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Mathematical Aspects of Self-

Organized Dynamics
Consensus, Emergence of Leaders, and Social

Hydrodynamics
By Eitan Tadmor

Simulation of agent-based Vicsek dynamics and the corresponding macroscopic
density/velocity fields. Courtesy of Sebastien Motsch.

Left: The agent-based Vicsek dynamics [2]. Right: The corresponding macroscopic
density/velocity fields. These should be compared with the hydrodynamic description of the
Vicsek model in P. Degond and S. Motsch, (2008), Continuum limit of self-driven particles with
orientation interaction, Math. Mod. Meth. Appl. Sci., 18 1193-1215.”

Nature and human societies offer many examples of self-organized behavior. Ants form
colonies, birds fly in flocks, mobile networks coordinate a rendezvous, and human opinions
evolve into parties. These are simple examples of collective dynamics that tend to self-
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organize into large-scale clusters of colonies, flocks, parties, etc. A standard framework for
such collective dynamics is based on environmental averaging

t + At Z a”p] Z Ai; = 1.

(1

The "environment" in this case consists of N agents, identified by their time-dependent vector
of features p; (t) Each agent modifies its features by a weighted average of features from the
neighboring agents pj(t). These weighted averages are quantified (1) in terms of non-
negative weights, a;; > 0. Two prototypical examples are the Hegselmann-Krause model for
opinion dynamics [1] in which p; (t) encodes vectors of "opinions," and the Vicsek model for
flocking [2] where each p; (t) = (xi(t),w; (t)) encodes the location and orientation. We can
express the dynamics in a more general form as a process of alignment,

pi(t + At) = p; (t) + oAt Z aij(pj — pi),
J#

)

Here, agent p; (t) aligns its features at a rate proportional to a weighted average of the
differences relative to its "neighbors" {pj —pi}.The positive parameter quantifies the
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frequency of alignment; the specific case & = 1/At recovers environmental averaging. The
Cucker-Smale alignment model for flocking [3] where p;(t) = (x;(t),vi(t)) encodes the
location and velocity, serves as an example.

Different models distinguish themselves with different weights, a;;, which quantify the
communication between every pair of agents. Typically, they involve an influence function, ¢,

1 N
aij = mﬂ\%’(t) —z;(t)]),  deg(t) kz:;sﬁ lzk (t) — z; (t)]).

@)

The Hegselmann-Krause model is local; it is driven by compactly-supported influence
functions so that each agent interacts only with those that have similar opinions.
Similarly, the Vicsek model involves local influence functions, but with additional
stochastic noise. Cucker-Smale models involve global gb's, where degi = N, or local
ones advocated in [4].

We note in passing the tacit assumption that the alignment in (3) depends on the notion
of geometric distance. But this need not apply in general cases, for example, when
measuring distances between vectors of opinions, or when the alignment dynamics is
dictated by topological neighborhoods. Indeed, the latter is motivated by the detailed
observations carried out in the STARFLAG project (2008), indicating that birds
communicate with a fixed number of neighbors rather than a fixed geometric
neighborhood.

These examples are part of a larger paradigm advocated by I. Aoki (1982) and C.
Reynolds (1987), in which different rules for repulsion (in the "immediate vicinity" of
each agent) and "far-field" attraction (cohesion) augment the mid-range alignment (2).
Models based on this paradigm are found in different disciplines, including aggregation
of bacteria and swarming in biology, complex networks which arise as a result of
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human interactions in social sciences (opinion dynamics and traffic networks, for
example), and production lines and robotic networks in engineering. Different disciplines
utilize different approaches to study such systems. Biologists inquire whether the
observed self-organized patterns are system specific, while physicists seek analogies
between different near-equilibrium patterns. Computer scientists trace their graph
dynamics while engineers may ask how to control such systems.

The rapidly-growing mathematical literature devoted to such systems addresses
several natural questions which arise in this context. We focus on two of them,
associated with the important limits of ¢ — 0o and N — oo.

(i) What is the large-time behavior of (2),(3) and what are the more general classes of
alignment models as t — o0 ? In particular, what types of "rules of engagement" lead
to the emergence of clusters and other more complex large-scale patterns? When the
dynamics is global in the sense that every agent is able to communicate with every
other agent (aij > 0), the agents will approach one cluster. Thus, the large-time
behavior of global alignment leads to consensus. In more realistic scenarios, however,
the communication is local, that is, the influence function ¢ vanishes when two agents
with features far apart attempt to communicate. In these cases, the important question
of reaching a consensus is more subtle because it depends on the propagation of
connectivity of the underlying graph associated with the time-dependent matrix
aij = aij(p(t)). The propagation of connectivity is intimately related to the specific
“rules of interactions.” A particularly intriguing aspect of this issue was observed in [4]:
if the influence function phi is heterophilious in the sense that it is increasing over its
finite support, then it is likely to produce a few/fewer clusters, and eventually will
evolve to a consensus shown in Figure 1. This counter-intuitive consequence of
heterophilious dynamics is of potential importance in applications. Why is it only the
“likely” behavior of heterophilious dynamics? This is due to lack of stability for general
agent-based dynamics with a fixed (small) number of agents.

Opinions x;
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Figure 1. (Heterogeneous dynamics). Large-time behavior of Hegselmann-Krause model
with 100 uniformly distributed opinions [4]. Left: Influence function ¢(7") = 1{0<T<1} yields
four parties. Right: Emergence of consensus with increasing ¢(r) := 0'1{r<i}
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There are many other related aspects involved in different “rules of engagement” of
collective dynamics, of which we mention three.

An important aspect in the self-organization of many mechanical systems is
synchronization. The prototype is the Kuramoto model [5], which encodes the
orientation of coupled oscillators, p; (t) = ewf'(t), governed by the coupling function
() = sinf/0. 1t is also important to note that distances measured in realistic
scenarios of “living” agents can only be estimated. This is the source for stochastic
noise as in the Vicsek model, which leads to phase transition [2]. Finally, the
underlying assumption in (2),(3) is that agents align with their neighbors along the
radius vector of their respective positions, through vision (flocking), lasers (robots), etc.
Unlike physical particles, however, ‘living” agents do not necessarily act along their
relative radius vectors. Consider for example pheromones rather than vision, or the way
humans follow the influential ideas of those who are “ahead.” In these cases, the
interaction among agents may take place along projections on their relative
trails. “Living” agents take into account only those neighbors who are “moving ahead” in
a forward cone, which leads to the emergence of leaders illustrated in Figure 2.
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Figure 2. (Emergence of Leaders) from random initial conditions at t=0 (left), followed by
snapshots at t=0.5 and t=5.

A key issue in systems with a large number of agents is understanding their group
behavior rather than tracing the dynamics of each of their agents. This brings us to the
second question. (ii) What is the qualitative behavior of self-organized dynamics for
very large groups (N—> oo)? Agent-based models like (2),(3) lend themselves to
standard kinetic and hydrodynamics descriptions.

For a kinetic description, consider an ensemble of a large number of agents with time-
dependent distribution f(t, X, V) which realizes the (assumed large N-limit of the
empirical distribution of agents, 1/NXdz,, (%) @) v, (V). Expressed in terms of its
macroscopic density, p(t,x) :== [ f(t,x,v)dv, and momentum,
m(t,x) := [vf(t,x,v)dv, the dynamics of such an ensemble is governed by the Viasov-
Fokker-Planck equation

fi+v-Vof + V- (u=v)f) = oA f

(4)

The third term on the left represents alignment towards the mean velocity u = TTI/? , while the
term on the right represents diffusion due to possible noise. Studying the stability around
global Maxwellians associated with (4) addresses the difficulties in analyzing the stability of

agent-based dynamics with a fixed number of agents.

A further simplification is obtained with the macroscopic description of self-organized
dynamics. It is governed by conservation of mass, p; + V - (pu) = (0 coupled with the
balance equation

w tu-Vout (5)VeP = o= [ ¢(|x - yl) (uly) — ux)o(y)dy
deg(t, x) := ¢ * p.
(®)

The pressure term on the left encodes the closure of (4) and the expression on the right of (5)



is the alignment towards the shifted means. Both terms are model-dependent. When ¢ is
singular, it can be viewed as fractional-order Laplacian; when ¢ is global, it is reminiscent of
the nonlocal means found in image processing. In the present context of social
hydrodynamics, (5) involves local smooth ¢'s. We know that if smooth solutions of (5) exist,
they must flock. But alignment-based models reflect the competition on resources; left
unchecked, it may lead to finite-time “blow-up.” This is where the closure with additional
repulsion forces in the form of compressible (or incompressible) pressure comes into play.
Current work includes analytical and computational methods to study the stability of such
systems, specifically, whether the regularity of their solutions persists in time and what large-
scale structures emerge from the social hydrodynamics governed by (5).

More on the current work including open questions concerning the modeling, analysis, and
computation of collective dynamics can be found in [4] and the references therein.
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