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We study the limiting dynamics of the Euler Alignment 
system with a smooth, heavy-tailed interaction kernel φ and 
unidirectional velocity u = (u, 0, . . . , 0). We demonstrate a 
striking correspondence between the entropy function e0 =
∂1u0 + φ ∗ ρ0 and the limiting ‘concentration set’, i.e., the 
support of the singular part of the limiting density measure. 
In a typical scenario, a flock experiences aggregation toward 
a union of C1 hypersurfaces: the image of the zero set of e0
under the limiting flow map. This correspondence also allows 
us to make statements about the fine properties associated 
to the limiting dynamics, including a sharp upper bound on 
the dimension of the concentration set, depending only on 
the smoothness of e0. In order to facilitate and contextualize 
our analysis of the limiting density measure, we also include 
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an expository discussion of the wellposedness, flocking, and 
stability of the Euler Alignment system, most of which is new.

© 2022 Elsevier Inc. All rights reserved.

1. The Euler Alignment system and its long-time dynamics

We consider the Euler Alignment system on Rn, which is usually written in the fol-
lowing way:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ(x, t) + div(ρu)(x, t) = 0, x ∈ Rn,

∂tu(x, t) + u · ∇u(x, t) = κ

∫
Rn

φ(x− y)(u(y, t) − u(x, t))ρ(y, t) dy,

u(x, 0) = u0(x); ρ(x, 0) = ρ0(x) ≥ 0,
∫
Rn

ρ0(x) dx = M0 < +∞.

(1)

Here ρ denotes the density profile, assumed to be compactly supported at time zero, 
and u denotes the (Rn-valued) velocity field. The function φ represents the (nonneg-
ative) communication protocol, and the parameter κ > 0 governs the strength of the 
communications.

In our analysis, we will make two main assumptions. First, we will assume that φ is 
smooth, radially decreasing, and heavy-tailed, i.e., 

∫∞
0 φ(r) dr = +∞. Second, and most 

importantly, we will consider velocities that are unidirectional; that is,

u(x, t) = (u(x, t), 0, . . . , 0). (2)

The utility of these assumptions will be clarified below.

1.1. Features of the Euler Alignment system

1.1.1. Flocking and Alignment
The Euler Alignment system provides a hydrodynamic description of the celebrated 

Cucker–Smale system of ODE’s [4], [5], the salient feature of which is its ‘flocking’ dy-
namics. In the hydrodynamic setting, we use the following terminology:

Flocking: sup
t≥0

diam(supp(ρ(·, t))) = D < +∞. (3)

Alignment: u(·, t) → u = const. (4)

Strong Flocking: ρ(x− tu, t) → ρ∞(x). (5)
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Of course, parsing (4) and (5) requires specification of the sense in which the convergences 
take place; the topologies used are context-dependent. There is only one possible can-
didate for the putative limiting velocity u, namely ratio u = u0 := 1

M0

∫
Rn ρ0u0(x) dx. 

The Euler Alignment system is also studied in the periodic setting x ∈ Tn, where (4)
and (5) are still meaningful but (3) is not.

The threshold question of whether any of (3), (4), (5) occurs is a well-studied problem, 
at both the discrete and hydrodynamic levels. Despite the copious effort devoted to the 
investigation of this phenomenon, much remains to be understood. It is generally difficult 
to determine whether the agents or trajectories spread out slowly enough that φ can work 
to align their velocities (thus decreasing their tendency to spread out) before they escape 
the regime where φ is strong enough to do so. Working in the context of heavy-tailed 
kernels eliminates most of these issues: any smooth solution in this case experiences 
flocking and alignment. The next stage in studying long time behavior can be focused 
on understanding the limiting density profile, which will exist in the space of measures 
even if the density becomes unbounded as t → +∞. In this present work we give an 
exhaustive answer to this question for the class of unidirectional flocks (2).

1.1.2. Wellposedness considerations and the quantity e
A quantity central to the analysis of (1) is

e(x, t) = divu(x, t) + φ ∗ ρ(x, t), (6)

which satisfies the equation

∂te + div(eu) = (divu)2 − Tr[(∇u)2]. (7)

The equation (7) becomes a conservation law with right hand side zero for unidi-
rectional solutions (and in particular in spatial dimension one). Equipped with this 
additional structure, Carrillo, Choi, Tadmor, and Tan proved in [2] that when n = 1, a 
unique global-in-time solution to (1) exists for sufficiently regular initial data if and only 
if e0 ≥ 0 on all of R. This result was extended to unidirectional flows in [12]. In general, 
however, a sharp critical threshold condition is not known for n ≥ 2. The work [11]
proves global-in-time existence when e0 ≥ 0, under an additional smallness assumption 
on the spectral gap of the symmetric strain tensor of u0.

Let us turn now to our class of solutions (2) in question. First, we note that the 
unidirectionality propagates in time, by the maximum principle. Second, the definition 
of e and the equation it satisfies become

e(x, t) = ∂x1u(x, t) + φ ∗ ρ(x, t), (8)

∂te + ∂x1(eu) = 0. (9)

The continuity equation takes a similar form
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∂tρ + ∂x1(ρu) = 0. (10)

Thus, the unidirectional system (8)–(10) consists of a family of coupled scalar con-
servation laws. What stops the unidirectional dynamics from being completely one-
dimensional is the convolution term in (8), which depends on values of the density in all 
stratification layers. Wellposedness for the system (8)–(10) for solutions satisfying e0 ≥ 0
is presented in [12].

One explanation for the prominent role of e0 in the 1D wellposedness theory is that 
the quantity

β∫
α

e0(γ)dγ (11)

controls the long-time separation of the trajectories X(α, t) and X(β, t) originating at 
α, β. If the quantity (11) is negative, the trajectories intersect at some finite time (which 
is at most (β−α)/(κ 

∫ β

α
e0(γ)dγ)). If (11) is nonnegative, then the separation is bounded 

below by a constant multiple of (11), plus some time-dependent factor that decays to 
zero as t → +∞. In the special case of a heavy-tailed kernel, the long-time separation 
is also bounded above by a constant multiple of (11). Thus in the borderline case where ∫ β

α
e0(γ)dγ = 0, the trajectories X(α, t) and X(β, t) approach each other asymptotically 

as t → +∞, trapping the mass initially inside [α, β] in an interval of vanishingly small 
length. Thus, if e0 ≡ 0 on an interval of nonzero mass, we observe a mass concentration 
phenomenon, which manifests itself in the emergence of Dirac atoms in the limiting 
measure m. The relationship between e0 and the spread of the limiting trajectories will 
be central to our analysis below.

The last observation was first quantified in the form above by the second author in 
the recent paper [13], which analyzed the compatibility of the condition e0 ≥ 0 with 
restriction of the domain to the non-vacuum region. The analysis of [13] was partly 
inspired in turn by the work [25] by Tan, who showed that, in the case of weakly singular 
kernels (i.e., φ(x) ∼ |x|−s near x = 0, with s ∈ (0, 1)), an interval of positive mass on 
which e0 ≡ 0 can collapse to a point in finite time (unlike the situation for smooth 
kernels). An observation similar to the above also appeared in [9,10], which analyzed 
the collision and clustering dynamics of the discrete Cucker–Smale system with smooth 
kernel.

Remark 1.1. It is instructive to consider the Euler alignment system in special case of a 
constant kernel, φ ≡ 1 (the strength of the interactions being encoded in the constant 
κ, which we allow to take the value zero in this remark). In this case the unidirectional 
(1) reads{

∂tρ(x, t) + ∂x1(ρu)(x, t) = 0,

∂ u(x, t) + u∂ u(x, t) = κM
(
u − u(x, t)

)
,

x = (x1, x−) ∈ Rn,

t x1 0 0
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subject to prescribed initial data u(x, 0) = u0(x); ρ(x, 0) = ρ0(x) ≥ 0. Here u0 is the 

average velocity u0 := 1
M0

∫
ρ0u0(x)dx. We distinguish between three different regimes, 

depending on the initial configuration of (ρ0, u0). In case of sub-critical initial data, 
e0 = ∂x1u0 + κM0 > 0 the system admits global smooth solutions. In case of super-
critical initial data, e0 = ∂x1u0 + κM0 < 0, the system admits finite-time breakdown 
where limx→xc

t↑tc
∂x1u(x, t) = −∞ and (provided the breakdown occurs along a trajec-

tory where the density is initially positive) there is mass concentration at that point 
limx→xc

t↑tc
∂x1ρ(x, t) = ∞, leading to the formation of delta shocks [3,20,19]. Thereafter, 

one interprets the unidirectional pressureless system in a weak formulation,{
∂tρ(x, t) + ∂x1(ρu)(x, t) = 0,

∂t(ρu)(x, t) + ∂x1(ρu2)(x, t) = κM0ρ(x, t)
(
u0 − u(x, t)

)
,

x = (x1, x−) ∈ Rn.

Entropic solutions of pressureless equations with super-critical data, at least in the 1D 
case, is the subject of extensive studies, realized in a variety of different approaches 
and we mention two—variational formulations [24,16,7] and sticky particles [1,26,18]. Of 
these, only [7] treats the case where κ > 0.

The current paper covers the third regime—a borderline case with critical initial 
configurations such that e0 ≥ 0. The zero-level set of e0 then leads to mass concentration 
at t = ∞. The fascinating aspect, to be made precise in Theorems 1.8 and 1.9 below, is 
the way in which the geometry of the singular part of the limiting mass measure depends 
on the zero set of e0 and the regularity of e0 near its zero set. This motivates further 
study for the geometry of delta-shocks in super-critical cases e0 < 0. Recent work [15]
by the second author and Changhui Tan, written during the review period of the present 
article, extends the sticky particle framework of [1] to the 1D Euler Alignment system 
and thus provides an avenue for exploring this issue in future research.

1.1.3. Fast Alignment, strong flocking, and the limiting trajectory map
Let us consider the particle flow map generated by the field u:

Ẋ(α, t) = u(X(α, t), t), X(α, 0) = α, α ∈ Rn.

Although the flow-map is defined globally in Rn, we often require a compact convex 
domain of labels α ∈ Ω ⊂ Rn to study long time behavior. Such domains are always 
assumed to contain the material flock

supp ρ0 ⊂ Ω, supp ρ(t) ⊂ Ω(t) := X(Ω, t). (12)

On any such compact domain, a global solution to (1) experiences flocking, see [23],

A(t) = |u(·, t) − u0|L∞(Ω) ≤ A0e
−δΩt, (13)
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sup
t≥0

diam Ω(t) < ∞. (14)

By Galilean invariance of the system (1), we may assume without loss of generality 
that u = 0. Then the exponential decay of |u| implies that the particle trajectory map 
converges uniformly on any compact Ω, to a continuous function:

‖X(·, t) − X‖L∞(Ω) ≤ Ce−δΩt, t > 0.

As long as e0 ≥ c > 0 on the initial flock supp ρ0, the alignment estimate (13) can be 
lifted to higher regularity classes, effectively showing exponential flattening of velocity 
field, and convergence of density to a smooth traveling wave, see [21], [12]. In fact, those 
arguments produce local flattening even without the uniform positive lower bound on 
e0: assuming e0 ≥ 0 everywhere and denoting

Pε = {α ∈ Rn : e0(α) ≥ ε}, P = {α ∈ Rn : e0(α) > 0},

one has

sup
α∈Pε∩Ω

|∇u(X(α, t), t)| ≤ Ce−δε,Ωt. (15)

Solving the continuity equation

ρ(X(α, t), t) = ρ0(α) exp

⎧⎨⎩−
t∫

0

∂x1u(X(α, s), s) ds

⎫⎬⎭ ,

one can observe a local strong flocking along these same trajectories:

sup
α∈Pε∩Ω

|ρ(X(α, t), t) − f(α))| = Ce−δε,Ωt,

for some smooth limiting function f , defined on P ∩Ω. We can thus focus our attention 
on the complementary zero-set of e0:

Z = {α ∈ Rn : e0(α) = 0}.

This is where the mass concentration phenomenon we discussed earlier presents itself. We 
expect that the density will aggregate on the Lebesgue-negligible set X(Z) in the sense of 
weak-∗ convergence of measures. To study this concentration phenomenon we introduce 
the limiting density-measure as follows. Denote dmt(x) := ρ(x, t) dx. According to the 
continuity equation this is a push-forward of the initial mass by the Lagrangian flow-map

mt = X(·, t)�m0, mt(E) = m0(X−1(E, t)).
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The measures mt converge weakly-∗ to the push-forward of the limiting flow-map: m =
X�m0. Indeed, for any η ∈ Cc(Rn) we have∫

η(x) dm(x) t→+∞←−
∫

η(x) dmt(x) =
∫

η(X(α, t)) dm0(α) t→+∞−→
∫

η(X(α)) dm0(α).

Our main question, then, concerns the structure of the limiting measure m. We expect 
that m has a singular part concentrated on X(Z), and that the absolutely continuous 
part ρ(x) dx satisfies ρ ◦ X = f , where f is as in the previous paragraph. Theorem 1.3
below formalizes these expectations.

The discussion above assumes that dm0(x) = ρ0(x) dx is absolutely continuous with 
respect to Lebesgue measure; however, there are almost no additional technicalities nec-
essary to include a possibly singular part, so we will do so below. Allowing this more 
general class of initial data has the satisfying consequence that entire evolution mt and 
its limit m belong to the same class M+(Rn). Furthermore, this viewpoint is true to 
the kinetic formulation from which the macroscopic version (1) is derived, and the dis-
crete Cucker-Smale system can be viewed as a particular case of purely atomic solutions 
mt =

∑
i miδxi(t). We clarify in Section 2 the wellposedness theory for solutions starting 

from such initial data.

1.2. Statement of results

The main technical properties of the limiting flow map X that are needed to analyze 
the structure of m are contained in the following Proposition, which is of independent 
interest. We include it in this section in order to motivate the statement of Theorem 1.3. 
Here and below, we write α = (α1, α−) ∈ R × Rn−1, and we use X to denote the first 
component of X; that is,

X(α) = (X(α), α−).

We will use the notation |E| to denote the k-dimensional Lebesgue measure for a subset 
E of Rk (the relevant k’s being k = 1, n − 1, n). We also denote φ = φ(D).

Proposition 1.2. We have the following estimate in the x1 direction:

1
κM0‖φ‖L∞

γ∫
β

e0(ζ, α−)dζ ≤ X(γ, α−) −X(β, α−) ≤ 1
κM0φ

γ∫
β

e0(ζ, α−)dζ. (16)

The lower bound is valid for any pair (β, α−), (γ, α−) of elements of Rn such that β < γ; 
the upper bound is valid for such pairs that belong to Ω. Consequently, |X(Z)| = 0.

Our first main Theorem shows that the two sets P and Z are in natural correspondence 
with the pieces of the Lebesgue decomposition of m.
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Theorem 1.3 (Structure of m). Let u(x, t) ∈ C1([0, ∞), Ck(Rn)), dmt(x) ∈ Cw∗([0, ∞);
M+(Rn)) be a measure-valued solution to (1), corresponding to the initial velocity u0 =
(u0, 0), and initial density measure m0. Let dm0(x) = ρ0(x) dx + dν denote the Lebesgue 
decomposition of m0 with respect to Lebesgue measure, and let m denote the limiting 
measure: mt

∗
⇀ m in M+(Rn). Then the Lebesgue decomposition of m with respect to 

Lebesgue measure is determined from the following:

dm = ρdx + dμ (17)

ρdx = X�(ρ01P dx), dμ = X�(ρ01Z dx + dν). (18)

Here the singular part is supported on X(Z∪supp ν), while the density ρ ∈ L1 is supported 
on X(P ∩ supp ρ0)) and is given by

ρ ◦ X = ρ0

∂α1X
1P . (19)

Consequently, the measure m is absolutely continuous with respect to Lebesgue measure 
if and only if m0(Z) = 0 and ν = 0. Finally, we have ρ(X(·, t), t) → ρ ◦X uniformly on 
compact subsets of P.

Remark 1.4. If supp ρ0 ⊂ P, then we simply have the global convergence ‖ρ(t) − ρ̄‖L∞ →
0, which recovers the result of [12,21].

Remark 1.5 (Comparison with [14]). Combining (19) with (a limiting version of) (16)
yields the two-sided bound

κM0φ · ρ0

e0
(α) ≤ ρ ◦ X(α) ≤ κM0‖φ‖L∞ · ρ0

e0
(α), α ∈ P. (20)

This bound offers a supplement to the conclusions obtained in [14] by the second 
and third authors. This work treated—in the 1D periodic setting without vacuum—the 
deviation of ρ from a constant (in the case where Z = ∅). The result obtained there, 
written in the notation of our current context, reads

lim sup
t→+∞

∥∥∥∥∥∥ρ(t) − 1
|T |

∫
T

ρ0

∥∥∥∥∥∥
L1

�
∥∥∥∥ e0

ρ0
−

∫
φ

∥∥∥∥
L∞

.

The significance of the number 
∫
φ is that periodicity guarantees it to be the average 

value of e0/ρ0 on T . So the result of [14] says that the long-time deviation of ρ from 
its average value (measured in L1) is controlled by the deviation of the initial quantity 
e0/ρ0 from its average value (measured in L∞). In the case of global kernels, suppφ = T , 
the bound (20) provides an improvement, since it is a two-sided uniform bound if e0/ρ0
is close to its average value on T . However, the analysis of [14] is valid even for local
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kernels, where suppφ is much smaller than T (in which case the left side of (20) vanishes), 
and for a class of ‘topological’ kernels φ introduced in [22], where the communication 
protocol φ itself depends on the density (and is in general nonintegrable). Therefore, 
while the bound (20) provides a nice supplement to the results of [14], the present work 
is otherwise essentially disjoint from [14].

Remark 1.6. We return briefly to the consideration of the case φ ≡ 1 for comparison. 
Let us drop the assumption of unidirectionality for a moment and consider the flow map 
(X, V) associated to a solution (u, ρ) that is known to exist globally in time. In this case 
one has (assuming momentum zero, for simplicity)

V̇ = −κM0V, Ẋ = V,

whence

X(α) = α + u0(α)
κM0

,

upon solving the particle trajectory equations and taking t → +∞. Notice that ∇X =
id+ 1

κM0
∇u0, or in the unidirectional case, ∂1X = 1

κM0
(κM0+∂1u0) = e0

κM0
, in agreement 

with (16). However, it should be noted that a different argument is needed in order to 
obtain (16) for the case of general φ, where the equation is genuinely nonlocal (unlike 
for constant φ). In fact, the argument leading to (16) does not extend to the case of 
non-unidirectional data.

Later in Section 2.4, we show that the assignment of limiting measure m0 → m is 
stable in the Kantorovich-Rubinstein metric. Our argument is a borderline L∞-version 
of the �p,q-stability estimates presented in [8].

Our second Theorem implies that if Z is a ‘nice’ set, then the set on which dμZ :=
X�(ρ01Z dx) concentrates is a union of C1 hypersurfaces. This relies on some additional 
regularity of X inside Z:

Proposition 1.7. The map X is continuously differentiable on the complement of ∂Z.

Theorem 1.8. Assume U is an open subset of Z, having the following properties:

• U is ‘x1-convex’, i.e., if (β, α−), (γ, α−) ∈ U , then ((1 − λ)β + λγ, α−) ∈ U for all 
λ ∈ [0, 1].

• U contains the graph of a C1 function f : U− → R, where U− := {α− ∈ Rn−1 :
(α1, α−) ∈ U for some α1 ∈ R} denotes the projection of U onto Rn−1. That is, 
assume

Γ(f) = {(f(α−), α−) : α− ∈ U−} ⊂ U.



10 D. Lear et al. / Advances in Mathematics 401 (2022) 108290
Fig. 1. A heuristic illustration of the effect of X on Z. In (B)–(D), the curves comprising X(Z) are tangent 
at each bifurcation point.

Then X(U) is the graph of a C1 function:

X(U) = X(Γ(f)) = {(X(f(α−), α−), α−) : α− ∈ U−}.

In particular, if U is all of Z, then

dμZ(x1, α−) = c(α−)δf(α−)(x1) dα−, (21)

where dμZ denotes the pushforward measure X�(ρ01Z dx), and

c(α−) :=
γ(α−)∫

β(α−)

ρ0(α1, α−) dα1, [β(α−), γ(α−)] = {α1 ∈ R : (α1, α−) ∈ Z}.

The functions c(α−) are C1 if ∂U is C1.

Theorem 1.8 says that the solution experiences aggregation along horizontal slices in 
Z, in a regular way with respect to the other directions. This is instructive to demonstrate 
graphically; see Fig. 1 above. Note that while the Corollary is stated for the case of a 
single set U satisfying the hypotheses, one can combine multiple open sets satisfying the 
two bullet points to obtain different ‘sets of aggregation’ consisting smooth hypersurfaces, 
as shown in these figures. In each of the two-dimensional examples above, observe that 
whenever two curves in the image meet at a point, they must be tangent at that point. 
This is because both of the curves must be C1 and cannot cross each other.

A natural question is to look further into finer properties of the null set X(Z), and ask 
how small or large this set can be in terms of fractal dimension. We answer this question 
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in 1D. The main result states that the size of X(Z) is directly tied to the regularity of 
e0.

Theorem 1.9. If n = 1 and e0 ∈ Ck(R), then the upper box-counting dimension of X(Z)
satisfies

dimbox(X(Z)) ≤ dimbox(Z)
k + 1 . (22)

In particular, if e0 ∈ C∞(R), then the Hausdorff and box-counting dimensions of X(Z)
are both zero.

dimbox(X(Z)) = dimH(X(Z)) = 0.

The bound (22) is sharp in the following sense: For any k ∈ N ∪ {0} and any ε > 0, 
there exist initial data such that e0 ∈ Ck(R) and Z has positive Lebesgue measure, but

dimbox(X(Z)) = dimH(X(Z)) > 1
k + 1 − ε.

Remark 1.10. We state (22) in terms of dimbox rather than dimH, because in the ‘typical’ 
scenario where dimH(Z) = 1, our version gives a stronger statement than the correspond-
ing one for Hausdorff dimension. (Recall that the box-counting dimension dominates the 
Hausdorff dimension, cf. (57) below.)

Remark 1.11 (On the heavy-tail assumption). Our heavy-tail assumption can usu-
ally be replaced by weaker but more technical hypotheses. For example, our analy-
sis goes through without the heavy-tail assumption if our initial data satisfies A0 <

κM0
∫∞
D0

φ(r) dr. In this case, by (a modification of) an argument by Ha and Liu [6], all 
trajectories will remain in uniform direct communication for all times,

φ(X(α, t) −X(β, t)) ≥ c > 0, α, β ∈ Ω, t ≥ 0, (23)

which is enough to conclude our upper bound in (16) (the lower bound always holds). 
In this sense, our heavy-tail assumption is a technically simple proxy for especially ‘nice’ 
flocking behavior. We also use the heavy-tail assumption (or something like (23)) in 
order to guarantee regularity of the limiting flow map in the transverse directions, cf. 
section 3.2. On the other hand, if we restrict attention to the purely 1D setting, even 
(23) is not strictly necessary to make meaningful statements about mass concentration. 
In order to conclude that limt→∞(X(α, t) −X(β, t)) = 0, for example, it suffices for e0
to vanish on the intervals [α, γ] and [γ, β], where each of X(α, t) −X(γ, t) and X(γ, t) −
X(β, t) satisfy the bound in (23). The authors feel, however, that introducing such chain-
connectivity conditions would unduly complicate the manuscript, and we therefore frame 
all of what follows in terms of the simpler heavy-tail assumption. Very little of interest 
is lost in this simplification.
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1.3. Outline

The remainder of the paper is structured as follows. In Section 2, we discuss existence 
and uniqueness of measure-valued solutions with C1

tC
k
x velocities, k ≥ 1. We recover the 

expected global-in-time existence and uniqueness for unidirectional data (with e0 ≥ 0) 
as a byproduct of our proof of the key estimate (16). We close Section 2 with an analysis 
of flocking and stability.

With the theory above in hand, we finish the proof of Proposition 1.2 in Section 3.1
and use it to prove Theorem 1.3. All that is needed here is an understanding of X
along horizontal slices. On the other hand, lateral regularity is needed in order to prove 
Theorem 1.8; in Section 3.2, we prove Proposition 1.7 (using some of the previously 
established flocking estimates) before finishing Theorem 1.8.

In Section 4, we study some fine properties of m and X in one spatial dimension. 
The sharpness statement in Theorem 1.9 is proven by building e0 from a certain Cantor 
set Z of positive measure, using Frostman’s Lemma together with (16) to establish the 
dimension of X(Z). As the proof shows, the dimension depends not only on Z, but also 
on the way e0 approaches zero near Z. We close on a related note: Starting from a regular 
density profile ρ0, we can adjust the rate e0 approaches zero at an isolated point in Z in 
order to ensure a specified local dimension of m at the corresponding point of X(Z).

2. Wellposedness for measure-valued solutions

In this section, we treat the well-posedness of the system (1) for measure-valued 
densities. To be explicit, given an initial measure m0 ∈ M+(Rn) and an initial velocity 
u0 ∈ Ck(Rn), we will discuss the existence, uniqueness, flocking properties, and stability 
of solutions u ∈ C1([0, T ), Ck(Rn)), m ∈ Cw∗([0, T ); M+(Rn)) to the following system:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Du
Dt

(x, t) = κ

∫
Rn

φ(x− y)(u(y, t) − u(x, t)) dmt(y), u(x, 0) = u0(x);

∫
Rn

ξ(y, t) dmt(y) −
∫
Rn

ξ(y, 0) dm0(y) =
t∫

0

∫
Rn

Dξ

Ds
(y, s) dms(y), ξ ∈ C∞

c (Rn ×R).

(24)
Here D

Ds = ∂s + u · ∇ denotes the advective derivative, and M+(Rn) denotes the set of 
non-negative Radon measures on Rn, endowed with the topology of weak convergence. By 
the latter, we mean convergence on the space Cb(Rn) of continuous bounded functions. 
In what follows, we will say that μn converges weakly to μ on M+(Rn) and we write 
μn

∗
⇀ μ if ∫

fdμn →
∫

fdμ for all f ∈ Cb(Rn).

Rn Rn
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Since we will deal with measures supported on a bounded set Ω, this convergence coin-
cides with the classical weak-∗ convergence on C0(Rn), the predual of M(Rn).

2.1. Lagrangian formulation and local wellposedness

The Euler Alignment system for Lagrangian velocities V(·, t) = u(X(·, t), t) takes the 
form ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ẋ(α, t) = V(α, t),

V̇(α, t) = −κ

∫
Ω

φ(X(α, t) − X(γ, t))[V(α, t) − V(γ, t)] dm0(γ),

X(α, 0) = α, V(α, 0) = u0(α), α ∈ Ω.

(25)

Here Ω can be taken to be any compact set containing the support of m0 (we 
also assume convexity for simplicity). Proving the existence of particle trajectories 
(X, V) ∈ C1(R+; Ck(Ω) × Ck(Ω)) amounts to a routine application of the Picard 
Theorem, together with a straightforward estimate eliminating finite-time blowup for 
‖X(t)‖Ck(Ω) + ‖V(t)‖Ck(Ω). To ensure that the particle trajectories yield a solution

(u(·, t), dmt) = (V(X−1(·, t), t),X(·, t)� dm0)

to the Eulerian formulation, we need X(·, t) : Ω → Ω(t) to remain invertible, and we 
need det∇X �= 0 on Ω to ensure u remains in Ck. This of course holds at least for a 
short period of time since one starts from X(·, 0) = id. A continuation of solution can 
be achieved under the following condition: there exists ε > 0 such that on time interval 
[0, T ) one has

inf
α 	=β∈Ω

|X(β, t) − X(α, t)|
|β − α| > ε, t ∈ [0, T ). (26)

In fact, this implies | det∇X(·, t)| ≥ εn, as (26) guarantees that every eigenvalue of 
∇X(·, t) has an absolute value of at least ε.

Theorem 2.1. For any initial data (u0, m0) ∈ Ck(Rn) ×M+(Rn), there exists a unique 
solution to (24) on the time interval [0, T ). Moreover if (26) holds for some ε on that 
interval then the solution can be extended beyond time T .

A similar bound from below on | det∇X(·, t)| follows classically from the Liouville 
equation for det∇X(·, t) and can be stated directly in Eulerian terms:

T∫
inf

x∈Rn
∇ · u(x, t) dt > −∞. (27)
0
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Since the initially non-negative e0 remains bounded, and φ ∗ ρ is always bounded, this 
implies (27). Consequently, we obtain global existence as shown in [12]. For our purposes 
such approach is not productive, however, as we seek to obtain quantitative bi-Lipschitz 
bounds on the flow map, as in (26), to extract further properties of the limiting mass-
measure.

2.2. Global wellposedness and proof of (16)

For unidirectional solutions we have

V(α, t) = (V (α, t), 0), X(α, t) = (X(α, t), α−), α = (α1, α−).

Then (25) becomes a scalar system in terms of the active flow components only:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ẋ(α, t) = V (α, t),

V̇ (α, t) = −κ

∫
Ω

φ(X(α, t) −X(γ, t), α− − γ−))[V (α, t) − V (γ, t)] dm0(γ),

X(α, 0) = α1, V (α, 0) = u0(α).

(28)

The continuation criterion (26) takes form

inf
α∈Ω

|∂α1X(α, t)| > ε, t ∈ [0, T ). (29)

Following [13], one can reduce the system (28) to a single equation for X(α, t):

Ẋ(α, t) = f0(α) − κ

∫
Rn

ϕ(X(α, t) −X(γ, t), α− − γ−) dm0(γ), (30)

where

ϕ(x1, x−) =
x1∫
0

φ(y, x−) dy, f0(α) = u0(α) + κ

∫
Rn

ϕ(α− γ) dm0(γ).

(Note that the quantity f0 is related to e0 via e0 = ∂α1f0.)
Consider equation (30) along two trajectories originating on the same α−-slice, and 

take the difference:
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Ẋ(α1 + h, α−, t) − Ẋ(α1, α−, t) =
α1+h∫
α1

e0(ζ, α−)dζ

− κ

X(α1+h,α−,t)∫
X(α1,α−,t)

∫
Rn

φ(y −X(ζ, t), α− − ζ−) dm0(ζ) dy.

(31)

We use

φM0 ≤
∫
Rn

φ(α1 −X(ζ, t), α− − ζ−) dm0(ζ) ≤ ‖φ‖L∞M0, (32)

in order to turn (31) into a differential inequality. (The upper bound in (32) is valid for 
all α ∈ Rn; the lower bound is valid for α ∈ Ω. We only require the upper bound for the 
purposes of global existence; the lower bound will be useful later.) We denote

r(t) = X(α1 + h, α−, t) −X(α1, α−, t)

in the following:

α1+h∫
α1

e0(ζ, α−)dζ − κM0‖φ‖L∞r(t) ≤ ṙ(t) ≤
α1+h∫
α1

e0(ζ, α−)dζ − κM0φ r(t). (33)

The proof of the bound (16) is completed simply by integrating the differential inequality 
(33) and taking t → +∞. It also shows (29) with ε(T ) = exp(−κM0‖φ‖L∞T ) > 0, for 
all T ≥ 0, provided e0 ≥ 0, so that the solution exists for all time.

Theorem 2.2. For any unidirectional initial data (u0, m0) ∈ Ck(Rn) × M+(Rn), there 
exists a unique global-in-time solution to (24) if and only if e0 ≥ 0.

Remark 2.3. The Lagrangian argument naturally offers more detailed information about 
the particle trajectories than the original approach of [12]. However, it should be noted 
that the Eulerian approach is stable to perturbations and extends global existence to 
‘almost’ unidirectional solutions.

2.3. Flocking estimates

We now establish flocking estimates for the Euler Alignment system. This will facil-
itate our stability analysis in the following subsection; furthermore, the exponentially 
decaying bound on ∇V will allow us to streamline the proof of Proposition 1.7 below. 
Note that in this subsection and the following one, we do not assume unidirectionality, 
but we do assume a heavy-tailed kernel.
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2.3.1. Basic flocking and alignment bounds
As above, we consider a flock of finite diameter and a compact domain Ω containing 

suppm0. We define the flock parameters as follows:

DΩ(t) = max
α,β∈Ω

|X(α, t) − X(β, t)|, AΩ(t) = max
α,β∈Ω

|V(α, t) − V(β, t)|.

Since the domain Ω is fixed for all time, one can mimic the standard flocking argument 
for the discrete Cucker–Smale system by applying the Rademacher Lemma. The result 
is

d
dtAΩ(t) ≤ −κM0φ(DΩ(t))AΩ(t).

In particular, for heavy-tailed kernels we obtain flocking and exponentially fast align-
ment:

sup
t≥0

DΩ(t) ≤ DΩ, AΩ(t) ≤ AΩ(0)e−κM0φ(DΩ)t. (34)

2.3.2. Bounds on the deformation tensor
The bound (34) has appeared previously in, for example, [23]. We now provide a new 

refinement of this flocking behavior by establishing estimates on the deformation tensor 
of the flow map. Differentiating (25), we obtain the following, for all t ≥ 0 and α ∈ Ω:

∇Ẋ(α, t) = ∇V(α, t), (35)

∇V̇(α, t) = −κ∇
X(α, t)
∫
Rn

∇φ(X(α, t) − X(γ, t)) ⊗ (V(α, t) − V(γ, t)) dm0(γ)

−∇V(α, t)
∫
Rn

φ(X(α, t) − X(γ, t)) dm0(γ).
(36)

Here, ∇
X(α, t) denotes the matrix transpose of ∇X(α, t). Combining (34)–(36), we get

d
dt‖∇X‖L∞(Ω) ≤ ‖∇V‖L∞(Ω),

d
dt‖∇V‖L∞(Ω) ≤ κM0‖∇φ‖∞AΩ(0)e−κM0φ(DΩ)t‖∇X‖L∞(Ω) − κM0φ(DΩ)‖∇V‖L∞(Ω).

Let us simply rewrite it as

ẋ ≤ v, v̇ ≤ ae−btx− bv, (37)

where a = κM0‖∇φ‖∞AΩ(0), b = κM0φ(DΩ). Indeed, denoting w = vebt we obtain

ẋ ≤ we−bt, ẇ ≤ ax.
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Multiplying by factors to equalize the right hand sides, we obtain

d
dt (ax

2 + e−btw2) ≤ 4axwe−bt ≤ 2e−bt/2√a(ax2 + e−btw2).

This immediately implies

ax2 + ebtv2 ≤ 4
√
a

b (ax2
0 + v2

0). (38)

In addition, we can read off bounds for each parameter individually:

x ≤ 2
a1/4b1/2

√
ax2

0 + v2
0 , v ≤ e−

bt
2 2a1/4

b1/2

√
ax2

0 + v2
0 . (39)

Noting that ∇X(·, 0) = Id, ∇V (·, 0) = ∇u0, the estimate (38) implies

a‖∇X‖2
L∞(Ω) + ebt‖∇V‖2

L∞(Ω) ≤
4
√
a

b

(
a + ‖∇u0‖2

L∞(Ω)

)
. (40)

2.4. Stability

We now turn our attention to stability estimates.

2.4.1. The KR distance
We measure the distance between two mass measures m′

t and m′′
t using the 

Wasserstein-1 metric W1. We assume these measures have equal mass M0 and zero mo-
mentum, and have support inside the same convex, compact set Ω. By the Kantorovich-
Rubinstein Theorem, the distance between two such measures μ and ν is

W1(μ, ν) = sup
Lip(f)≤1

∣∣∣∣∣∣
∫
Rn

f(γ)dμ(γ) −
∫
Rn

f(γ)dν(γ)

∣∣∣∣∣∣ . (41)

Note that a sequence of such measures with suppμn ⊂ Ω satisfies W1(μn, μ) → 0 if and 
only if μn

∗
⇀ μ.

2.4.2. Stability of the flow map
Let us consider two solutions m′

t, m′′
t on a common time interval of existence [0, T ), 

and let (X′, V′) and (X′′, V′′) denote the associated flow maps. We also denote the flock 
parameters by D′

Ω, D′′
Ω, A′

Ω, A′′
Ω, and the initial velocities by u′

0, u′′
0 . Clearly,

d
dt‖X

′ − X′′‖L∞(Ω) ≤ ‖V′ − V′′‖L∞(Ω).

For the velocities, note that ‖V′ − V′′‖L∞(Ω) is a Lipschitz function in time; assume 
without loss of generality it is differentiable at time t. Let � ∈ (Rn)∗, |�| = 1 and α ∈ Ω be 
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a maximizing couple such that at time t we have �[V′(α, t) −V′′(α, t)] = ‖V′−V′′‖L∞(Ω). 
Then again by Rademacher’s Lemma, we have

d
dt‖V

′ − V′′‖L∞(Ω) = �(V̇′(α, t) − V̇′′(α, t))

= κ

∫
Ω

φ(X′(α, t) − X′(γ, t))�[V′(γ, t) − V′(α, t)] dm0(γ)

− κ

∫
Ω

φ(X′′(α, t) − X′′(γ, t))�[V′′(γ, t) − V′′(α, t)] dm′′
0(γ)

= κ

∫
Ω

φ(X′(α, t) − X′(γ, t))�[V′(γ, t) − V′(α, t)][ dm′
0(γ) − dm′′

0(γ)]

+ κ

∫
Ω

[φ(X′(α, t) − X′(γ, t)) − φ(X′′(α, t) − X′′(γ, t))]

× �[V′(γ, t) − V′(α, t)] dm′′
0(γ)

+ κ

∫
Ω

φ(X′′(α, t) − X′′(γ, t))�
[
(V′(γ, t) − V′′(γ, t)) − (V′(α, t)

− V′′(α, t))
]
dm′′

0(γ).

We label the terms on the right I, II and III and estimate them in turn. For I, we use 
the KR-distance:

|I| ≤ κ‖φ‖W 1,∞ (‖∇X′‖L∞A′
Ω(t) + ‖∇V′‖L∞)W1(m′

0,m
′′
0).

The second term is bounded by

|II| ≤ 2κM0‖∇φ‖∞‖X′ − X′′‖L∞(Ω)A′
Ω(t).

For the last term we use maximality of �[V′(α, t) −V′′(α, t)] and pull out the kernel first:

III = κ

∫
Ω

φ(X′′(α, t) − X′′(γ, t))�
[
(V′(γ, t) − V′′(γ, t)) − (V′(α, t) − V′′(α, t))

]
dm′′

0(γ)

≤ κφ(D′′
Ω(t))

∫
Ω

�
[
(V′(γ, t) − V′′(γ, t)) − (V′(α, t) − V′′(α, t))

]
dm′′

0(γ)

= κφ(D′′
Ω(t))�

⎡⎣∫
Ω

(V′(γ, t) − V′′(γ, t)) dm′′
0(γ)

⎤⎦− κM0φ(D′′
Ω(t))‖V′ − V′′‖L∞(Ω)

= κφ(D′′
Ω(t))�

∫
Ω

V′(γ, t)[ dm′′
0(γ) − dm′

0(γ)] − κM0φ(D′′
Ω(t))‖V′ − V′′‖L∞(Ω).
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In the last step we used (twice) equality of momenta: 
∫

V′ dm′
0 =

∫
V′′ dm′′

0 = 0. 
Continuing,

III ≤ κ‖φ‖∞‖∇V′‖L∞(Ω)W1(m′
0,m

′′
0) − κM0φ(D′′

Ω(t))‖V′ − V′′‖L∞(Ω).

Putting all the estimates together we obtain the system

d
dt‖X

′ − X′′‖L∞(Ω) ≤ ‖V′ − V′′‖L∞(Ω),

d
dt‖V

′ − V′′‖L∞(Ω) ≤ 2κ‖φ‖W 1,∞ (‖∇X′‖L∞A′
Ω(t) + ‖∇V′‖L∞)W1(m′

0,m
′′
0)

+ 2κM0‖∇φ‖∞‖X′ − X′′‖L∞(Ω)A′
Ω(t)

− κM0φ(D′′
Ω(t))‖V′ − V′′‖L∞(Ω).

Using the estimate (38) on the deformation tensor and (34) on the diameter and ampli-
tude, we conclude

d
dt‖V

′ − V′′‖L∞(Ω) ≤ ae−bt
[
W1(m′

0,m
′′
0) + ‖X′ − X′′‖L∞(Ω)

]
− b‖V′ − V′′‖L∞(Ω).

So, we obtain the same system (37) as in our flocking estimates, but for the new pair

x = W1(m′
0,m

′′
0) + ‖X′ − X′′‖L∞(Ω), v = ‖V′ − V′′‖L∞(Ω).

Using (39) and recalling that our initial quantities are now

x(0) = W1(m′
0,m

′′
0) and v(0) = ‖u′

0 − u′′
0‖L∞(Ω),

we obtain the following for kernels with heavy tail

‖X′ − X′′‖L∞(Ω) ≤ C
[
W1(m′

0,m
′′
0) + ‖u′

0 − u′′
0‖L∞(Ω)

]
, (42)

‖V′ − V′′‖L∞(Ω) ≤ Ce−ct
[
W1(m′

0,m
′′
0) + ‖u′

0 − u′′
0‖L∞(Ω)

]
. (43)

The above inequalities hold for all time t ∈ [0, T ), and C, c > 0 depend only on the initial 
diameters of the flocks, the common mass M0, and the kernel φ.

2.4.3. Stability of the mass measure
The estimates (42) and (43) already express stability of the characteristics of the flock; 

however, the ultimate application lies in estimating the KR-distance W1(m′
t, m

′′
t ) and 

establishing contractivity of the dynamics. Toward this end, let us fix a function f with 
Lip(f) ≤ 1, and write
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∫
Ω

f(γ) dm′
t(γ) −

∫
Ω

f(γ) dm′′
t (γ) =

∫
Ω

f(X′(γ, t)) dm′
0(γ) −

∫
Ω

f(X′′(γ, t)) dm′′
0(γ)

=
∫
Ω

f(X′(γ, t))[ dm′
0(γ) − dm′′

0(γ)] −
∫
Ω

[f(X′(γ, t)) − f(X′′(γ, t))] dm′′
0(γ)

≤ Lip(f(X))W1(m′
0,m

′′
0) + M0‖X′ − X′′‖L∞(Ω).

Using Lip(f(X)) ≤ ‖∇X(t)‖L∞ and applying the deformation and stability estimates 
(40), (42), we get

W1(m′
t,m

′′
t ) ≤ C

[
W1(m′

0,m
′′
0) + ‖u′

0 − u′′
0‖L∞(Ω)

]
.

Since this estimate holds for all time, passing to the limit t → ∞ we make the same 
conclusion for the limiting measures m′ := X′

�m
′
0 and m′′ := X′′

�m
′′
0 :

W1(m′,m′′) ≤ C
[
W1(m′

0,m
′′
0) + ‖u′

0 − u′′
0‖L∞(Ω)

]
.

3. Concentration of mass for unidirectional solutions

3.1. Horizontal slices of X and the Lebesgue decomposition of m

In this section, we use (16) to establish the remaining properties of the limiting flow 
map that comprise the statement of Proposition 1.2. Then we prove Theorem 1.3 as a 
consequence.

3.1.1. Consequences of (16)
We use the following notation:

Ωα− = {α1 ∈ R : (α1, α−) ∈ Ω}, Zα− = {α1 ∈ R : (α1, α−) ∈ Z},
Pα− = {α1 ∈ R : (α1, α−) ∈ P} = R\Zα− , Xα−(α1) = X(α1, α−).

The statements in the following Corollary must be collected, but their proofs are 
trivial using (16).

Corollary 3.1. For each α− ∈ Rn−1, the following statements are true:

• The map Xα− is monotonically increasing, with Xα−(β) = Xα−(γ) if and only if ∫ γ

β
e0(ζ, α−)dζ = 0.

• The map α1 �→ Xα−(α1) is absolutely continuous, therefore a.e. differentiable. Fur-
thermore, we have the following upper and lower bounds, valid for α = (α1, α−) ∈
Ω\∂Z:

e0(α1, α−)
κM ‖φ‖ ∞

≤ ∂α1Xα−(α1) ≤
e0(α1, α−)
κM φ

. (44)

0 L 0
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Next, we demonstrate that the bound (16) can be used to estimate the effect of X on 
the Lebesgue measure of a set.

Proposition 3.2. Let E be a bounded, measurable subset of R. Then

1
κM0‖φ‖L∞

∫
E

e0(α1, α−) dα1 ≤ |Xα−(E)| ≤ 1
κM0φ

∫
E

e0(α1, α−) dα1. (45)

The upper bound requires the additional assumption that E ⊂ Ωα− . In particular,

|Xα−(Zα−)| = 0. (46)

Proof. It suffices to prove the bounds for open sets E, using outer regularity to extend 
them to all bounded measurable sets. We prove the upper bound first. Writing E as a 
countable union of disjoint open intervals (βi, γi), we have from (16) that

|Xα−(E)| ≤
∞∑
i=1

|Xα−(βi) −Xα−(γi)| ≤
1

κM0φ

∫
E

e0(α1, α−) dα1.

This proves the upper bound, and (46) follows. Next, write E\Zα− as a countable union 
of disjoint open intervals (β̃i, ̃γi). Then using (46), (16), and the fact that Xα− is strictly 
increasing on Pα− (and therefore maps disjoint open intervals in Pα− to disjoint open 
intervals in R), we get

|Xα−(E)| = |Xα−(E\Zα−)| =
∞∑
i=1

|Xα−(β̃i)−Xα−(γ̃i)| ≥
1

κM0‖φ‖L∞

∫
E

e0(α1, α−) dα1,

which establishes the lower bound. �
Integrating the inequalities (45) over Rn−1 yields the following Corollary, which com-

pletes the proof of Proposition 1.2.

Corollary 3.3. Let E be a bounded, measurable subset of Rn. Then

1
κM0‖φ‖L∞

∫
E

e0(α) dα ≤ |X(E)| ≤ 1
κM0φ

∫
E

e0(α) dα. (47)

The upper bound requires the additional assumption that E ⊂ Ω. In particular,

|X(Z)| = 0. (48)
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3.1.2. Proof of Theorem 1.3
The results of the previous subsection allow us to establish Theorem 1.3.

Proof of Theorem 1.3. Let E be a Lebesgue null set. Then E∩X(P) = X(X−1(E) ∩P) is 
also Lebesgue null, whence 

∫
X−1(E)∩P e0(α) dα = 0 by the lower bound in Corollary 3.3. 

Since e0 > 0 on X−1(E) ∩ P, this implies that X−1(E) ∩ P is Lebesgue null. Thus,

X�(ρ01P dx)(E) =
∫

X−1(E)∩P

ρ0 dx = 0.

This proves that X�(ρ01P dx) � dx. Next, we note that the support of X�(ρ01Z dx + dν)
is contained in X(Z ∪ supp ν), which is Lebesgue null by Corollary 3.3. This proves that 
X�(ρ01Z dx + dν) ⊥ dx.

The formula for ρ◦X in (19) follows simply from the fact that ρdx is the pushforward 
of ρ01P dx under X (and det∇X = ∂α1X). Similarly, we have ρ(X(·, t), t) = ρ0

∂α1X
.

Peeking ahead to (the easy part of) Proposition 3.4, we see that ∂α1X → ∂α1X

uniformly as t → +∞; since ∂α1X ≥ c > 0 on compact subsets of P, it follows that 
ρ(X(·, t), t) → ρ ◦ X uniformly on compact subsets of P. This completes the proof. �
3.2. Regularity of X and the concentration set

3.2.1. Regularity of X
We have already seen that X is a continuous function, being the uniform limit of the 

maps X(·, t) as t → +∞. We have also used (16) to study the regularity of X in the x1
direction, but we have not proved anything about the other directions. We rectify this 
situation presently and prove that X is C1 off of ∂Z. The two bounds (15) (established 
in [12]) and (40) (established in Section 2.3 above) make this relatively straightforward.

Proposition 3.4. The map X is continuously differentiable on Rn\∂Z, and ∇X(t) con-
verges uniformly on compact subsets of Rn\∂Z as t → +∞.

The statement above of course implies that the limit is ∇X away from Rn\∂Z.

Proof. Taking a spatial derivative of the equation

Ẋ(α, t) = u(X(α, t), α−, t)

yields

∂α1Ẋ(α, t) = ∂x1u(X(α, t), α−, t)∂α1X(α, t); (49)

∂αj
Ẋ(α, t) = ∂x1u(X(α, t), α−, t)∂αj

X(α, t) + ∂xj
u(X(α, t), α−, t), j �= 1. (50)
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Combining (49) and (50) with the exponential decay of ∇u along trajectories originating 
in Pε ∩ Ω, we conclude that ∇αX(t) → ∇αX uniformly on any Pε ∩ Ω and thus that X
is C1 on P.

We now show that ∇αX(t) converges uniformly on Z ∩ Ω, which will guarantee that 
X is continuously differentiable in the interior of Z. This is slightly harder than working 
inside Pε ∩Ω, since we no longer have the bound (15). Instead, we take advantage of the 
fact that

e(X(α, t), t) = 0, α ∈ Z, (51)

and

∂x1u(X(α, t), α−, t) = −κφ ∗mt(X(α, t)) ≤ −κM0φ, α ∈ Z ∩ Ω. (52)

Inserting (52) into (49) already shows that ∂α1X(α, t) → 0 uniformly on Z ∩ Ω, and 
so we recover the fact that ∂α1X(α) ≡ 0 in the interior of Z (which we already knew).

Now assume j �= 1. We proceed using the identity

∂αj
X(α, t) =

∂xj
u(X(α, t), t) − ∂αj

V (α, t)
κφ ∗mt(X(α, t)) , α ∈ Z. (53)

Since we already know by (40) that ∂αj
V → 0 uniformly on Ω, and that φ ∗

mt(X(·, t), t) is bounded away from zero on Z∩Ω, it suffices to show that ∂xj
u(X(·, t), t)

and φ ∗mt(X(·, t)) converge uniformly on Z ∩Ω as t → +∞. The second of these points 
is clear. Indeed,

φ ∗mt(X(α, t)) =
∫

φ(X(α, t) − X(γ, t)) dm0(γ) →
∫

φ(X(α) − X(γ)) dm0(γ),

uniformly in α ∈ Ω, by the uniform convergence of X to X and the continuity of φ.
As for the term ∂xj

u(X(α, t), t), we write

d
dt∂xj

u(X(α, t), t) =
∫
Rn

∂xj
φ(X(α, t) − y)(u(y, t) − u(X(α, t), t)) dmt(y)

− e∂xj
u(X(α, t), t).

Using (51), we get∣∣∣∣ d
dt∂xj

u(X(α, t), t)
∣∣∣∣ ≤ ‖φxj

‖L∞M0A(t) ≤ Ce−δΩt, α ∈ Z ∩ Ω. (54)

We may thus conclude that the function ∂xj
u(X(α, t), t) converges uniformly on Z ∩ Ω, 

as t → +∞. This completes the proof. �
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3.2.2. Proof of Theorem 1.8
We now prove Theorem 1.8. The heavy lifting has been done already; we just need to 

put together the relevant statements.

Proof. Let f and U be as in the statement of Theorem 1.8. Denote Uα− = {α1 ∈ U :
(α1, α−) ∈ U}. Then since U ⊂ Z, we have

Xα−(Uα−) = f(α−),

by (16). Thus

X(U) = {(Xα−(Uα−), α−) : α− ∈ U−} = {(Xα−(f(α−)), α−) : α− ∈ U−}.

Since X is C1 in the interior of Z and α− �→ (f(α−), α−) takes values in U , it follows 
that the function α− �→ X(f(α−), α−) is C1, so that X(U) is the graph of a C1 function.

Next, assume that U = Z, as in the second part of Theorem 1.8. Denote

dμx−
Z (x1) = (Xx−)�(1Zρ0(x1, x−) dx1).

Then we have

dμZ(x) = dμx−
Z (x1) dx−,

just by unpacking the notation; we claim that in fact

dμx−
Z (x1) = c(α−)δf(x−)(x1), c(x−) =

∫
Zx−

ρ0(x1, x−) dx1.

Indeed, suppμ
x−
Z ⊂ Xx−(Zx−) = {f(x−)}, and μx−

Z ({f(x−)}) =
∫
X

−1
x− ({f(x−)}) ×

ρ0(x1, x−) dx1 = c(x−), which proves the claim. The final statement of the Theorem, on 
the regularity of c(x−), is clear. �
4. Fine properties of m and X in dimension 1

In this section we restrict attention to the case of a single space dimension, n = 1. 
Our main goal in this section is the proof of Theorem 1.9, but more generally, we seek 
to demonstrate how we can tune e0 to manipulate the fine properties of the limiting 
measure and flow map.

4.1. Tuning the dimension of X(Z)

In this subsection, we construct an e0 whose zero set Z is a Cantor-type set of positive 
measure, such that X(Z)) has a specified dimension in (0, 1). The construction will prove 
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the sharpness claim in Theorem 1.9. We wait until the next subsection to spell out this 
connection explicitly.

Let g : R → R be smooth, nonnegative function, with {x : g(x) > 0} = (−1
2 , 

1
2 ). 

Choose γ ∈ (0, 12 ) and β ∈ (0, 1). We start with the interval [0, 1] and remove the open 
center interval J1

1 of length γ. Call the remaining (closed) intervals I1
1 and I2

1 . Then 
remove the middle open intervals of length γ2 from each of I1

1 and I2
1 . Call the removed 

intervals J1
2 and J2

2 , respectively, and denote the remaining closed intervals I1
2 , . . . , I

4
2 . 

We continue this process indefinitely. For each j ∈ N, k ∈ {1, . . . , 2j−1}, let cj,k denote 
the center of the interval Jk

j .
We set

e0(α) =
∞∑
j=1

2j−1∑
k=1

βjg

(
α− cj,k

γj

)
, α ∈ [0, 1], (55)

with e0 > 0 on R\[0, 1], so that

Z =
∞⋂
j=1

Zj , Zj :=
2j⋃
k=1

Ikj . (56)

That is, Z is a standard Cantor-like set of measure 1 − γ − 2γ2 − 4γ3 − · · · = 1−3γ
1−2γ . In 

particular, the Hausdorff dimension of Z is 1. On the other hand, the dimension of the 
image X(Z) depends on β and γ, according to the following Proposition.

Proposition 4.1. With Z as defined in (56), the set X(Z) has Hausdorff dimension and 
box counting dimension equal to ln 2

− ln(βγ) :

dimH(X(Z)) = dimbox(X(Z)) = ln 2
− ln(βγ) .

Note that by adjusting β ∈ (0, 1) and γ ∈ (0, 12 ), we can obtain any dimension between 
0 and 1.

We refrain from recalling the standard definitions of the Hausdorff and box-counting 
dimensions, but we remind the reader that the relationship between the Hausdorff di-
mension and box-counting dimension is summarized in the following inequality:

dimH(E) ≤ dimbox(E) ≤ dimbox(E). (57)

The quantities in this inequality denote the Hausdorff dimension, lower box-counting 
dimension, and upper box-counting dimension. If the upper- and lower- box-counting 
dimensions agree, their common value is the box-counting dimension (without qualifiers), 
denoted dimbox(E). Thus, in order to prove the Proposition, it suffices to prove an 
upper bound on the upper box-counting dimension, and a lower bound on the Hausdorff 
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dimension. We prove the former ‘by hand’, but for the latter, we make use the following 
special case of Frostman’s Lemma. (For a more general statement, see for example [17].)

Lemma 4.2 (Frostman). Let E be a Borel subset of R. Suppose there exists a Borel 
measure μ satisfying the following two conditions:

• There exist constants c > 0 and s ∈ [0, 1] such that for all x ∈ R and r > 0, the 
bound μ((x − r, x + r)) < crs holds.

• μ(E) > 0.

Then dimH(E) ≥ s.

Proof. Choose δ > 0 and cover E by countably many intervals Ii = (xi − ri, xi + ri), 
with ri < δ. Then

0 < μ(E) ≤
∑

μ(Ii) ≤
∑

crsi

This shows that μ(E) � Hs
δ(E), for all δ > 0, from which the conclusion follows. �

Proof of Proposition 4.1. Step 1: Upper Bound on the Box-Counting Dimension. For 
each k ∈ N, our construction of e0 involves a sum of 2k−1 ‘bump’ functions of height 
order βk and width order γk. For j ≤ k− 1, these bump functions are distributed evenly 
among the 2j intervals I1

j , . . . , I
2j

j (whose union contains Z). Thus, for each j, k ∈ N, we 
have

|X(Ikj )| ∼
∫
Ik
j

e0(α) dα ∼ 1
2j

∞∑
�=j+1

2�(βγ)� ∼ (βγ)j , (58)

where the first comparison follows by (16). Consequently, X(Z) can be covered by 2j
intervals of length ∼ (βγ)j , for each j ∈ N. It follows that for any sufficiently large c > 0, 
we have

ln(N(c(βγ)j ;X(Z)))
− ln(c(βγ)j) ≤ ln(2j)

− ln(c(βγ)j)
j→∞−→ ln 2

− ln(βγ) ,

whence

dimbox(X(Z)) ≤ ln 2
− ln(βγ) . (59)

Step 2: Lower Bound on the Hausdorff Dimension. We verify the hypotheses of Frost-
man’s Lemma with μ = μZ , s = ln 2

− ln(βγ) .
Choose x ∈ R, r > 0 small (without loss of generality), and choose j ∈ N so that 

r ∼ (βγ)j (and thus 2−j ∼ rs). Clearly, the interval I∗ := (x − r, x + r) satisfies
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|I∗| ∼ (βγ)j ∼ |X(Ikj )| for any k ∈ N. It follows that I∗ intersects O(1) intervals in 

of the form X(Ikj ), k = 1, . . . , 2j , whence X
−1(I∗) intersects O(1) intervals of the form 

Ikj , k = 1, . . . , 2j . (That is, the number of intervals yielding a nonempty intersection is 
bounded above by a constant independent of j and r.) We conclude that

μZ((x− r, x + r)) = m0(X
−1(I∗) ∩ Z) Definition of μZ

� max
k

m0(Ikj ) O(1) intersections

= 2−j ρ0 ≡ 1 on Z,

∼ rs choice of j.

This shows that the hypotheses of Frostman’s Lemma are satisfied, so that

dimH(X(Z)) ≥ s = ln 2
− ln(βγ) . (60)

Combining (59) and (60) completes the proof of the Proposition. �
4.2. Regularity of e0 and the dimension of X(Z)

In the example of the previous subsection, we allowed ourselves to adjust both β and γ
in order to get the conclusion that any box-counting dimension is possible. However, by 
adjusting β only, we can of course still obtain any dimension between 0 and − ln(2)/ ln(γ). 
Since Z depends only on γ and not on β, this already demonstrates that the dimension 
of X(Z) depends not only on Z itself, but on the way e0 approaches zero near Z, as 
encoded in the parameter β. In fact, note that e0 ∈ Ck if and only if β ≤ γk, and the 
latter implies

dimbox(X(Z)) = ln 2
− ln(βγ) ≤ ln 2

−(k + 1) ln(γ) <
1

k + 1 , if e0 ∈ Ck(R).

This motivates the statement of Theorem 1.9, whose proof we give presently.

Proof of Theorem 1.9. We have essentially already proved the sharpness part, since if 
β = γk in Proposition 4.1, we see that

dimbox(X(Z)) = 1
k + 1 · ln 2

ln(1/γ) ,

and the right side can be made arbitrarily close to 1
k+1 if γ is sufficiently close to 1

2 .
Next, we prove (22) in the case where e0 ∈ Ck(R); the statement for e0 ∈ C∞ follows 

immediately. Assume without loss of generality that Z is a perfect set (i.e., contains no 
isolated points). Then e0 and its first k derivatives vanish at any point of Z, so that the 
Taylor expansion of e0 gives
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e0(α) � dist(α,Z)k. (61)

Now, for any r > 0, we can cover Z by 2N(r; Z) intervals of radius r centered at points 
(xi)2N(r;Z)

i=1 in Z. We can cover X(Z) by the images of these intervals; using (16) and 
(61), we can bound the length of these images:

|X(xi − r, xi + r))| �
∫

(xi−r,xi+r)

e0(α) dα �
r∫

0

αk dα � rk+1. (62)

It follows that for some C > 0 and all sufficiently small r > 0, we may thus write

N(Crk+1;X(Z)) ≤ 2N(r; Z), r > 0,

and thus

ln(N(Crk+1; X(Z)))
− ln(Crk+1) ≤ ln 2N(r; Z)

−(k + 1) ln r − lnC

Taking r → 0+ yields the desired conclusion. �
4.3. Local dimension of m

We argued above that the dimension of X(Z) depends on both Z and the rate at 
which e0 approaches zero near Z; we used smoothness of e0 to control the latter. We 
now demonstrate that something similar is true for the local dimension of m, using a 
simpler construction. The following Proposition gives an example of how to tune e0 to 
obtain a given local dimension of m at a specified point. The Proposition is stated for 
an isolated point of Z, near which ρ0 is constant and e0 is a power-law function.

Proposition 4.3. Assume that ρ0 and e0 are both even functions, and that (as usual) 
u0 = 0. Let p be any real number greater than 1, and assume that for some δ > 0, we 
have

ρ0(α) = 1, e0(α) = p|α|p−1, |α| < δ.

Then the local dimension d(x, m) of m at x = 0 is

d(0,m) := lim
r→0

ln(m(−r, r))
ln r

= 1
p
.

Since p > 1 is arbitrary, it follows that any local dimension in [0, 1] can be attained. 
(The cases d(0, m) = 0, 1 are trivial.)
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Proof. Note first of all that the hypotheses guarantee that X is an odd function. Choose 
r > 0 small, and then choose s > 0 such that X(s) = r. Then

m(−r, r) = m(−s, s) = 2s.

On the other hand, if r is small enough so that s < δ, then by (16), it follows that

sp

‖φ‖L∞
= 1

‖φ‖L∞

s∫
0

e0(α) dα ≤ κM0r ≤ 1
φ

s∫
0

e0(α) dα = sp

φ
. (63)

Thus

ln 2s
lnCsp

≤ ln(m(−r, r))
ln r

≤ ln 2s
ln csp

Taking r → 0+ yields the desired statement. �
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