X-¢ sin ——=
2e
0<B<1, (3.16)

recovers the function value f(x) within infinite order of accuracy.

Remarks
(i) Suppose f 1is known to be smooth in the asymmetric neighborhood
of x, (x - €L » X * eR) , 0 < Ep» ERE T . Let p be a ¢ -function

supported in the interval [—B_leL, e'leR] inside of [-w,7] , such
that p(y = 00 = 1 . Then a nonsymmetric version of the above spectral

smoothing reads

. B 1, X-Y
R B X+E . sin (N° + x)(=5~)
6,N 1 R X~ 5]
f N0 - g [ R RONED—— Sy, G
X—SL sin W
recovering f(x) within spectral accuracy. The case €, = €Eg = €= 8

coincides with Corollary 3.6.
(ii) The above error estimates concerning the spectral smoothing
%N * ¢B,p still enjoy the further flexibility in choosing different
s-orders in (3.10). This provides us with even further richness so as
to tune the different free parameters to yield accurate results.

As promised, we conclude this section with the following:

Proof of Lemma 3.2

With the regularization kernel we,p in (3.4), Liebnitz's rule
gives us

0,p -s-1 <
™ g g0 T He D O 4y <

-5-1 3 s .
<0 jZO (jllloll{s_j)llnpll(j) ; (3.18)

complemented by the maximum norm estimate
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1 j 1 j+1
||Dpl][]] g 71 iklgp Ikl Smp » (3.19)

the desired result follows
s+1 .
y -s-1 1 -s5-1 s+1
16021 <2 a5 T (53 lol 1 gyp < a7 Mol 1) o2 **
(s) j=0 * (3.20)
Proof of Lemma 3.3
Let @e’x{y) = f(x-0y)p(y) - f(x) be the auxiliary function in

(3.9c) with p(y) supported in [-w,m] . We observe that the only f-
values participating in the definition of ¢e,x are those from the
g7 neighborhood of x , |y - x| < 6=n . Applying Liebnitz's rule

restricted to that neighborhood, we find

5 .
0, B} X
o™ [1 gy & 1 Mol 505, Max  [D¥F]
j=0 Y‘X|Sﬁﬂ
O<kss-j

< (10)°[lo]] gyr  Max  [DECY)] (3.21)
y-X|<om
O<kss
as asserted.

4. RECOVERING POINTWISE VALUES FROM THE PSEUDOSPECTRAL APPROXIMATION

In this section we treat the case where the discrete gridvalues
fv = f(yv) are given, so that a peudo-spectral approximation ?N
collocating these gridvalues is uniquely determined, see (1.6). The
key -observation here is that the integrand }N(y‘)¢e’p(x—y') in (3.5)
is smooth over the whole domain, due to the kernel localization in the

neighborhood of the point of interest, x . Hence, replacing the con-
volution integral with an appropriate trapezoidal sum, only an addition-
al spectrally small aliasing error is committed. Thus, in analogy with
(3.5), we smooth the pseudo-spectral approximation via the convolution

Sul 2N-1 0.p
£ 2 Ply,) (4.1)

0

2 B o Py 2
N Lo Ny YW E N

I~

v

Observe that since ¢B,p is supported in the neighborhood of x , only

those neighboring gridvalues are taking part in the pseudo-spectral

smoothing.

The computed error at a fixed point x , amounts to
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2N-1
7Y £ % Plxyy) - £ =
v=0
: 2N-1
= [ 2T 0,p % 59:P « 195D
= (jﬁ vzo fvw (x—Yv) -f*y (x]) + (f ] (x) - f(x)) .

(4.2a)

There are two sources of errors in this case: the aliasing error due

to the use of the trapezoidal rule in the first difference

6 2 2N-1 6 8
AP L £ Py - £ 0P, (4.2b)
v=0

and as before, the regularization error in the second difference

RSP =g ox y8P g (4.2c)

The aliasing error estimate in (1.5]0 and the regularization error
estimate in (3.9d) yield:

Proposition 4.1 (Main Error Estimate)

Let ws’P be the regularization kernel (3.4). Fix a point x in

the domain and denote

P X(y) = £(y) v Px-y) . (4.3)

Also, let ¢B,x be the auxiliary function in (3.9¢). Then, the follow-

ing error estimate holds

2N-1 8,p I 8,p,X | -5
X UEO £ P(x-y)) - £00l s C I x5 )N+

-s+1 (4.4)

8,x
v C 162 | gy
We observe that the newly introduced auxiliary function xe’p’x[y)
is supported in the #8e-m-neighborhood of x , where Liebnitz's rule
yields

s
0, k
P ] gy € LI 5y Max D] 5 (4.52)
j=0 I |y-x] <om
O<kgs-j

invoking (3.11), the following bound is found
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158 PoX]| i(se'j”llll (1ep)*Ls M ln“f()lc
(s) ¢ 3 pll(j) (1*P) 2 NI s

-X
k
se(1+p)IipI|(s]- MTxe IDf()I( ) (4.5b)
y-X|s0m
O<ksgs

The last estimate on the aliasing part of the error, augmented with the
previously derived estimate on the regularization error in Lemma 3.3,

lead us to the main result of this section, stating:

THEOREM 4.2
Let f be a bounded 2n-periodic function with given gridvalues
v = f(yv) . Setting the regularization kernel
N ) L L ool sin (8¥e1/2)y/0 (4.5)
y 216 e Y sin y/26 ’ :

then for any x in the domain; we have the pointwise error estimate

IN-1 8
2T o,N
I L £ (xy) - £ <
v=0
cclloll » Max [DXE(y)|-INESTL 4 oSeNBanT (RIS gy
S S |Y'x <oT
0<ks<s

Taking B = 1/2 to balance the two error's contributions, we find:

Corollary 4.3 (Pseudo-Spectral Smoothing)

Let p(y) be a Czs—function, supported in [-m,m] and satisfy-

ing (2.1). Then for any x in the domain, the value f(x) can be

recovered via the pseudo-spectral smoothing of the neighboring grid-

values, fv , which obeys the following error estimate

2N-1
|21T E‘ F we l/i

v=0

2N (x'y“) - f(x)i <

2s s+1

< Cg] lpl](Zs)' Max ‘Dkf(y)1(l+e- ].N_ , s> 1. (4.8)

y—xiseﬂ
0<ks2s

In analogy with Corollary 3.6, we also have:

Corollary 4.4 (Infinite Order of Accuracy)

Let p(y) bea Cw-function, supported in [-w,m] and taking the

value one at the origin. Assume the function f is c” in the e-

neighborhood of a point x in the domain. Then the pseudo-spectral
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smoothing y exee 61 T(x-y,)

v° . w(x-yu)\sin(N tz)———

. p( e/ mlxy)
sin ——

0<B<1 (4.9)

recovers the function value f(x) within infinite order of accuracy,

In closing this section, we would like to emphasize another,
slightly more global variant of the pseudo-spectral smoothing, based on
integral convolution of the pseudo-spectral interpolant against the

regularization kermel

B B B

B B B
. (?N A ) . (f « 0N f). (4.10)

The first term is spectrally small due to the interpolation
error associated with the smooth regularization kernel as argued in
Section 2; by the exactness of the trapezoidal rule applied to (trigono-
metric) polynomials of degree < 2N , we have
B 2N-1 B
« v8,N° _ om 0,N°
Bt =& TN ey (4.11)
v=0

and consequently, the second difference is spectrally small as argued
above in relation to the aliasing errors. Finally the third difference

is the spectrally small regularization error.

5. CONCLUDING REMARKS

The above arguments also apply to other orthogonal families. In

conjunction with Legendre polynomials, we set as our regularization

kernel
6,
v Py

e“p(e'ly)xp(e‘lw ; (5.1a)

here p(y) is c>-function supported in the interval [-1,1] such that

p(y=0) = 1 , and Kp[y) stands for Legendre spectral approximation of
the delta function
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1
K (y) = E (k+3)P, (y)P, (0) (5.1b)
P k=0 27k k

normalized to have a unit mass
1
[ K (ndy = 1. (5.1c)
1 P

In view of the Christoffel-Durboux identity, we can rewrite

P 5 7 . (5.1d)

The resulting spectral smoothing via the above Legendre-type regu-
larization kernel was introduced in [1], and is intimately related to
Mock and Lax [6] post processing: indeed, we,p serves as a locally
supported kernel with vanishing higher moments and unit mass - modulo a

negligble spectral error.

Similarily, we can use Tchebyshev orthogonal expansion where

KP(y) in (5.1a) is replaced by

20 T (y)
Ko =2 § o= p (5.2)
P ™ k=0 pT

We note that the (pseudo-) spectral smoothing done with the Tchebyshev

kernel is not translated to the usual cut-off in the transformed space.

6.  NUMERICAL EXAMPLES

In this section we demonstrate the efficacy of the smoothing pro-
cedure outlined above. As a test function we have chosen the piecewise

C”-function

X
sin 5 0gxgn
f(x) = (6.1)
. X
-sin 1 mT <X <2

As before, denote its spectral approximation by %N(x) , and let %N[x)
be the pseudo-spectral approximation to f(x). It is evident from the
first column of Tables I and III that %N(yv) - the spectral approxima-
tion sampled at o™ vr/N - do not approximfte f(yv) within spectral

accuracy. In fact, the error committed by f128(yv) is only half of
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that committed by §64(yu] ; this is in accordance with a suitably
sharpened error estimate of type (1.3) - consult e.g. (3.4). Regarding
the pseudo-spectral approximation, ? (x) , it of course collocates the
exact values at the sampling gr1dp01nts, ¥ (y ) = f(yu) 5 yet, in
between these gridpoints, ¥ (yv+1/2 (v + 1/2)w/N) approximate
f(yu+1/2) within first order accuracy only, as shown in the first
column of Tables II and IV,

In order to construct our regularization kernel, we define the cut-
off function P(£) =p () to be

uEz
exp —— le| <1
P €) = &1 (6.2)
0 otherwise

namely pa(E) is a C -function whose support is the interval |g| < 1.
Our regularization kernel is now of the form (see (3.4))

P = o0 (67l sin51(£+;§§éy/8 (6.3)

The post proce551ng procedure of the spectral approximation f

involves convoluting f against ¢ °.p , namely

2m
1 p X-yy sin (p+1/2) (x-y)/e
£0x) ~ 2ne % fN(y)p( 3 ) sin (x-y)/26 dy (6.4
where x is a fixed point of interest. (In practice we use the trape-
zoidal rule to evaluate the right-hand-side of (6.4) taking a large
number of quaderture points.)

The parameter 6 was chosen as
6 = |K - T'l 3 (6.5)

this guarantees that ¥ is so localized that it does not interact with
regions of discontinuity,

It should be noted, in this stage, that if 6 was so chosen to be
the same for each x , (and not as in (6.5)), the formula (6.4) admits
a simpler form; that is, if
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Py = o™ (6.6)

k=-

then

kx

N . .
£x) v ] f(K)ope’ (6.7)
K

=-N
This procedure can be carried out efficiently in the Fourier space.
Next, we turn to the post-processing for the pseudo-spectral
approximation fN(x) which is simpler than (6.4). In fact, in this

case IN-1
2m 8,p
£(x) ~ 55 ) ?(y\,)w Tx-y) (6.8)
v=0

Note that carrying out the smoothing procedure defined in (6.8) does not
involve any extra evaluation of ?(y} in points other than Y, in
contrast to spectral smoothing procedure in (6.4). As before, the para-
meter O was chosen according to (6.5). We have yet to determine the

8 for

parameters p and o . The parameter p must be equal to N
0 <B <1 in view of (3.14), in order to assure infinite accuracy. (In
our computations B & .8). Finally we feel that o is problem depen-
dent and we chose o = 10. We have not tuned the parameters to get op-
timal results; further tuning may improve the quality of our filtering
procedure.

In Tables I, II, III, and IV we give the results of the smoothing
procedure at several points in the domain. The pointwise values are
now recovered with high accuracy. The first column in each table indi-
cates the points in which the procedure was performed. We limited our-
selves to four points in the interval (0,7) because of the symmetry of
of the function f(x) .

The second column gives either the spectral approximation %N(x)
or the pseudo-spectral approximation ?N(x) , N =128 in Table I and II
and N = 64 in Tables III and IV. The third column gives the smoothed
results, when filtered by (6.4) on (6.8), at the same points as in
column I,

The results indicate the dramatic improvement obtained by the
smoot?ing procedure. Moreover, note that the error committfd by ¥128
(or f128) is better than the one committed by ¥64 (or f64) only

by a factor of 2 , whereas after the post-processing the error
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improves by a factor of 104.

Table 1.

Results of smoothing of the spectral approximation of f(x), N = 128,

x, = 1 £(x,) - £y(x) | £ - £ * vl
v equals at x = X,
2 3.2 (-3) 5.8 (-10)
3 5.2 (-3) 7.9 (-10)
4 7.8 (-3) 6.3 (-10)
5 1.1 (-2) 1.1 (-10)

Table 1I7.

Same as Table I for the pseudo-spectral approximation %N(x).

Xy, = V%) £0x,,) - H0x,0) ] £ - ¥, * vl
v eauals at x = x
v+l
2 5 (-3) 7 (-10)
3 8.1 (-3) 7.9 (-10)
4 1.2 (-2) 6.4 (-10)
5 1.8 (-2) 1.2 (-10)
Table T1II.

Results of smoothing of the spectral approximation of f(x), N = 64.

x, =g [£(x) - £y(x)] |£ - £ * vl
Vv equals at x = x
v
2 6.4 (-3) 4.8 (-6)
3 1 (-2) 5.9 (-6)
4 1.5 (-2) 7.7 (-6)
5 2.3 (-2) 8.9 (-6)
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Table 1IV.
Same as Table III for the pseudospectral approximation, ¥h£§l.
Xoads %{U+%) lf(xv+%) - ¥N(xv+%)l £ - ¥N * vl
v equals at X = X5
2 1 (-2) 4,1 (-6)
3 1.6 (-2) 6 (-6)
4 2.4 (-2) 7.8 (-6)
5 3.6 (-2) 8.9 (-6)

7.  ENDNOTES

i The single and double primed summations indicate halving the first
and the last terms, respectively. It is used in this case to com-
pensate for the use of even number of gridpoints.

2

Referring to the convex case.
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