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Abstract
The emergence of large-scale structures in biological systems, and in particular the formation of
lines of hierarchy, is observed at many scales, from collections of cells to groups of insects to herds
of animals. Motivated by phenomena in chemotaxis and phototaxis, we present a new class of
alignment models that exhibit alignment into lines. The spontaneous formation of such ‘fingers’
can be interpreted as the emergence of leaders and followers in a system of identically interacting
agents. Various numerical examples are provided, which demonstrate emergent behaviors similar
to the ‘fingering’ phenomenon observed in some phototaxis and chemotaxis experiments; this
phenomenon is generally known to be a challenging pattern for existing models to capture. A novel
protocol for pairwise interactions provides a fundamental alignment mechanism by which agents
may form lines of hierarchy across a wide range of biological systems.

1. Introduction—emergent phenomena in
biological systems

Emergent phenomena in collective dynamics are
observed in a wide range of biological systems and
across different scales—from cells to bacteria, from
insects to fish, from humans to other mammals.
Accordingly, it has been a topic of scientific interest
in a wide range of disciplines, including biology, eco-
logy, physics, mathematics and computer science [1].
In this context, one is concerned with ‘active particles’
which consist of living agents (and likewise, certain
types of mechanical agents) equipped with senses
and sensors with which they probe the environment.
These are responsible for small-scale pairwise inter-
actions. The phenomenon of emergence is observed
when a crowd of agents, driven by those small-scale
interactions, is self-organized into large-scale forma-
tions: ants form colonies, insects swarm, birds fly in
flocks, mobile networks coordinate a rendezvous or
create traffic jams, human opinions evolve into polit-
ical parties and so on. Thus, with no apparent central
control or a built-in bias in the dynamics, the follow-
ing questions arise: where does this unity fromwithin

come from and what is behind the seemingly spon-
taneous self-organization?

Let ϕ(xi,xi) denote the amplitude of pairwise
interaction of agents positioned at xi and xj. Recent
studies of collective dynamics have identified differ-
ent classes of interaction kernels that play a decis-
ive role in governing the different features of their
emergent behavior [2–4]. These include metric ker-
nels depending on themetric distance between agents
[5, 6]

ϕ(xi,xj) = ϕ(|xi − xj|). (1)

Then there are topologically based kernels depend-
ing on how crowded is the region enclosed between
agents positioned at xi and xj, rather than their met-
ric distance [7, 8]

ϕ(xi,xj) = ϕ{#k : xk ∈ C(xi,xj)}. (2)

Further, we distinguish between the class of long-
range heavy-tailed kernels

´∞
0 k(r)dr=∞, expressed

in terms of their radial envelope [9, 10]
k(r) :=min{ϕ(x,x ′) : |x− x ′|⩽ r}, (3)
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and singular-headed kernels k(r) = r−β ,β >
0 [11–13], versus short range, compactly suppor-
ted kernels [14] k(r)≲ 1r⩽r0 . Our primary interest is
in self-organization that is independent of external
forces/stimuli; for a mathematical analysis of the lat-
ter see [15], for example.

1.1. Attraction, repulsion, alignment
One can classify three main types of pairwise interac-
tions that govern the emergent phenomena observed
in biological systems, namely attraction, repulsion
and alignment [16–18]. The first two main features
are attraction, which acts as a cohesion towards the
average position of neighboring agents, and repul-
sion, which steers to avoid collisions. These are famil-
iar from particle dynamics. A typical first-order
attraction–repulsion dynamics can be expressed by

ẋi(t) =− 1

|Ni(t)|
∑

j∈Ni(t)

ϕ(xi,xj)(xi − xj). (4)

Here, the agent positioned at xi interacts with its
neighbors atNi(t) := { j : ϕ(xi(t),xj(t)) 6= 0}, of size
|Ni|. Thus, with the pre-factor normalization in (4),
it can be interpreted as a local environmental aver-
aging of positions. Short-range versus long-range ker-
nels translate into local versus global neighborhoods.
Attraction and repulsion are dictated by the positive,
respectively negative, parts of ϕij = ϕ(xi,xj). The bal-
ance between attraction and repulsion is responsible
for the phenomenon of aggregation, where a crowd
of agents is self-organized into one or more large-
scale stationary clusters with an observable geometric
configuration. Different kernels ϕ(·, ·) lead to a great
variety of different limiting configurations. These are
observed in cell biology, with tissue formation (medi-
ated by cell-to-cell recognition and cell adhesion)
being the prototypical example [19]; cell aggregation
also plays a fundamental role in cellular differenti-
ation [20], proliferation [21, 22] and viability [22,
23].Wemention on passing the important role played
by aggregation in cellular viability, for example when
it is utilized in biofilms as a survival mechanism for
bacterial cells and for cellular adhesion in chemo-
and radio-resistance [24–27]. Aggregates of cells also
commonly coordinate their movement to collectively
migrate; prominent biological processes displaying
this behavior are wound healing and cancer inva-
sion [28], as well as chemotaxis and phototaxis [29,
30]. Aggregation is of course not limited to cells; thus,
for example, many species of insects (e.g. monarch
butterflies overwintering) and animals form complex
social structures for a diverse set of evolutionary reas-
ons [31].

A third main feature in emergent dynamics is
driven alignment—the steering towards the average

heading of neighboring agents. A typical second-
order alignment dynamics can be expressed by

ṗi(t) =− τ

|Ni(t)|
∑

j∈Ni(t)

ϕ(xi,xj)(pi − pj). (5)

Here, τ > 0 is a fixed scaling parameter and pi stands
for the velocity of the agent positioned at xi(t) [5, 6],
pi(t) 7→ vi(t) := ẋi(t), or its orientation [14, 32, 33],
pi(t) 7→ ωi(t) := vi(t)/|vi(t)| ∈ Sd−1. In a typical case
of long-range interactions in a crowd of N agents,
|Ni|= N, one can adjust to short- and long-range
interactions, replacing |Ni| 7→

∑
j |ϕ(xi,xj)| [34]. The

alignment encoded in (5) describes environmental
averaging of velocities/orientations. Alignment may
be either local or global, depending on the heavy-
tailed scale of the interaction kernel. Alignment gov-
erns the emergent phenomena of flocking or swarm-
ing, found in animal populations [35], in which
agents attempt to align their heading and/or speed
in a large-scale coordinated movement. Schools of
fish [36–38], flocks of birds [39–42] and herds of
animals [43] are some of the most well-known
examples. We mention in passing that the evolution-
ary roles played by flocking are diverse and species
dependent: examples include reproductive efficiency,
predation avoidance and route learning in migration
[44–46]. Flocking can manifest itself via synchroniz-
ation, in which pairwise interactions between agents
are coordinated in time into large-scale crowd oscil-
lations. Well-known examples include the frequency
of flashing of firefly lights [47], the ‘chorusing’ beha-
vior of some species of crickets [48] and the firing of
neurons [49]. Flocking occurs in behavioral contexts
as well, with consensus building being an emergent
phenomenon in opinion dynamics [50]. It is realized
on many different scales, from populations of cells to
populations of humans [51].

The full complexity of self-organization observed
in biological systems is realized when combining
attraction, repulsion and alignment. This was origin-
ally advocated in the pioneering work of Reynolds
[16] for realistic simulation of boids—birds-like
objects. Reynolds’ model remains one of the most
commonly utilized methods of describing collect-
ive motion, with extensions proposed to incorporate
the effect of pheromone signaling [52] and obstacle
avoidance [53], as well as a motivation for develop-
ment of particle swarm optimization [54]. The incor-
poration of social hierarchy via leadership has also
been explicitly incorporated into Reynolds’ rules for
boids using an additional steering force that allows
an agent to change the course of the flock based on
the agent’s position with respect to the flock [55]. We
note that although most boid models are presented
as discrete velocity update rules, they typically can be
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translated to either deterministic or discrete second-
order systems (see section 3.2).

A systematic framework for combining attrac-
tion, repulsion and alignment mechanisms is offered
by anticipation dynamics induced by a radial poten-
tial U, and acting at the ‘anticipated positions’ xτi :=
xi + τvi [56] (here we make the simplification of
long-range interactions |Ni|= N)

v̇i(t) =− 1

N

N∑
j=1

∇iU(|xτi − xτj |). (6)

Expanding at the small ‘anticipated time’ t+ τ, τ �
1, one finds

v̇i(t) =− 1

N

∑
j

ϕij(xi − xj)

+
τ

N

∑
j

Φij(vj − vi).
(7)

Here, attraction and repulsion are dictated by
ϕij := U ′(|xi − xj|)/|xi − xj|, and alignment is dic-
tated by the Hessian Φij = D2U(|xi − xj|), with a
scalar leading-order term ψij = U ′ ′(|xi − xj|). Thus,
for example, a standard U-shaped potential-based
anticipation dictates three-zone dynamics in three
concentric regions, ranging from interior repulsion
(U ′ < 0), through intermediate alignment where
U ′ ∼ 0 and surrounded with exterior attraction
(U ′ > 0). Such three-zone dynamics is encountered
in many models for flocking and swarming. For
example, many species of insects exhibit swarming
behavior in which their motion is self-organized
into approximately concentric trajectories, known
as milling, or vortex formation [57]. This enables the
insects to carry out specific tasks in the form of col-
lective intelligence. Examples of swarming include the
marching of locust nymphs [58, 59] and lane forma-
tion and obstacle avoidance in army ants [33].Milling
is most commonly associated with fish populations
during schooling and mating rituals [32, 60]. It also
occurs in cell clusters [61, 62], and less frequently in
ants during extreme conditions [63].

Finally, we note that although it is not a focus
of the present work understanding collective motion
for biological crowds has numerous applications in
the engineering sciences. Examples include mobile
sensing networks and the utilization of cooperative
uncrewed aerial vehicles [64–68].

1.2. A new collective model for fingering
Certain forms of emergent behavior can be classified
as possessing degrees of social hierarchy, where indi-
vidual agents conform to distinct roles. As with all
emergent behavior, hierarchy can arise across a vast
range of scales, from small groups of cells (e.g. in cell
migration [69, 70]), to colonies of insects [71], to
extraordinarily complex systems in vertebrates [72].

A well-known example occurring in bacterial motion
is that of fingering, which serves as a primary motiva-
tion for the mathematical model introduced in this
work. Fingering is a motility pattern that is often
observed in cell cultures and is characterized by
cellular populations, which initially undergo essen-
tially random and independent motion, forming
structured ‘finger-like’ protrusions from their ini-
tial homogeneous state [73–75]. These protrusions
indicate the emergence of social hierarchy via ‘leader-
type’ cells at the leading edge of the protrusions;
the remaining cells ‘follow’ in the paths determined
by leading cells, often in very straight lines [75].
Fingering is most closely associated with popula-
tions exposed to optical gradients (phototaxis), but
is also observed in wound healing, where cellular
communication is determined primarily via chem-
ical (chemotaxis) and mechanical signaling [76–79].
The formation of leaders/followers is also observed
in other biological systems, such as in trail formation
and cooperative transport in groups of ants [33, 80–
83] and themarching swarms of locusts asmentioned
above [58, 59]. Many biological mechanisms exist by
which leader/follower hierarchy emerges, including
pheromone signaling [81], slime formation [75] and
mechanical pressure [79], although many scientific
questions remain [84, 85].

It is the goal of this work to present a minimal
mathematical model that describes the emergence of
a social hierarchy of leaders and followers via pairwise
interactions; for a visualization of typical simulations
exhibiting line formation see figure 1. Our proposed
model can be understood from a simple phenomeno-
logical perspective: rather than metric-based interac-
tion, ϕij = ϕ(|xi − xj|), we propose projected–based
interactions

ϕij = ϕ(χijxj − xi), χij :=
〈xi,xj〉
|xj|2

, (8)

where the agent positioned at xi interacts with the
traces of neighboring agents in the forward-looking
cone xj ∈Ni := {β|xi|/|xj|⩽ χij ⩽ 1} (figure 5
shows a geometric illustration of the projection).
This leads to the spontaneous formation of leaders
and followers, defined with respect to their relative
positions in a linear aggregate. Observe that the inter-
actions in (8) are not symmetric; further, they are not
Galilean invariant. Accordingly, there is a need to shift
the fixed origin and trace the dynamics relative to the
center of mass, xi 7→ xi − x.

Such interactions can be readily understood in
many of the applications described above, such as
the sensing of pheromone trails left by neighbor-
ing ants and slime model deposits in bacterial cul-
tures. Although inspired by fingering in phototaxis
and chemotaxis, the model assumes no external for-
cing, so that the emergence of lines is intrinsic to
the interactions of the agents alone. Furthermore, the
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Figure 1. Trajectory plot of the second-order system
described in section 3.2 with the initial configuration
shown in figure 2. The coloring of the agents is described in
the caption of figure 2, and the gray trailing lines indicate
the path of an agent’s trajectory. Note that the agents
furthest away may not become ‘leaders’.

Figure 2. Initial configuration of positions/velocities of a
second-order system as described in section 3.2. We
simulate N= 100 agents (blue squares), with 10 agents (red
diamonds) chosen at the initial time as the furthest from
the center of mass (cyan star) at t0 = 0.

model is sufficiently generic to describe a wide variety
of phenomena, including spatial positions and velo-
city, but also emotions, frequencies, headings, opin-
ions, etc as described previously.

The remainder of the paper is organized as fol-
lows. We provide a brief discussion of the mathem-
atical models of collective motion and chemotax-
is/phototaxis in section 2. In section 3, we provide
a detailed description of the modeling framework,
with details of the first- and second-order systems
provided in sections 3.1 and 3.2, respectively. The
formation of lines in first-order systems is summar-
ized in theorem 1 in section 4; Numerical results are
provided in section 5, and concluding remarks are
provided in section 6.

2. Alignment models of collective motion
and social hierarchy

In this section we restrict our attention to alignment
dynamics, suppressing the additional roles of attrac-
tion and repulsion. We begin with a brief overview
of two alignment models: we refer to [17, 18] for

a thorough discussion on the biological phenom-
ena and to [4] for a recent mathematically rigor-
ous discussion of alignment models. The first align-
ment model originates from the 1995 work of Vicsek
et al [14], in which self-propelled particle systems
go through local averaging of velocity orientations.
Indeed, many physical and biological systems utilize
one form or another of environmental averaging [86–
90]. A second velocity alignment model was intro-
duced in 2007 by Cucker and Smale [5, 6]. The model
presented in thismanuscript is directly inspired by the
Cucker–Smale (CS) model, so we describe it in detail
here. The system consists of N identical interacting
agents, each identified by its position xi and velocity
vi in Rd, for i = 1,2, . . . ,N. Their dynamics is gov-
erned by

ẋi(t) = vi

v̇i(t) =
τ

N

N∑
j=1

ϕij(t)(vj(t)− vi(t)),
(9)

with pairwise interactions driven by ϕij(t) =
ϕ(xi(t),xj(t)). The scalar communication kernel, ϕ,
quantifies the dynamic influence of agent j on agent i.
In the original CS model, the authors advocate a class
of long-range decreasing metric kernels

ϕij = ϕ(|xi − xj|), ϕ(r) =
K

(α2 + r2)β
, (10)

with constants K,β > 0. We previously discussed
other classes of singular kernels that emphasize
nearby agents over those farther away [11–13, 91,
92], ϕ(r) = r−β , and the class of short-range ker-
nels, ϕ(r) = 1r⩽r0 . Metric kernels reflect, by defini-
tion, symmetric interactions, ϕij = ϕji, and we notice
the tacit assumption that communication decays with
distance. Motivated by the original CS model, the
general framework of alignment based on pairwise
interactions has inspired considerable work, includ-
ing the hydrodynamic description of its large crowd
limit [2, 9, 93–96], incorporation of collision avoid-
ance [97], steering [98] and stochasticity [99]. The
large-time behavior of CS alignment dynamics (9)
should lead the crowd to aggregate into a finite-size
cluster, max |xi(t)− xj(t)|⩽ D, which in turn leads to

flocking |vi(t)− vj(t)|
t→∞−→ 0. However, left without

attraction/repulsion, dynamics driven solely by align-
ment does not support the emergence of any pre-
ferred spatial configuration.

As mentioned in section 1, the goal of this work
is to provide a minimal mathematical model that
exhibits the emergence of a simple form of social
hierarchy through pairwise interactions. The model
is a direct analog of CS alignment and is inspired by
the biological phenomenon of fingering in chemo-
taxis and photoaxis. It is advocated as a simple align-
ment mechanism by which a priori identical agents
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evolve to form fingering structures with internal hier-
archy. It should be emphasized that here, no attempt
was made to model the external environment,
which is of course necessary to accurately describe
an externally signaled process such as phototaxis/
chemotaxis; instead, we limit ourselves to cellular
inter-communication mechanisms which, we claim,
are an essential part of the more complicated pro-
cesses. In this sense, this work is complimentary to
theoretical and experimental work studying social
hierarchy as well as chemotaxis/phototaxis. For
example, many works formulate interacting agent
systems similar to the Vicsekmodel [100], whichmay
include an internal excitation variable to model pho-
totaxis both deterministically [101] and stochastic-
ally [102–104]. Slime deposition [105] is also a com-
mon mechanism used to describe fingering, with
agent-based [30, 106] and continuum partial dif-
ferential equations [75] being proposed. Similar
approaches exist in describing chemotaxis, including
modeling fingering as a free boundary value prob-
lem [107], and extensions to the classical chemotaxis
equations introduced by Keller and Segel [108–110].
Hierarchy and leadership have been investigated in
the CS model [111] as well as in network graphs
with switching topologies [112]. Leadership arising
via external signaling was introduced and analyzed
in [113], moreover leadership in cells due to feedback
in speed and curvature can be formed [114–116],
which we note may be particularly relevant for pho-
totaxis and chemotaxis.

3. Mathematical models of line alignment

Motivated by the discussion in section 1, we propose
both first- and second-order models that describe
the emergence of hierarchical structure in interacting
agent systems for active particles, which we term gen-
erally ‘line alignment models’. For both systems, we
consider a total of N interacting agents. Each agent
is assigned a position xi ∈ Rd, and, in the case of
second-order models, agents are assigned an addi-
tional velocity vi ∈ Rd. We utilize the projected pos-
ition χijxj as a way to realize the tendency of agents
‘to look ahead’. In order to avoid the discussion
of absolute origin, we also use the center of mass
position of the whole system as the reference. We
believe that this assumption is physically reasonable,
as groups of bacteria/cells/animals should not util-
ize a global coordinate system with specified fixed
origin but rather measure positions with respect to
their local environment, for example the center of
mass of their flock, school or other social structural
unit. Coordinate systems in local environments may
be species dependent; for example, bacteria under-
going phototaxis may measure their position relative
to a dominant light source [117] while humans at a
concert may measure their positions with respect to

Figure 3. Absolute versus relative position coordinates for
agents i and j. Agents are indicated in black, the center of
mass of the system x is green, absolute positions are blue
and relative positions (with respect to the center of mass)
are red. Position vectors are indicated for two representative
agents only. Note that the center of mass is calculated for
the entire N-agent system (see equation (11)).

the main stage. In an isotropic environment, a ‘nat-
ural’ coordinate system is the center of mass reference
frame. That is, we assume that the interacting agents
measure their positions relative to the agent-system
itself. For example, we consider the relative positions
x̃i and x̃j defined with respect to the center of mass x
of the system

x̃i := xi − x, x(t) :=
1

N

N∑
i=1

xi(t). (11)

Here xi and xj denote the positions of the agents with
respect to an arbitrary origin 0 ∈ Rd. This is visual-
ized in figure 3. We note that when interactions occur
through symmetric differences of positions, as in the
CS and Vicsek models, absolute versus relative pos-
itions result in identical dynamical systems so that
the distinction is irrelevant. However, when consider-
ing non-symmetric interactions that arise via projec-
ted distances, as in (8), the resulting systems possess
distinct vector fields. Of course, certain species may
indeed have global coordinate systems, such as in the
mass migration of some species of birds [118].

3.1. First-order model
We begin by introducing a first-order model, which
governs the positions of N interacting agents (cells,
birds, humans, etc). Each agent is described by its
time-dependent position xi(t) ∈ Rd. Their dynamics
is governed by pairwise interactions

ẋi(t) =
1

|Ni(t)|
∑

j∈Ni(t)

ϕij(χijx̃j − x̃i). (12)

Here ϕij(t) quantifies the interactions, depending on
the projected difference

ϕij := ϕ(|χijx̃j − x̃i|), χij :=
〈x̃i, x̃j〉
|x̃j|2

. (13)
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Note that in the case that |x̃j|= 0 (i.e. agent j is
located at the center of mass of the system), the pro-
jectionχij is defined as zero. The neighborhood of the
agent positioned at xi is formed via a forward cone,
which models the asymmetric phenomenon of ‘look-
ing ahead’

Ni := { j |β|x̃i||x̃j|⩽ 〈x̃i, x̃j〉⩽ |x̃j|2}, (14)

where 0< β ⩽ 1 is a fixed constant that determines
the angular size of the forward cones4. As before,
ϕ(·) is a communication kernel that quantifies the
dynamic influence of the traced agent j on the agent
positioned at xi. In this work, we limit ourselves to
metric communication kernels.

Tomodel line alignment, we specify both the pair-
wise interaction of agents at distance rij = |χijxj − xi|
and the spatial neighborhoods defining which agents
influence the dynamics of one another. The spatial
neighborhoods are necessarily non-symmetric, but
rather ‘forward-facing’; for example, if the agent posi-
tioned at xi is positioned ahead and ‘in view’ of the
agent positioned at xj, then agent j should be influ-
enced by agent i, but not vice versa. The notions of
positioned ahead and in view of are quantified viaNi,
the neighborhood of agent i, i.e. the set of agents that
influence the dynamics of agent i.

Note that we use relative coordinates x̃i and x̃j to
determine the forward cone, based at the correspond-
ing center of mass x. Each cone is defined via a cent-
ral angle of 2cos−1(β) radians, which is symmetric
about the x̃i direction; this is the left-hand inequal-
ity in (14). The right-hand inequality ensures that
agents are only influenced by other agents in front
of them in relative position space, so that the cone
is indeed forward-facing. The latter can be under-
stood by noting that the right-hand inequality in (14)
restricts the length of the projection of x̃i along x̃j, i.e.
|x̃i|cos(ϕ)⩽ |x̃j| where ϕ is the angle between x̃i and
x̃j, so that we require x̃j to be ahead of x̃i in relation
to x. Since all positions x̃i are time-varying, each Ni

changes in time t; a static visualization of the conic
spatial region is provided in figure 4. Geometrically,
the influence of agent j on its dynamics, agent i
measures its difference in projected position relat-
ive to agent j. Thus, the form of (12) tends to align
agents along lines, as the pairwise interactions ‘aim’
to reduce the orthogonal distance between agents
i and j. As ϕ is tacitly assumed to be decreasing,
agents are more influenced by their nearer neighbors
inside the forward-looking cone, i.e. by those that
are more aligned with their current direction. This
is visualized in figure 5. To completely specify the
dynamics, a set of initial conditions {xi(0)}Ni=1 must
also be prescribed. Details on the initial conditions

4 For simplicity, we assume the opening of forward-looking cones
to be the same for all agents.

Figure 4. Forward cone defining a neighborhoodNi for
agent i in system (12). The green forward conic region
indicates the spatial region definingNi in (14). Note that all
positions depend on time t, so that the conic region moves
with the agents in time.

Figure 5. Difference vector rij measuring the difference
between x̃i and its projection along x̃j. Vector rij measures
how aligned agent i is with respect to agent j. Line
alignment implies that agent i acts to reduce rij for all
agents j in its forward cone.

and other parameters investigated are provided in
section 5.1.

3.2. Second-order model
We now turn to discuss the second-order model, ana-
logous to the first-ordermodel detailed in section 3.1,
but inwhich pairwise interactions influence the accel-
eration of the agents; this is in contrast to (12), where
agents directly regulate velocity. This framework is
more closely related to a classical mechanics perspect-
ive, where the interaction terms are precisely inter-
action forces. The state-space is represented by the
position and velocity vectors of the N agents, i.e.
{xi,vi}Ni=1, where the second-order dynamics reads

ẋi(t) = vi(t)

v̇i(t) =
1

|Ni(t)|
∑

j∈Ni(t)

(
ϕ(|rij(t)|)rij(t)

+ψ(|rij(t)|)(vj(t)− vi(t))
) . (15)

6
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Here rij := χijx̃j − x̃i denotes the orthogonal com-
ponent of x̃i projected in the direction of x̃j, so that
agents interact via relative projected directions as dis-
cussed in section 3.1 (see equation (13)), and hence
act to align ‘along lines’. The functions ϕ and ψ char-
acterize the strength of the interactions; both depend
on the projected distances, rij = |rij|, between agents
currently positioned at x̃i and the agent currently
positioned at x̃j, which is traced to its backward pos-
ition χijx̃j. Interactions are again local, and the net
effect on the dynamics of agent i is the superposition
of the interaction forces from all ‘forward-looking’
neighboring agents j ∈Ni.

The pairwise interactions are determined by the
two function ϕ and ψ. We first observe that the force
governed by ϕ is identical to that of the first-order
attraction/repulsion in (4). The second term, dictated
by interaction kernelψ, is an extension of the CS velo-
city alignment force [5, 6]. The velocity alignment
in our second-order model ensures that, in equilib-
rium, the emergent ‘finger-like’ lines lead to flock-

ing, |vi(t)− vj(t)|
t→∞−→ 0. Indeed, the line formation

will remain stable only when all the agents are mov-
ing with the same velocity; otherwise the lines formed
will not be stable.

4. From alignment to the emergence of
lines

The key feature of the first- and second-order mod-
els, (12) and (15), respectively, is the emergence of
geometric structure for the trails along which the
crowd is aligned. Specifically, we observe the large-
time formation of curves turning into straight lines
(see the numerical simulations reported in section 5).
A detailed analysis of this phenomenon is beyond the
scope of this paper and will be provided in future
work. Here we quote a prototypical result. We con-
sider the first-order line alignment model

ẋi(t) =
τ

σi

∑
j∈Ni(t)

ϕij
(
χijxj(t)− xi(t)

)
,

χij =
〈xi,xj〉
|xj|2

, σi :=
∑
j∈Ni

ϕij.

(16)

To simplify our discussion, we set the dynamics rel-
ative to a fixed origin, so that x̃i 7→ xi. The specif-
ics of the projected communication, given by ϕij =
ϕ(χijxj − xi), are not essential; indeed, it is remark-
able that our results apply to a wide variety of com-
munication protocols independent of symmetry or
occupying a global stencil. Here, we use an adapt-
ive normalization of the communication protocol as
in [34], replacing Ni 7→ σi, so that 1

σi

∑
j∈Ni

ϕij = 1
(so that the dynamics does not involve ‘counting’ the
number of agents).

Theorem 1. Consider the line alignment model (16),
dictated by a decreasing kernel ϕ(r), which acts inside
the forward-looking cones

Ni := { j |β|xi ||xj|⩽ 〈xi xj〉⩽ |xj|2}, β > 0.

Then, there exist constants C0, depending on the initial
configuration, and Cϕ, depending on ϕ, such that the
following holds:∑

i

∑
j∈Ni

(
|xi(t)|2 · |xj(t)|2 − |〈xi(t),xj(t)〉|2

)
⩽ C0e

−Cϕβ
2t.

Theorem 1 precisely quantifies the emergence
phenomenon in the first-order model (12). Namely,
the crowd forms one or more distinct straight
trails, led by an agent xi and followed by its neigh-

bors {xj, j ∈Ni} so that |xi| · |xj| − 〈xi,xj〉
t→∞−→

0. The remarkable aspect of the line dynamics,
reflected in theorem 1, is that the ‘kinetic energy’∑

i

∑
j∈Ni

|xi(t)|2 · |xj(t)|2 is easily shown to be
decreasing in time. However, the ‘potential energy’∑

i

∑
j∈Ni

|〈xi(t),xj(t)〉|2 does not exhibit a time-
monotone behavior and may change with the con-
figuration. It is their difference that is decreasing in
time, reflecting the emergent behavior. To our know-
ledge, this represents the first large-time, large-crowd
emergence dynamics based on local interactions (the
neighborhoodsNis).

5. Numerical results

In this section, we numerically investigate the models
of social hierarchy presented in section 3. Specifically,
we demonstrate the emergence of lines in both the
first- and second-order models, and study the effect
of model parameters, including the number of agents
and type of interaction kernel, on the resulting
dynamics.We also show that the formation of a leader
agent is indeed emergent and cannot be easily extra-
polated via initial conditions alone.

5.1. First-order model line formation
We begin by simulating the first-order line alignment
model (12) with the parameters appearing in table 1.
We are thus simulating N = 100 agents over a period
of 50 time units in two spatial dimensions. Here µ0
denotes a probability distribution utilized for gener-
ating the initial positions, withU([0,5]2) representing
the uniformdistribution over [0,5]2. Thus, we assume
that the agents are initially uniformly distributed over
a square region in the plane. A fixed realization of ini-
tial positions of agents is used for all simulations in
this subsection, and is provided in figure 6. In this
subsection, we assume a topological interaction ker-
nel as discussed in section 1:

ϕ(r) = 1r⩽1(r) or (17)

7
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Table 1. Parameters utilized to simulate the first-order model as
discussed in section 5.1.

µ0 d N t0 tf

U([0,5]2) 2 100 0 50

Figure 6. Initial configuration of the positions of N= 100
agents for a first-order system with parameters as in table 1.

ϕ(r) =
1

(1+ r2)0.25
, (18)

where r denotes the projected difference between
agents with respect to an agent’s forward cone (see
equation (13)). Recall that 1r⩽1 denotes the indicator
function on the set [0,1], so that all agents with a pro-
jected distance less than one unit inside the forward
cone have an equal influence on the dynamics of the
agent. All simulations, in this and other sections, are
integrated using MATLAB’s built-in adaptive integ-
rator ode 23 for handling possible stiffness of the
system.

We begin by demonstrating that the proposed
first-order model asymptotically exhibits line forma-
tion. Consider figure 7, which assumes a forward cone
with central angleπ/3 and an interaction kernel given
by (17). Blue squares in the figure represent agent pos-
itions xi(t) and the cyan star represents the center of
mass position of the system, i.e. x̄i(t). Recall that the
center of mass is not stationary, and that all agents
measure relative coordinates with respect to x̄i(t). In
this figure, we clearly observe the formation of spa-
tial lines that originate from the center of mass of the
system. This hierarchical structure emerges from the
initial uniform distribution of positions in figure 6,
and hence can be thought of as a form of emergence
of social hierarchy. Note that the ‘leaders’ here corres-
pond to the agents farthest from the center of mass
of the system. The dynamics thus represent a rudi-
mentary form of finger morphology as discussed in
section 1.2, which occurs through purely inter-agent
interactions, with no reliance on external forces. It
may appear that the leaders form from those agents
initially farthest from the center of mass of the sys-
tem, but this is not necessarily true (see section 5.6 for

Figure 7. Trajectory plot for the first-order system with
parameters taken from table 1 with β = π

6
and ϕ = 1r⩽1.

The initial configuration of positions is shown figure 6. We
clearly observe the formation of lines.

details regarding the second-order model). We also
emphasize that the system has reached equilibrium,
as simulating later in time (not shown) produces the
same spatial pattern observed in figure 7.

5.2. Variation of dynamics as a function of forward
cone size
We investigate the dynamics of line formation as a
function of the size of the forward cone. Specifically,
we are interested in understanding the effect of the
angular size of the cone, defined by β (see figure 4),
on the dynamics of line formation. Questions of spe-
cific interest are the number and density of lines
formed, which thus correspond to the number of
emergent leaders (equivalently, the number of ‘fin-
gers’ formed). Intuitively, we expect that the number
of lines formed should increase as the size of the for-
ward cone decreases, as each agent acts with a higher
degree of locality. For a demonstration see figure 8,
which utilizes the same initial conditions and para-
meters as in figure 7, with the exception that a cent-
ral angle corresponding to π defines the forward cone
(note that in this case it is really a forward plane and
not a cone).We observe a similar pattern of lines com-
pared to the smaller, and hence more local, forward
cone, but with a significantly higher degree of cluster-
ing to points, so that the asymptotic behavior is more
similar to points as opposed to lines. The mechanism
that produces this behavior is due to a combination
of two factors: (1) the dynamics are first-order, and
hence tend to exhibit aggregation, and (2) the inter-
action kernel (17) assumes a uniformity of influence
with respect to all neighboring agents. To see the res-
ulting pattern formation and the effect of varying β
for the CS interaction kernel (18), see section 5.4.

5.3. Variation of dynamics as a function of initial
conditions
In the previous section, we studied line formation
for a fixed set of initial conditions. Also of interest
is the role of initial conditions on the distribution of

8
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Figure 8. Trajectory plot for the first-order system with
parameters taken from table 1 with β = π

2
and ϕ = 1r⩽1.

The initial configuration of positions is shown in figure 6.
We clearly observe the formation of lines, with significant
clustering about the center of mass (compare with figure 7).

lines. More precisely: is the resulting pattern robust
or highly sensitive to the agents’ initial positions?
Numerical simulations (not provided) suggest that
the final configuration of lines (both the number of
lines and their orientations) is highly dependent on
the initial conditions; resampling µ0 generally res-
ults in a different equilibrium distribution. We note
that this is not surprising, and it is a common fea-
ture ofmodels describing collectivemotion. Similarly,
we investigate how the behavior changes as a func-
tion of the number of agents (N in table 1). This is
a natural scientific question, as line formation occurs
across a variety of scales; for example, the number
of ants composing a trail may be of the order of
100, while the number of bacteria generating finger
morphology in phototaxis may be of the order of
1000. Furthermore, such questions are of mathem-
atical interest, as they may provide insight into cor-
responding coarse-grainedmacroscopicmodels, such
as mean-field Vlasov-type equations and the corres-
ponding hydrodynamic descriptions. We thus invest-
igate to what degree the social hierarchy model pro-
posed in this work is dependent on the number of
agents in the system. As an example, we repeat simu-
lations appearing in figures 7 and 8 with fewer agents
(N = 50 versus N = 100 previously; new initial con-
ditions are provided in figure 9); the corresponding
results can be found in figures 10 and 11. Similar qual-
itative dynamics are apparent for the smaller system,
but in general we see that the distributions of lines
is quite different, even for the corresponding forward
cones.

5.4. Effect of interaction function on pattern
formation
In the previous sections we assumed a topological
interaction kernel given by (17), which weights all
neighboring agents equally in a forward cone with
limited support. We here instead use a global inter-
action function, i.e. ϕ = 1

(1+r2)0.25 , to demonstrate the
effect of the interaction function on line formation for
two different β values. As discussed in section 5.2, we
expect a global kernel to exhibit a more pronounced

Figure 9. Initial configuration of positions for a first-order
system with the parameters taken from table 1, except for a
smaller number of agents (N= 50).

Figure 10. Trajectory plot for the first-order system with
parameters taken from table 1 with β = π

6
and ϕ = 1r⩽1.

The initial configuration of positions is shown in figure 9.

Figure 11. Trajectory plot for the first-order system with
parameters taken from table 1 with β = π

2
and ϕ = 1r⩽1.

The initial configuration of positions is shown in figure 9.

response to the size of the forward cone with respect
to angle β. Results of simulations are provided in
figures 12 and 13. Compared with the locally suppor-
ted ϕ (figures 7 and 8), the final distribution of lines
in this system shows considerable variation: two lines
for β = π/6 become one for β = π/2. Note that the
initial configuration of positions is the same as that
shown in figure 6.

5.5. Second-order model simulation results
We next simulate the second-order model (15) to
demonstrate the dynamics of line formation in a sys-
temwhere interactions affect acceleration; simulation
details are provided in table 2. Recall from section 3.2
that wemust specify two interaction kernels:ϕ, which

9
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Figure 12. Trajectory plot for the first-order system with
parameters taken from table 1 with β = π

6
and

ϕ = 1
(1+r2)0.25

. The initial configuration of positions is

shown in figure 6.

Figure 13. Trajectory plot for the first-order system with
parameters taken from table 1 with β = π

2
and

ϕ = 1
(1+r2)0.25

. The initial configuration of positions is

shown in figure 6.

Table 2. Parameters utilized to simulate the second-order model
as discussed in section 5.5.

µx0 µv0 d N t0 tf ϕ ψ

[0,5]2 B2 2 100 0 10 1r⩽1
1

(1+r2)1/2

governs the inter-agent interaction force of line align-
ment, and ψ, which accounts for velocity alignment
andhence stabilization.Note thatϕ is completely ana-
logous to the first-order model except that it more
directly corresponds to a classical Newtonian force
law as the system is second-order.We assume the same
function dependence (17) for ϕ and assume the clas-
sical CS interaction kernel for ψ

ψ(r) =
1

(1+ r2)1/2
. (19)

HereB2 is the two-dimensional unit ball centered
at the origin. We simulate the models for different
values of β to investigate the effect of the various
neighborhood sizes, as in section 5.2 for the first-
order model. All tests use the same initial condi-
tions, with the initial position xi(t0) being an inde-
pendent and identically distributed (iid) sample from
µx0 and the initial velocity being an iid sample from
µv0. Figure 14 provides the realization of the initial

Figure 14. Initial configuration of positions and velocities
for a second-order system of N= 100 agents with the
parameters taken from table 2.

Figure 15. Trajectory plot for the second-order system with
parameters taken from table 2 with β = π

6
. The initial

configuration of positions/velocities is shown in figure 14.

Figure 16. Trajectory plot for the second-order system with
parameters taken from table 2 with β = π

2
. The initial

configuration of positions/velocities is shown in figure 14.

configuration of positions/velocities for all the tests
of different β values investigated in this work. The
blue dots in the figures represent the position (i.e.
xi(t)) of the agents, with the yellow arrow represent-
ing the velocity (i.e. vi(t)), whereas the cyan dot rep-
resents the center of mass position and x̄i(t) with the
yellow arrow represents the center of mass velocity
v̄i(t). Results are provided in figures 15–19, where
we have again considered variation in forward cone
size (β) and the number of agents (N = 100 versus
N = 50). The results are qualitatively similar to the
first-order system, although the second-order system
exhibits a much richer class of dynamics, as the sys-
tem does not approach equilibrium configurations

10
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Figure 17. Initial configuration of positions for a
second-order system with the parameters taken from
table 2 for two different β values and N= 50.

Figure 18. Trajectory plot for the second-order system with
parameters taken from table 2 with β = π

6
. The initial

configuration of positions/velocities is shown in figure 17.

Figure 19. Trajectory plot for the second-order system with
parameters taken from table 2 with β = π

2
. The initial

configuration of positions/velocities is shown in figure 17.

(this is because inter-agent forces act on accelerations
and not velocities, i.e. the system is not dissipative).
Note that local groups of agents initially form curved
lines of hierarchy (‘leaders–followers’) which eventu-
ally straighten due to the projected interaction ker-
nel (figure 1). It thus appears that the competition
between line formation (induced by ϕ1) and flocking
(induced by ϕ2) has made the emergent pattern more
interesting. As shown in three of the four examples of
different β (with larger β), the system as a whole can
produce different flocking velocities, yet social hier-
archy (in this case, lines) can emerge from the initially
chaotic configuration.

5.6. Initial conditions are not simple predictors of
leader emergence
We note that the emergence of leaders is not a simple
function of the initial distance from the initial cen-
ter of mass; thus hierarchy is indeed emergent from
the proposed inter-agent dynamics. Consider figure 1,
which shows a number of flocking lines (‘fingers’)
emerging from an initially random distribution of
positions and velocities (figure 14). In figure 1, we
have colored red the 10 initial agents farthest from
the initial center of mass. Note that some agents
that were initially farthest from the center of mass
become followers; for example, on the right-hand
side there is a line of agents with an initially distant
agent (red) that becomes a ‘follower’. Similarly, we see
that some agents that were initially near the center of
mass become ‘leaders’ of groups of agents. Hence, we
see that the model does indeed exhibit emergence of
social hierarchy.

6. Discussion and conclusions

In this work, we have presented two collective
dynamic models, namely a first-order and a second-
order system, where the emergence of social hier-
archy, or ‘line formation’, is induced from the ‘look-
ahead’ tendency of agents. These two models are
minimal in a sense that the ‘look-ahead’ tendency is
implemented using a projected distance together with
a forward-cone neighborhood. These models show
promising features of natural emergence of geometric
structures for various different kinds of initial config-
urations. More complicated patterns can be induced
by using different types of communication kernels (ϕ
or ψ). We have presented numerous numerical sim-
ulations and are currently developing a mathemat-
ical theory to rigorously understand properties of the
emergence of line formation in such models.
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