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Abstract

We study the large-time behavior of a hydrodynamic model which describes the
collective behavior of continuum of agents, driven by pairwise alignment interac-
tions with additional external potential forcing. The external force tends to compete
with the alignment which makes the large time behavior very different from the
original Cucker–Smale (CS) alignment model, and far more interesting. Here we
focus on uniformly convex potentials. In the particular case of quadratic potentials,
we are able to treat a large class of admissible interaction kernels,φ(r) � (1+r2)−β

with ‘thin’ tails β � 1—thinner than the usual ‘fat-tail’ kernels encountered in CS
flocking β � 1/2; we discover unconditional flockingwith exponential convergence
of velocities and positions towards a Dirac mass traveling as harmonic oscillator.
For general convex potentials, we impose a stability condition, requiring a large
enough alignment kernel to avoid crowd scattering. We then prove, by hypocoer-
civity arguments, that both the velocities and positions of a smooth solution must
flock.We also prove the existence of global smooth solutions for one and two space
dimensions, subject to critical thresholds in initial configuration space. It is inter-
esting to observe that global smoothness can be guaranteed for sub-critical initial
data, independently of the apriori knowledge of large time flocking behavior.
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1. Introduction

We are concernedwith the hydrodynamic alignment model with external poten-
tial forcing:

⎧
⎨

⎩

∂tρ + ∇x · (ρu) = 0,

∂tu + u · ∇xu =
∫

φ(|x − y|)(u(y, t) − u(x, t))ρ(y, t) dy − ∇U (x).
(1.1)

Here (ρ(x, t),u(x, t)) are the local density and velocity field of a continuum of
agents, depending on the spatial variables x ∈ � = R

d or T
d and time t ∈ R�0.

The integral term on the right represents the alignment between agents, quantified in
terms of the pairwise interaction kernel φ = φ(r) � 0. In many realistic scenarios,
agents driven by alignment are also subject to other forces—external forces from
environment, pairwise attractive-repulsive forces, etc. Such forces may compete
with alignment,whichmakes the large timebehavior very different from the original
potential-free model and far more interesting. One of the simplest types of external
forces is potential force, given by the fixed external potential U (x) on the right of
(1.1). This is the main topic on the current work.

The system (1.1) is a realization of the large-crowd dynamics of the agent-
based system in which N � 1 agents identified with their position and velocity
pair, (xi (t), vi (t)) ∈ (� × R

d), are driven by Cucker–Smale (CS) alignment [4,5],
with additional external potential force

⎧
⎪⎨

⎪⎩

ẋi = vi

v̇i = 1

N

∑

j �=i

φ(|xi − x j |)(v j − vi ) − ∇U (xi )
i = 1, . . . , N . (1.2)

In the absence of any other forcing terms, both the agent-based system (1.2) and
its large crowd description (1.1) have been studied intensively in the last decade.
The most important feature of the potential-free CS model, (1.2) with U ≡ 0, is
its flocking behavior: for a large class of interaction kernels satisfying the ‘fat tail’
condition,

∫ ∞

0
φ(r) dr = ∞, (1.3)

and the global alignment of velocities follows [7,8], |vi (t) − v j (t)| t→∞−→ 0. The
corresponding potential-free continuum system, (1.1) with U ≡ 0, was studied in
[2,7,8,11]; the large time behavior of its smooth solutions is captured by flocking,

|u(x, t)−u(y, t)|ρ(x)ρ(y)
t→∞−→ 0, similar to the underlying discrete system.More-

over, the existence of one- and two-dimensional global smooth solutionswas proved
for a large class of initial configurations which satisfy certain critical threshold con-
dition, [1,9,13,14,16] and general multiD problems with nearly aligned initial data
[6,12].
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In this paper we study the alignment dynamics in the d-dimensional continuum
system (1.1). The dynamics of (1.1) is driven by the decay of its total energy,

E(t) :=
∫ (

1

2
|u(x, t)|2 +U (x)

)

ρ(x, t) dx. (1.4)

The fundamental bookkeeping of (1.1) is the L2-energy decay

d

dt
E(t) = −1

2

∫∫

φ(|x − y|)|u(x, t) − u(y, t)|2ρ(x, t)ρ(y, t) dx dy, (1.5)

which quantifies the decay rate of the energy in terms of energy fluctuations on the
right. A parallel study of the discrete alignment dynamics (1.2), which we omit,
can be carried out in terms of the corresponding discrete energy bookkeeping

d

dt

1

N

∑

i

(1

2
|vi |2 +U (xi )

)
= − 1

2N 2

∑

i, j

φ(|xi − x j |)|v j − vi |2.

We focus on the following two key aspects of the continuum alignment dynamics
(1.1):

• The Flocking Phenomena of Global Smooth Solutions, if they exist. Such
results are well known in the absence of external potential—smooth solutions sub-
ject to pure alignment must flock [8,9,16], but the presence of external potential has
a confining effect which competes with alignment. Here we explore the flocking
phenomena in the presence of uniformly convex potentials

aId×d � ∇2U (x) � AId×d , 0 < a < A. (1.6)

The upper-bound on the right is necessary for existence of 1D global smooth solu-
tions, consult Theorems 4.2–4.3 below; the uniform convexity on the left is neces-
sary for the flocking behavior. We discover, in Sect. 3, that both the velocities and
positions of smooth solution must flock at algebraic rate under a linear stability
condition (3.10), m0φ(0) > A√

a
. The necessity of a precise stability condition, at

least in the general convex case, remains open. We can be much more precise in
the special case of quadratic potentials,

U (x) = a

2
|x|2, a > 0. (1.7)

Here, in Sect. 2, we discover unconditional flocking of velocities and positions with
exponential convergence to a Dirac mass traveling as a harmonic oscillator. More-
over, the confining effect of the quadratic potential applies to interaction kernels,
φ(r) � (1 + r2)−β which allow for ‘thin’ tails β � 1—thinner than the usual
‘fat-tail’ kernels encountered in CS flocking (1.3).

•Existence of Smooth Solutions for all Time. In the absence of external force, the
existence of global smooth solutions of the one- and respectively two-dimensional
(1.1) was proved in [1,16] and respectively [9], provided the initial data is ‘below’
certain critical thresholds, expressed in terms of the initial data ρ0,∇ · u0, and the
spectral gap of ∇Su0. We mention in passing that in case of singular kernel φ, then
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smooth solutions exist independent of an initial threshold [13]). In the presence of
additional convex potential, (1.6), we discover that the critical thresholds still exist,
though they are tamed by the presence ofU (consult [17]). In particular, they limit
the maximal velocity maxt�0,x∈� |u(x, t)|. The case of quadratic potential (1.7) is
a special case: when U (x) = a

2 |x|2, it can be shown to have a limited affect on the
dynamics of the spectral gap of ∇Su (which is a crucial step of the regularity result
in [9]). Consequently, it further simplifies the quadratic critical threshold for global
regularity, requiring ∇ · u0 + φ ∗ ρ0 � 0, in agreement with the threshold of the
external-free case. These results are summarized in Sect. 4.

2. Statement of Main Results: Flocking with Quadratic Potentials

We focus attention to quadratic potentials, U (x) = a

2
|x|2, where (1.1) reads

as
⎧
⎨

⎩

∂tρ + ∇x · (ρu) = 0,

∂tu + u · ∇xu =
∫

φ(|x − y|)(u(y, t) − u(x, t))ρ(y, t) dy − ax.
(2.1)

2.1. General Considerations

We begin by recording general observations on system (1.1) which is subject to
sufficiently smooth data (ρ0,u0), such that ρ0 � 0 is compactly supported. Denote
the total mass

m0 :=
∫

ρ0(x) dx > 0.

• Interaction Kernels We assume that the system (1.1) is driven by an interaction
kernel from a general class of admissible kernels.

Assumption 2.1. (Admissible kernels) We consider (1.1) with interaction kernel φ
such that

(i) φ(r) is positive, decreasing and bounded : 0 < φ(r) � φ(0) := φ+ < ∞;
(2.2a)

(ii) φ(r) decays slow enough at infinity in the sense that
∫ ∞

rφ(r) dr = ∞.

(2.2b)

Note that (2.2b) allows for a larger admissible class of φ’s with thinner tails than
the usual ‘fat-tail’ assumption (1.3) which characterizes unconditional flocking
of potential-free alignment, e.g., the original choice of Cucker–Smale, φ(r) =
(1 + r2)−β, β � 1/2 is now admissible for the improved range β � 1.
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•VanishingMeansThe distinctive feature of the alignment dynamicswith quadratic
potential (2.1), is its Galilean invariance w.r.t. the dynamics of means. Thus, if we
let (xc,uc) denote the mean position and the mean velocity

⎧
⎪⎪⎨

⎪⎪⎩

xc(t) := 1

m0

∫

xρ(x, t) dx

uc(t) := 1

m0

∫

u(x, t)ρ(x, t) dx,
(2.3)

then the translated quantities centered around the means, ρ̂(x, t) := ρ(xc(t) +
x, t) and û(x, t) := u(xc(t) + x, t) − uc(t), satisfy the same system (2.1) with
vanishing mean location and mean velocity. We can therefore assume without loss
of generality, after re-labeling (ρ̂, û) � (ρ,u), that the solution of (2.1) satisfies

∫

xρ(x, t) dx ≡ 0,
∫

u(x, t)ρ(x, t) dx ≡ 0, for all t � 0. (2.4)

Remark that the same Galilean invariance is intimately related to the fact that
quadratic external forcing can be interpreted as pairwise interactions. Thus, in the
context of the discrete dynamics (1.2) with U = 1

2a|x|2 for example, we end up
with

⎧
⎪⎨

⎪⎩

ẋi = vi

v̇i = 1

N

∑

j �=i

φ(|xi − x j |)(v j − vi ) − a

N

∑

j �=i

(xi − x j ).
(2.5)

Indeed, themeans of (1.2)with this quadratic potential—the center ofmass xc(t) :=
1/N
∑

i xi and mean velocity uc(t) := 1/N
∑

i vi , satisfy (2.16) below; subtracting
the means, we find that the translated quantities xi �→ xi − xc(t), vi �→ vi − uc(t)
satisfy (2.5).

2.2. Bounded Support

A priori estimates for the growth rate of the support of ρ is the key for prov-
ing flocking results for admissible kernels φ with proper decay at infinity. For the
case without external potential, it is straightforward to show that the velocity varia-
tion max

t�0, x,y∈supp ρ(·,t) |u(x, t)−u(y, t)| is non-increasing, which implies the linear

growth, diam(supp ρ(·, t)) = O(t) which in turn yields the ‘fat-tail’ condition
(1.3). Here we show that confining effect of the external potential enforces the
support of ρ(·, t) to remain uniformly bounded.

To this end, define the maximal particle energy

P(t) := max
x∈supp ρ(·,t)

(1

2
|u(x, t)|2 +U (x)

)
. (2.6)

The confinement effect of the external potential shows that this L∞-particle energy
remains uniformly bounded in time. We then ‘pair’ the quadratic growth of U (x)
with the admissibility of thin-tails assumed in (2.2b), to show that supp ρ(·, t)
remains uniformly bounded.
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Lemma 2.2. (Uniformbounds onparticle energy) Let (ρ,u)be a smooth solution
to (2.1) with an admissible interaction kernel (2.2). Then the particle energy and
hence the support of ρ(·, t) remain uniformly bounded

a

8
D2(t) � P(t) � R0, D(t) := diam(supp ρ(·, t)). (2.7)

Here, the spatial scale R0 = R0(φ+,m0, a, E0, P0) is dictated by (2.11), below.

For the proof, follow the particle energy F(x, t) := 1
2 |u(x, t)|2 + U (x) along

characteristics

F ′ = ∂t F + u · ∇F

= u ·
(

−u · ∇u +
∫

φ(x − y)(u(y) − u(x))ρ(y) dy − ∇U (x)
)

+ u · (u · ∇u) + u · ∇U (x)

= u ·
(∫

φ(x − y)(u(y) − u(x))ρ(y) dy
)

=
∫

φ(x − y)(u(x) · u(y) − |u(x)|2)ρ(y) dy

=
∫

φ(x − y)
(

− 1

4
|u(y)|2 + u(x) · u(y) − |u(x)|2

)
ρ(y) dy

+
∫

φ(x − y)
1

4
|u(y)|2ρ(y) dy

= −
∫

φ(x − y)
∣
∣
∣u(x) − 1

2
u(y)

∣
∣
∣
2
ρ(y) dy

+ 1

4

∫

φ(x − y)|u(y)|2ρ(y) dy � φ+
2

Ek(t),

where Ek(t) denotes the kinetic energy

d

dt
P(t) � φ+

2
Ek(t), Ek(t) := 1

2

∫

|u(x, t)|2ρ(x, t) dx. (2.8)

We emphasize that the bound (2.8) applies to general symmetric kernels φ and
is otherwise independent of the fine structure of the potential U . Recalling the
diameter D(t) = diam(supp ρ(·, t)), then L2-energy decay (1.5) yields

d

dt
E(t) � −1

2
φ(D(t))

∫ ∫

|u(x, t)−u(y, t)|2ρ(x, t)ρ(y, t) dx dy;

in view of the vanishing means assumed in the quadratic case, (2.4), this decay rate
can be formulated in terms of the kinetic energy

d

dt
E(t) � −2m0φ(D(t))Ek(t). (2.9)

Further more, the support of ρ(·, t) can be bounded in terms of the particle energy,
so we have
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P(t) � U (x) = a

2
max

supp ρ(·,t) |x|
2 � a

8
D2(t), D(t) = diam(supp ρ(·, t)).

(2.10)

Finally, by the fat-tail assumption (2.2b),
∫ ∞

φ(
√
8r/a) dr = a

4

∫ ∞
rφ(r) dr =

∞, there exists a finite spatial scale R0 > P0 such that
∫ R0

P0
φ(
√
8r/a) dr >

φ+
4m0

E0. (2.11)

We now consider the functional Q(t) := E(t) + 4m0

φ+

∫ P(t)

R0

φ(
√
8r/a) dr which we

claim is non-positive: indeed, by (2.11), Q(0) � 0 and in view of (2.8)–(2.10),
Q(t) decreasing in time

d

dt
Q(t) � −2m0φ(D(t))Ek(t) + 4m0

φ+
φ+
2

Ek(t) × φ(
√
8P(t)/a) � 0.

It follows that the particle energy remains uniformly bounded:

4m0

φ+

∫ P(t)

R0

φ(
√
8r/a) dr � Q(t) � 0,

hence P(t) remain bounded, P(t) � R0, and the uniform bound on D(t) stated in
(2.7) follows from (2.10). �
For the typical example of φ(r) = c0(1 + r2)−β , we find that (2.11) holds, with

R0 � a

8

[((
1 + 8

a
P0
)1−β + 2(1 − β)φ+

ac0m0
E0

) 1
1−β − 1

]

.

2.3. Flocking of Smooth Solutions with Exponential Rate

The uniform-in-time bound on the supp ρ(·, t)in (2.7) shows that the values
φ(r) with r >

√
8R0/a play no role in the solution of (2.1). We can therefore

assume without loss of generality that our admissible φ’s are uniformly bounded
from below:

φ(r) � φ(D(t)) � φ− > 0, φ− := φ
(√

8R0√
a

)
. (2.12)

This enables us prove our main statement of flocking with exponential decay.

Theorem 2.3. (Flocking with L2-exponential decay) Let (ρ,u) be a global smooth
solution of (2.1), subject to compactly supported ρ0. Then there holds the flocking
estimate at exponential rate in both velocity and position:

δE(t) :=
∫ ∫

(|u(x, t) − u(y, t)|2 + a|x − y|2)ρ(x, t)ρ(y, t) dx dy � 2 · δE0 · e−λt .

(2.13)

Here λ = λ(a, φ−, φ+,m0) > 0.
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Remark 2.4. In fact, one could develop a small-data result, where the exponential
flocking asserted in Theorem 2.3 is extended to U ’s close to quadratic potential
provided under appropriate smallness condition on the initial data.

From the proof of Theorem 2.3, one can take the decay rate

λ = λ(a) := 1

2
min

{
m0φ−

m2
0φ

2+/a + 3/2
,

√
a

2

}

(2.14)

If one fixes m0, φ+, φ− and considers the asymptotic behavior for a → 0, then the
decay rate λ = O(a). For a → ∞, the decay rate λ = O(1). This shows that the
strength of external potential force may have significant influence on the rate of
flocking, and a weak potential tends to give a slower decay. One could interpret this
as follows: to achieve an equilibrium, both velocity and position have to align; if
the potential force is weak, then the alignment of position happens on a slower time
scale, since the potential-free Cucker–Smale interaction does not provide position
alignment.
Next, we turn to improve the L2-flocking estimate in Theorem 2.3 into an L∞
estimate.

Theorem 2.5. (Flocking with uniform exponential decay) Let (ρ,u) be a global
smooth solution of (2.1), subject to compactly supported ρ0. Then

δP(t) := max
x,y∈supp ρ(·,t)(|u(x, t) − u(y, t)|2 + a|x − y|2) � C∞ · δP0 · e−λt/2, ∀t � 0

(2.15)

where the decay rate λ = λ(a) > 0 given by (2.14) and C∞ is a positive constant
given by

C∞ = 4
(
1 + φ2+m2

0

( 2

m0φ−λ(a)
+ 4

a

))
.

Note that since δE � m2
0 ·δP , the L∞-version of flocking stated in Theorem 2.5

is an improvement of Theorem 2.3. This improvement can be useful in studying
the existence of global smooth solution for two-dimensional systems asserted in
Theorem 4.4 below.

Remark 2.6. (blow-up as a � 1)We note in passing that (2.15) does not recover the
velocity alignment in the potential-free case due to the blow-up ofC∞ = O(1/a) as
a → 0. The growing bound is due to the proof in which we estimate the momentum
φ ∗ (ρu) as a source term by using L2 exponential decay in Theorem 2.3: yet, the
L2-decay rate λ(a) deteriorates as a → 0, and the effect of an increasing source
term leads to the blow-up ofC∞. Indeed, it is known that the unconditional velocity
alignment in the potential-free case is restricted to the ‘fat-tails’ (1.3), hence our
approach for the thinner tails (2.2) cannot apply uniformly in 1/a.
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2.4. Convergence to Harmonic Oscillator

Recall that (xc,uc) denote the mean position and the mean velocity of the
dynamics (2.3).Adistinctive feature of alignment dynamicswith quadratic potential
(2.1) is that these means are governed by the harmonic oscillator

{
ẋc = uc
u̇c = −axc

�
[

xc(t)
1√
a
uc(t)

]

=
[

cos(
√
at) sin(

√
at)

− sin(
√
at) cos(

√
at)

][
xc(0)
1√
a
uc(0)

]

.

(2.16)

The L2-flocking statement (3.13) implies that the dynamics concentrates along this

harmonic oscillator. Indeed, since
∫

|x − xc|2ρ(x, t) dx � m−1
0 e−λt , it follows

that for arbitrary test function χ ∈ W 1,∞
c ,

∣
∣
∣

∫

ρ(x, t)χ(x) dx − m0χ(xc)
∣
∣
∣ �

∫

ρ(x, t)
∣
∣(χ(x) − χ(xc)

∣
∣ dx

� m1/2
0

( ∫

|x − xc|2ρ dx
)1/2|∇χ(ξ)|∞ � ‖∇χ‖∞e−λt/2,

and

∣
∣
∣

∫

ρu(x,t)χ(x) dx − m0uc(t)χ(xc)
∣
∣
∣ �

∫

ρ|u| · ∣∣(χ(x) − χ(xc)
∣
∣ dx

� m1/2
0

( ∫

ρ|u|2 dx
)1/2(

∫

|x − xc|2ρ dx
)1/2|∇χ(ξ)|∞ �

√
E0 · ‖∇χ‖∞e−λt/2.

We conclude that the smooth solutions of (2.1) converges exponentially to the
dynamics of harmonic oscillator (2.16)

⎧
⎨

⎩

ρ(x, t) − m0δ(x − xc(t))
t→∞−→ 0,

ρu(x, t) − m0uc(t)δ(x − xc(t))
t→∞−→ 0.

(2.17)

The convergence is interpreted weakly in
(
W 1,∞)′. An even stronger notion of

convergence follows from the L∞-flocking estimate (2.15) which in turn implies
the uniform decay of the support |x − xc|1supp ρ(x,t) � e−λt/2. It follows that the
concentration bounds above apply to arbitrary test functionχ ∈ Cc and convergence
to the harmonic oscillator (2.17) follows in the sense of measures.

The last conclusion could be examined in light of the self-propelled dynamics
studied in [3]. Their dynamics—driven by a different competition between confin-
ing potential and self-acceleration/deceleration, led to interesting (double-)milling
patterns, and it was believed that such milling patterns will not to survive by either
velocity alignment or repulsive interactions [3, p. 36]. The convergence to harmonic
oscillator asserted in (2.17) rebukes this belief, at least when confining potential
competes with velocity alignment.
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3. Statement of Main Results: Flocking with General Convex Potentials

3.1. General Considerations

We now turn our attention to alignment dynamics (1.1) with more general
strictly convex potentials, (1.6). The flocking results are more restricted. We begin
with specifying the smaller class of admissible interaction kernels.

Assumption 3.1. (Admissible kernels) We consider (1.1) with interaction kernel
φ such that

(i) φ(r) is positive, decreasing and bounded : 0 < φ(r) � φ(0) := φ+ < ∞;
(3.1a)

(ii) φ(r) decays slow enough at infinity in the sense that lim sup
r→∞

rφ(r) = ∞.

(3.1b)

Notice that (3.1b) is only slightly more restrictive than the usual ‘fat-tail’ assump-

tion
∫ ∞

0
φ(r) dr = ∞, which characterize unconditional flocking in the case of

potential-free alignment [7,8].
We begin noting that the basic bookkeeping of energy decay (1.4) still holds:

d

dt
E(t) = −1

2

∫∫

φ(|x − y|)|u(x, t) − u(y, t)|2ρ(x, t)ρ(y, t) dx dy.

• Uniform Bounds A necessary main ingredient in the analysis of (1.1) is the uni-
form bound of diam(supp ρ(·, t)), and the amplitude of velocity max

x∈supp ρ
|u(x, t)|.

Our next lemma shows that whenever one has a uniform bound of |u(x, t)| + |x|
for the restricted class of lower-bounded φ’s which scales like O(1/min φ), then
it implies a uniform bound of |u(x, t)| + |x| for the general class of admissible φ’s
(2.2).

Lemma 3.2. (The reduction to lower-bounded φ’s) Consider (1.1) with a with
the restricted class of lower-bounded φ’s:

0 < φ− � φ(r) � φ+ < ∞. (3.2)

Assume that the solutions (ρ̃, ũ) associated with the restricted (1.1),(3.2), satisfy
the uniform bound (with constants C± depending on U, φ+,m0 and E0)

max
t�0, x∈supp ρ̃(·,t)(|̃u(x, t)| + |x|) � max

{

C+ · max
x∈supp ρ̃0

(|̃u0(x)| + |x|) ,
C−
φ−

}

.

(3.3)

Then the following holds for solutions associated with a general admissible kernel
φ (3.1): if (ρ,u) is a smooth solution of (1.1), then there exists α > 0 (depending
on the initial data (ρ0,u0)), such that (ρ,u) coincides with the solution, (ρ̃α, ũα),
associated with the lower-bounded φα(r) := max{φ(r), α}.
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This means that if φ belongs to the general class of admissible kernels (3.1), then
we can assume, without loss of generality, that φ coincides with the lower bound
φα and hence the uniform bound (3.3) holds with φ− = α. The justification of this
reduction step is outlined below.

Proof of Lemma 3.2. By the condition (2.2b), there exists r0 such that r0φ(r0) �
2C−, and one could take large enough r0 such that

r0 � 2C+ · max
x∈supp ρ0

(|u0(x)| + |x|). (3.4)

Let α = φ(r0). By assumption, (3.3) holds for the lower-bounded φα , so that

max
t�0, x∈supp ρα(·,t)(|uα(x, t)| + |x|) � max

{
C+ · max

x∈supp ρ0
(|u0(x)| + |x|), C−

α

}

(3.5)

where (ρα,uα) is the smooth solution of (1.1) with interaction kernel φα , which
we assume to exist. Therefore, for any t � 0 and any x, y ∈ supp ρα(·, t), we have

|x − y| � |x| + |y| � 2max
{
C+ · max

x∈supp ρ0
(|u0(x)| + |x|), C−

α

}
. (3.6)

By definition,

C−
α

= C−
φ(r0)

� r0
2

. (3.7)

Together with (3.4), we obtain that |x− y| � r0, for which, by the monotonicity of
φ, φ(|x − y|) � φ(r0) = α, but for this, x, y, which persist with a ball of diameter
r0, we have φ(|x − y|) = φα(|x − y|), so the dynamics of (ρα,uα) coincides with
(ρ,u). �

Remark 3.3. For the special case φ(r) = φ+
(1 + r2)β/2 with β < 1, the proof of

Corollary 3.2 shows that one could take

α = φ(r0), r0 = max

{

4

(
C−
φ+

) 1
1−β

, 2C+ · max
x∈supp ρ0

(|u0(x)| + |x|)
}

.

(3.8)

Therefore, the lower cut-off at α, which depends on β,m0, φ+ and the initial data,
gets smaller when β approaches 1.

The following proposition asserts the uniform bounds (3.3) exist for the restric-
tive class of kernels bounded from below, under very mild conditions on U :
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Proposition 3.4. Assume that the potential U satisfies

a

2
|x|2 � U (x) � A

2
|x|2, a|x| � |∇U (x)| � A|x|, ∀x ∈ �, 0 < a � A.

(3.9)

Consider the alignment system (1.1),(3.9) with an interaction kernel which is
assumed to be bounded from below, (3.2). Then there exist constants C±, depending
on U, φ+,m0 and E0, such that (3.3) holds.

Remark 3.5. We note in passing that if U is strictly convex potential satisfying
(1.6) then (3.9) follows. Indeed, assuming without loss of generality, that U has
a global minimum at the origin so that U (0) = ∇U (0) = 0, and expressing
∇U (x) = ∫ 1

0 ∇2U (sx)x ds we find |∇U (x)| �
∫ 1
0 A|x| ds = A|x| while strict

convexity implies

x · ∇U (x) =
∫ 1

0
x�∇2U (sx)x ds � a|x|2 � |∇U (x)| � a|x|;

moreover, expressing U (x) = ∫ 10 ∇U (sx) · x ds, we find

a

2
|x|2 =

∫ 1

0

1

s
a|sx|2 ds �

∫ 1

0

1

s
∇U (sx) · sx ds � U (x) �

∫ 1

0
A|sx| · |x| ds = A

2
|x|2.

Thus, the assumed bounds (3.9) follow from (1.6). In fact, (3.9) allows for more
general scenarios than uniform convexity including, notably, more complicated
topography involving than one local minima. It is straightforward to generalize
Proposition 3.4 to the case when (3.9) only holds for sufficiently large |x|. We omit
the details.

3.2. Flocking of Smooth Solutions with Convex Potentials

From now on we will restrict attention to uniformly lower bounded kernels, so
that φ satisfies (3.2), 0 < φ− � φ(x) � φ+. The reduction Lemma 3.2 tells us
that the results will automatically apply to the class of all admissible kernels which
satisfy (2.2). We develop a hypocoercivity argument, different from the one used in
the quadratic case, which gives the following L2-flocking estimate with algebraic
decay rate:

Theorem 3.6. (Flocking with L2-algebraic decay) Consider the system (1.1) with
uniformly convex potential (1.6), 0 < aId×d � ∇2U (x) � AId×d and with a
C1 admissible interaction kernel φ, (3.1). Assume, in addition, that φ satisfies the
linear stability condition

m0φ(0) >
A√
a

. (3.10)
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Let (ρ,u) be a global smooth solution subject to compactly support ρ0. Then there
holds flocking at algebraic rate in both velocity and position, namely, there exist a
constant C (with increasing dependence on |φ′|∞) such that

δE(t) :=
∫∫

(|u(x) − u(y)|2 + a|x − y|2)ρ(x)ρ(y) dx dy � C√
1 + t

δE0.

(3.11)

The proof of Theorem 3.6 involves three ingredients. First, from the total energy
estimate,we show thatwhen t is large enough,most of the agents almost concentrate
as a Dirac mass, traveling at almost the same velocity. Second, for such a concen-
trated state, one can replace φ by the constant kernel φ(0) without affecting the
dynamics too much, which in turn implies that the agents near the Dirac mass will
be attracted to it, consult Theorem 3.7 below. Third, this gives some monotonicity
of the energy dissipation rate, which in turn gives (3.11).

The L∞ counterpart of Theorem 3.6 is still open. If one could obtain an L∞
flocking estimate, then it might be possible to have flocking estimates for φ with
thinner tails, similar to what was done in Sect. 2.

The origin of the stability condition (3.10) can be traced to the case of a constant
kernel,φ, where the algebraic convergence stated in Theorem3.6 is in fact improved
to exponential rate.

Theorem 3.7. (Flocking with L2-exponential decay– constant φ) Let (ρ,u) sub-
ject to compactly supported ρ0 be a global smooth solution of (1.1) with uniformly
convex potential (1.6), 0 < aId×d � ∇2U (x) � AId×d , and assume that the
interaction kernel φ is constant satisfying

m0φ >
A√
a

. (3.12)

Then it undergoes unconditional flocking at exponential rate in both velocity and
position: there exist λ > 0 and C > 0 depend on a, A,m0φ such that

δE(t) � C · δE0 · e−λt . (3.13)

Remark 3.8. One may wonder about the necessity of the stability condition (3.10).
In fact, already in the simplest case of a constant φ where the Cucker–Smale (1.2)
is reduced to

{
ẋi = vi
v̇i = φ · (v̄ − vi ) − ∇U (xi )

v̄ := 1

N

∑

j

v j , (3.14)

one may encounter ‘orbital instability’, where arbitrarily small initial fluctuations
|xi (0)−x j (0)|+|vi (0)−v j (0)| subject to 1d non-convex potential may grow to be
O(1) at some time. The stability condition (3.10) guarantees, in the case of convex
potentials, strong enough alignment that prevents scattering and eventual flocking.
The question of the precise necessary stability condition vis a vis convexity remains
open.
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4. Existence of Global Smooth Solutions

The proof of the existence of smooth solutions proceeds in two parallel tracks.
We seek smooth solutions of (1.1),

(
ρ,u

)
(x, t), restricted to x ∈ supp ρ(·, t). This

notion of a restricted solution ignores the possibly non-trivial velocity field induced
by the non-local alignment term in (1.1)2 in the vacuous region x /∈ supp {ρ(·, t)}.
To this end, (1.1) is interpreted in its Lagrangian formulation e.g., [10, §2], where
supp ρ(·, t) = X (t, supp ρ0) is the pushfoward of the initial compact support,
supp ρ0 ⊂ �, by the characteristic flow

d

dt
X (t, α) = u(X (t, α), t), X (0, α) = α. (4.1)

Expressed in terms of the Lagrangian velocity v(t, α) := u(X (t, α), t), (1.1)
recasts into the form
⎧
⎪⎪⎨

⎪⎪⎩

d

dt
X (t, α) = v(t, α), α ∈ supp ρ0,

d

dt
v(t, α) =

∫

φ(|X (t, α) − X (t, β)|)(v(t, α) − v(t, β))ρ0(β) dβ − ∇U (X (t, α)).

(4.2)

Observe that smooth restricted solutions are unique as long as the flow is
well posted. Thus, making sense of such restricted solutions requires a globally
defined flow map, X (t, α) for α ∈ � = R

d or = T
d , in order to guarantee that a

well-defined supp {ρ(·, t)} has a global-in-time life-span, i.e., that the evolution of
supp {ρ(·, t)} is secured away from self-intersections. This global flow is attached to
a second notion of a solution, simply called global solution, where (1.1) is satisfied
throughout space, (x, t) ∈ (� × R�0).

Clearly, a globally defined solution yields a restricted solution, simply by
restricting (ρ,u) on supp ρ(t, ·). The converse, however, requires a proper process
of extension which needs not hold in general. It was worked in the 1D potential-free
case in [10]. Here we shall work out the extension process of multi-dimensional
extension in the presence of external potential. The following extension lemma is
at the heart of matter :

Lemma 4.1. (Extension procedure) Assume that (1.1) satisfies the a priori bound

max
x∈supp ρ(·,t) |x| � C1, ∀t � 0. (4.3)

Fix R∞ > 2C1 and set the cut-off kernel

φ̃(r) :=
{

φ(r), r � R∞
φ(R∞), r > R∞.

(4.4)

Denote by (̃1.1) the dynamics of (1.1) with φ replaced by φ̃ and assume it admits a
global smooth solution on � × [0, T ). Then a smooth restricted solution of (1.1),
(ρ,u) defined on supp {ρ(·, t)}, t ∈ [0, T ), admits a global smooth extension,
(ρ̃, ũ) on �, which is a solution of (̃1.1). In particular, therefore, if (̃1.1) admits
global smooth solutions for all time, then the lifespan of smooth restricted solutions
is infinite.
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Lemma 4.1 tells us that it suffices to focus on the question of existence of global
smooth solutions for ‘uniformly aligning’ model (̃1.1) with lower-bounded kernel
φ− = φ(R∞) > 0. In fact, since φ̃(r) remains constant for r > R∞ > 2C1, it
dictates a ‘finite horizon’ of (̃1.1) alluded to in [9, §1.3]: beyond this finite horizon,
(̃1.1)2 is reduced to relaxation

ut + u · ∇xu = φ− ·
( ∫

(ρu)(y, t) dy − m0u(x, t)
)

− ∇U (x), dist{x, supp {ρ(·, t)}} > R∞.

Proof. Let (ρ,u)(·, t) be a restricted smooth solution of (1.1) and let (ρ̃, ũ) be a
global smooth solution of (̃1.1) subject to given initial conditions (ρ̃0, ũ0) which
coincide with (ρ0,u0) on supp ρ0. The alignment kernel on the right of (1.1)2,
φ(|x− y|), engages x, y ∈ supp ρ(·, t) and by (4.3), r = |x− y| � 2C1. However,
φ̃(r) = φ(r) for r � 2C1, hence (ρ̃, ũ) is also a solution of (1.1) on supp {ρ(·, t)},
and therefore, its restriction on supp {ρ(·, t)} coincides with (ρ,u).
Now assume that (̃1.1) admits smooth solutions for all time but a smooth restricted
solution of (1.1), (ρ,u), has a finite maximal existence time T < ∞. Then, since
its extension (ρ̃, ũ) has a smooth continuation to t = T , this leads to a contra-
diction with the finite lifespan T . Specifically, take δ > 0 small enough. By (4.3)

max
x∈supp ρ̃(·,T−δ)

|x| � C1, and since ũ—the propagation speed of supp ρ̃, is clearly

uniformly bounded, then max
x∈supp ρ̃(·,T )

|x| � C1 + ε/2. Therefore (ρ̃, ũ) solves (1.1)

on [0, T ], which contradicts the maximality of T . �
Smooth solutions of alignment models are secured under certain critical thresh-

old conditions on the set of initial configurations, e.g., [1,9,13,15,16]. As noted in
the 1D study of [10], these initial threshold conditions should be imposed through-
out space to guarantee existence of a global smooth flow map (4.1). Below we
derive threshold conditions for existence of global smooth solutions of (̃1.1). By
the extension lemma, this implies existence of restricted smooth solutions for all
time.

4.1. Existence of 1D Solutions with General Convex Potentials

We begin with one-dimension (for which u, x are scalars, written as u, x). The
1D setup is covered in the next two theorems, where we
(i) guarantee the existence of global smooth solution for a class of sub-critical initial
configurations; and
(ii) guarantee a finite time blow-up for a class of super-critical initial configurations.

Theorem 4.2. (Global smooth solutions—1D problem) Consider the one-
dimensional hydrodynamic alignment (1.1) with sub-quadratic potential U so that

a � U ′′(x) � A <
(m0φ−)2

4
, ∀x ∈ �, (4.5)
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and subject to sub-critical initial configurations, (ρ0, u0), such that

∂xu0(x) + (φ ∗ ρ0)(x) >
m0φ−
2

−
√

(m0φ−)2

4
− A for all x ∈ �. (4.6)

Then (1.1)admits a restricted smooth solution, (ρ, u)(x, t) : (supp {ρ(·, t)}, R�0) →
(L1+,W 1,∞).

Observe that the statement of Theorem 4.2 is independent of the lower-bound a,
whether positive of negative: its only role enters in the upper-bound of

max ux (·, t) � max
{
c0(max

x
u′
0,m0, φ+),

√
max{0,−2a}

}
.

Theorem 4.3. (Finite-timeblow-up—1Dproblem) AssumeU ′′(x) � a, ∀x ∈ �.
The 1Dproblem (1.1) admits finite-time blow-up under the following circumstances.
(i) If a is large enough so that

a >
(m0φ+)2

4
, (4.7)

then there is unconditional blowup: ∂xu blows up to −∞ in finite time for any
initial data.
Otherwise, blow-up occurs if the initial data is super-critical in one of the following
two configurations:
(ii) If a > 0 is not large enough for (4.7) to hold1, then ∂xu blows up to −∞ in
finite time if there exists x ∈ � such that

∂xu0(x) + (φ ∗ ρ0)(x) <
m0φ+
2

−
√

(m0φ+)2

4
− a. (4.8)

(iii) If a � 0, then ∂xu blows up to −∞ in finite time if there exists x ∈ � such
that2

∂xu0(x) + (φ ∗ ρ0)(x) <
m0φ−
2

−
√

(m0φ−)2

4
− a. (4.9)

Note that in the potential-free case U = 0, Theorems 4.2 and 4.3 amount to
the sharp threshold condition ∂xu0(x) + (φ ∗ ρ0)(x) � 0 which is necessary and
sufficient for global 1D regularity, see [1,13]. When the external potential U is
added, these theorems indicate that convex U enhances the scenario of blowup in
(1.1), while concave U ’s makes more restrictive scenarios for possible blow up. In
other words, the size of U ′′ determines the influence of the external potential on the
threshold for the existence of global smooth solution.

1 Notice that in this condition the RHS in (4.8) is positive.
2 Notice that in this condition the RHS of (4.9) is negative.
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4.2. Existence of 2D solutions with general convex potentials

For the existence of global smooth solution for general external potentials, one
faces the difficulty of lack of exponential decaying flocking estimate in the finite
horizon region, and the contribution from (the variations of) u to the dynamics,
though bounded,may accumulate over time. Interestingly,we discover that the issue
can be resolved by strengthening the critical threshold, requiring that maxx |u(x, t)|
remains uniformly bounded in time and the quantity ∇ ·u0 +φ ∗ρ0 remains above
certain positive threshold. In the special case of quadratic potential, this lower bound
is further relaxed to zero, recovering a similar threshold as in the potential-free case.

Theorem 4.4. (Global 2D smooth solutions with convex potential) Consider the
two-dimensional system (1.1) with sub-quadratic potential U,

a I2×2 � ∇2U (x) � AI2×2, (4.10)

and subject to initial data (ρ0,u0).3 Assume the velocity field satisfies the uniform
bound

|u(x, t)| � umax < ∞ for all x such that dist{x, supp {ρ(·, t)}} < R∞,

(4.11)

so that

Cmax := 4m0|φ′|∞umax + A − a <
m2

0φ
2−

2
− 2A =: CA. (4.12)

If the initial data (ρ0,u0) are sub-critical in the sense that the following two con-
ditions hold

∇ · u0(x) + (φ ∗ ρ0)(x) �
√

CA −
√

C2
A − C2

max for all x ∈ �, (4.13a)

and the initial spectral gap (ηS)0, is not ‘too large’ so that,

max
x∈�

|(ηS)0(x)| �
√

CA +
√

C2
A − C2

max , (4.13b)

then (1.1) admits restricted smooth solution (ρ,u)(x, t) : (supp {ρ(·, t)}, R�0) →
(L1+,W 1,∞).4

Notice that Proposition 3.4 already gives an a priori estimate

max
t�0, x∈supp ρ(·,t) |u(x, t)| = max

{

C+ · max
x∈supp ρ0

(|u0(x)| + |x|), C−
φ−

}

(4.14)

for a general class of external potentials, including those satisfying (1.6) (with the
further assumption that the unique global minimum of U is U (0) = 0, without

3 Note that U need not be convex, i.e., we allow negative a’s.
4 ηS denotes the difference of the two eigenvalues of ∇Su := 1/2

(∇u + (∇u)�
)
.
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loss of generality). To upgrade it to a uniform bound sought in (4.11), requires the
extended solution, |̃u(·, t)|, governed by the uniformly aligning model outlined in
lemma 4.1, remains uniformly bounded in the bounded horizon region

max
t�0

{|u(x, t)| : 0 < dist{x, supp {ρ(·, t)}} < R∞} � umax.

Remark 4.5. (Global smooth solutions with 2D quadratic potentials) The case of
quadratic potential carries out further simplification of the critical threshold con-
ditions (4.13). Specifically, the first term in Cmax originates with the bound of the
residual term, see (6.8) below

|Ri j | � 2m0|φ′|∞umax, Ri j =
∫

∂ jφ(|x − y|)(ui (x, t) − ui (y, t)
)
ρ(y) dy.

In the quadratic case, we have the exponential flocking towards the zero mean
velocity (2.4), max

y∈supp {ρ(·,t)} |u(y, t)| � e−λt/4. Moreover, it can shown (we omit the

details) that in this case, the velocity field along particle path remains uniformly
integrable in time

∫ ∞

t=0
|Ri j (X (t, α), t)| dt � |φ′|∞CR,

which implies the uniform-in-time bound on the spectral gap:

max
x∈�

|ηS(x, t)| � max
x∈�

|(ηS)0| + 2|φ′|∞CR . (4.15)

Consequently, in the quadratic case we can discard of the Ri j bound and are left
with Cmax = A − a = 0 at the expense of having modified Ca . We end up with
the simplified critical threshold (see remark 6.1 below)

∇ · u0(x) + (φ ∗ ρ0)(x) � 0 for all x ∈ �, (4.16a)

max
x∈�

|(ηS)0(x)| + 2|φ′|∞CR �
√
2Ca, Ca = m2

0φ
2−

2
− 2a > 0. (4.16b)

5. Proof of Main Results: Hypocoercivity Bounds

5.1. Quadartic Potentials

We prove Theorems 2.3 and 2.5, making use of the uniform lower-bound of
φ(r) � φ− in (2.12).

Proof of Theorem 2.3. Since the fluctuations functional δE(ρ,u) in (3.13) satisfies
δE(ρ,u) = δE(ρ̂, û), it suffices to study (2.1) with (xc(0) = 0,uc(0)) = (0, 0) �
(xc(t),uc(t)) ≡ (0, 0), for which the fluctuations coincide with (multiple of) the
energy

δE(t) = 4m0

∫ (1

2
|u(x, t)|2 + a

2
|x|2
)
ρ(x, t) dx. (5.1)
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As before, the energy decay is dictated by the minimal value min
x,y∈supp {ρ(·,t)} φ(|x−

y|) � φ− := φ(
√
8R0/a),

∂t

∫ (1

2
|u(x, t)|2 + a

2
|x|2
)
ρ(x, t) dx = −1

2

∫∫

φ(x − y)|u(y)−u(x)|2ρ(x)ρ(y) dx dy

� −φ−
2

∫∫

|u(y) − u(x)|2ρ(x)ρ(y) dx dy = −m0φ−
∫

|u|2ρ dx.
(5.2)

Then we compute the cross term

∂t

∫

u(x, t) · xρ(x, t) dx

= −
∫

(u(x, t) · x)∇ · (ρu) dx +
∫

x ·
(

−u · ∇u +
∫

φ(x − y)(u(y) − u(x))ρ(y) dy − ax
)

ρ dx

= −a
∫

|x|2ρ dx +
∫

|u|2ρ dx +
∫∫

φ(x − y)x · (u(y) − u(x))ρ(x)ρ(y) dx dy

� −a
∫

|x|2ρ dx +
∫

|u|2ρ dx + φ+
2

∫∫ ( a

m0φ+
|x|2 + m0φ+

a
|u(y) − u(x)|2

)
ρ(x)ρ(y) dx dy

= −a

2

∫

|x|2ρ dx +
(
1 + m2

0φ
2+

a

) ∫

|u|2ρ dx

.

Adding a λ-multiple of this cross term—λ is yet to be determined, we conclude
that

∂t

∫ (1

2
|u(x, t)|2 + a

2
|x|2 + 2λu(x, t) · x

)
ρ(x, t) dx

� −
(
m0φ− − 2λ

(
1 + m2

0φ
2+

a

)) ∫

|u|2ρ dx − 2λ
∫

a

2
|x|2ρ dx,

(5.3)

which means the LHS is a Lyapunov functional if λ > 0 is small enough; in fact,
we set

λ = 1

2
min

⎧
⎨

⎩

m0φ−
(1 + m2

0φ
2+

a ) + 1
2

,

√
a

2

⎫
⎬

⎭
, (5.4)

to conclude that the Lyapunov functional

V (t) :=
∫ (1

2
|u(x, t)|2 + a

2
|x|2 + 2λu(x, t) · x

)
ρ(x, t) dx (5.5)

admits the decay bound
d

dt
V (t) � −λ

∫

(|u|2 + a|x|2)ρ dx. Noting that this

modified Lyapunov functional is comparable to the energy functional (recall 2λ �√
a/2)

δE

4m0
= 1

2

∫

(|u|2 + a|x|2)ρ dx � V (t) �
∫

(|u|2 + a|x|2)ρ dx = δE

2m0
,

we conclude its dissipativity V ′(t) � −λV (t), which in turn proves the L2-flocking

bound (3.13),
δE(t)

4m0
� V (t) � δE0

2m0
e−λt . �
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Proof of Theorem 2.5. We define the perturbed energy functional

F1(x, t) := 1

2
|u(x, t)|2 + a

2
|x|2 + 2λ1u(x, t) · x (5.6)

where λ1 > 0 is yet to be determined. Then we compute the derivative of F1 along
characteristics:

F ′
1 = ∂t F1 + u · ∇F1

= (u + 2λ1x) ·
(

−u · ∇u +
∫

φ(x − y)(u(y) − u(x))ρ(y) dy − ax
)

+ u · (u · ∇u) + au · x + 2λ1|u|2 + 2λ1x · (u · ∇u)

= −2λ1a|x|2 + (u + 2λ1x) ·
(∫

φ(x − y)(u(y) − u(x))ρ(y) dy
)

+ 2λ1|u|2

= −2λ1a|x|2−(φ ∗ ρ)|u|2+u · (φ ∗ (ρu))+2λ1x · ((φ ∗ (ρu)) − (φ ∗ ρ)u)+2λ1|u|2.

(5.7)

We bound the convolution terms of the right of (5.7): by (2.7) we have m0φ− �
(φ ∗ ρ)(x) � m0φ+; further, by (5.1), δE(t) > 4m0Ek(t), and the exponential
decay of the L2-Lyapunov functional, (3.13), we have that

|(φ ∗ (ρu))(x)| =
∣
∣
∣
∣

∫

φ(x − y)u(y)ρ(y) dy

∣
∣
∣
∣

� φ+
∫

|u(y)|ρ(y) dy � φ+
√
m0

(∫

|u|2ρ dy
)1/2

� φ+
√
m0

√
2δE0√
2m0

e−λt/2.

We conclude that the perturbed energy functional F1 does not exceed

F ′
1 � −2λ1a|x|2 − m0φ−|u|2 +

(m0φ−
2

|u|2 + φ2+
2m0φ−

δE0 · e−λt
)

+
(λ1a

2
|x|2 + 2λ1φ2+

a
δE0 · e−λt

)
+ 2λ1m0φ+

( a

4m0φ+
|x|2 + m0φ+

a
|u|2
)

+ 2λ1|u|2

� −λ1a|x|2 −
(m0φ−

2
− 2λ1

(
1 + m2

0φ
2+

a

))|u|2 + C0 · δE0 · e−λt

with

C0 =
( 1

2m0φ−
+ 2λ1

a

)
φ2+. (5.8)

Therefore, by choosing λ1 as

λ1 := 1

4
min

{ m0φ−
(1 + m2

0φ
2++1
a ) + 1

4

,

√
a

2

}
� λ

2
, (5.9)

one has

F ′
1(t) � −λ

2
(a|x|2 + |u|2) + C0 · δE0 · e−λt � −λ

2
F1(t) + C0 · δE0 · e−λt ,

with the explicit bound F1(t) � e−λt/2 (F1(0) + 2C0 · δE0/λ). Finally, since

max
x∈supp {ρ(·,t)} F1(x, t) is comparable with δP , namely

1

8
δP � F1 � 1

2
δP and

δE � m2
0 · δP , the result (2.15) follows with C∞ = 4(1 + 4C0m2

0/λ). �
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5.2. General Convex Potentials

We begin with the proof of Proposition 3.4, which confirms the the uniform
bound |u|+ |x| in terms ofO(1/φ−). The main idea is to study the evolution of the
particle energy 1

2 |u(x, t)|2+U (x) along characteristics, and conduct hypocoercivity
arguments to handle the possible increment of the particle energy due to theCucker–
Smale interaction.

Proof of Proposition 3.4. We define

F(x, t) = 1

2
|u(x, t)|2 +U (x) + cu(x, t) · ∇U (x), (5.10)

with c > 0 being small, to be chosen. Then it follows from the assumptions on U
that

F − 1

4
|u|2 − a

4
|x|2 = 1

4
|u|2 + (U (x) − a

4
|x|2) + cu(x, t) · ∇U (x)

�1

4
|u|2 + a

4
|x|2 − c

2
(
1

4c
|u|2 + 4c|∇U (x)|2)

�1

8
|u|2 + a

4
|x|2 − 2c2A2|x|2 � 0.

(5.11)

Now fix c �
√

a

8A2 . Then we compute the derivative of F along characteristics:

F ′ = ∂t F + u · ∇F

= (u + c∇U (x)) ·
(

−u · ∇u +
∫

φ(x − y)(u(y) − u(x))ρ(y) dy − ∇U (x)
)

+ u · (u · ∇u) + u · ∇U (x) + cu�∇2U (x)u + c∇U (x) · (u · ∇u)

= −c|∇U (x)|2 + (u + c∇U (x)) ·
(∫

φ(x − y)(u(y) − u(x))ρ(y) dy
)

+ cu�∇2U (x)u

= −c|∇U (x)|2 − (φ ∗ ρ)|u|2 + u · (φ ∗ (ρu)) + c∇U (x) · ((φ ∗ (ρu)) − (φ ∗ ρ)u)

+ cu�∇2U (x)u. (5.12)

Noticing that m0φ− � (φ ∗ ρ)(x) � m0φ+, the convolution term on the right of
(5.12) can be upper-bounded in terms of the dissipating energy E(t) in (1.4)

|(φ ∗ (ρu))(x)| =
∣
∣
∣
∣

∫

φ(x − y)u(y)ρ(y) dy

∣
∣
∣
∣ � φ+

∫

|u(y)|ρ(y) dy

� φ+
∫

|u(y)|ρ(y) dy � φ+m1/2
0

(∫

|u|2ρ dy
)1/2

� 2φ+m1/2
0 E1/2(0), ∀x.

Therefore

F ′ � −c|∇U (x)|2 − m0φ−|u|2 + (
m0φ−
2

|u|2 + 2

m0φ−
φ2+m0E0)

+ (
c

4
|∇U (x)|2 + 4cφ2+m0E0) + (cm0φ+)(

1

4m0φ+
|∇U (x)|2 + m0φ+|u|2) + cA|u|2

� − c

2
|∇U (x)|2 − (m0φ−

2
− c(A + m2

0φ
2+)
)|u|2 + C0
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with

C0 =
( 2

m0φ−
+ 4c

)
φ2+m0E0. (5.13)

Therefore, by choosing

c = min

{
m0φ−

A + 2(A + m2
0φ

2+)
,

√
a

8A2

}

, (5.14)

one has

F ′ � − c

2
(|∇U (x)|2 + A|u|2) + C0. (5.15)

Next we notice that

F � 1

2
|u|2 + A

2
|x|2 + c

2
(
1

c
|u|2 + cA2|x|2)

� max
{
1,

1 + c2A

2

}
(|u|2 + A|x|2) = |u|2 + A|x|2

and

|∇U (x)|2 + A|u|2 � min
{
A,

a2

A

}
(|u|2 + A|x|2) = a2

A
(|u|2 + A|x|2).

This means that if

F(x, t) � 2AC0

a2c
:= CF , (5.16)

then F ′ � 0. Thus F cannot further increase (along characteristics) if it is larger
than CF . It is clear that c = O(φ−) and C0 = O(1/φ−) for small φ−. Therefore
CF = O(1/φ2−).

Therefore, by (5.11) we get

|u| + |x| � 2
(
1 + 1√

a

)√
F � 2(1 + 1√

a
)
√
max{CF , max

x∈supp ρ0
F(x, 0)}

� 2
(
1 + 1√

a

)√

max{CF , max
x∈supp ρ0

|u0(x)|2 + A|x|2}

� max
{
C+ · max

x∈supp ρ0
(|u0(x)| + |x|), 2(1 + 1√

a
)
√
CF ,

}
, C+ := 2

√
A

(

1 + 1√
a

)

,

and the term 2(1 + 1√
a
)
√
CF scales like O(1/φ−) for small φ−. �

When dealing with convex potential U (x) = a
2 |x|2 we used the fact that the

mean location xc and mean velocity uc satisfies the closed system, (2.16), which
enabled us to convert the measure of L2-fluctuations into an energy-based func-
tional. In case of general convex potentials, however, the mean location xc and
mean velocity uc do not satisfy a closed system and therefore one cannot reduce
the problem with xc = uc = 0, for which δE is equivalent to the total energy.
Therefore one cannot using hypocoercivity on the energy estimate to obtain the
decay of δE . Instead, we will construct a Lyapunov functional which is equivalent
to δE directly. We begin with the case of a constant interaction kernel.
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Proof of Theorem 3.7. Recall that we assumed φ is constant. Denote K := m0φ

so that the convolution terms with φ amount to simple averaging, (φ ∗ f )(x) =
K
∫

f dx. We will use the ρ-weighted quantities

〈 f (x, y), g(x, y)〉ρ :=
∫∫

f (x, y) · g(x, y)ρ(x)ρ(y) dx dy, | f (x, y)|2ρ := 〈 f (x, y), f (x, y)〉

for any scalar or vector functions f, g, where we suppress its dependence on t .
We compute the time derivative of the following quantity (where β > 0 to be

determined):

F(t) = K

2
|x − y|2ρ + 〈x − y,u(x) − u(y)〉ρ + β

2
|u(x) − u(y)|2ρ (5.17)

dF

dt
=
∫∫ [( K

2
|x − y|2 + (x − y) · (u(x) − u(y)) + β

2
|u(x) − u(y)|2

)
×

(
− ∇x · (ρ(x)u(x))ρ(y) − ∇y · (ρ(y)u(y))ρ(x)

)

+
(
x − y + β(u(x) − u(y))

)
·
(

− u(x) · ∇xu(x) + u(y) · ∇yu(y)

− Ku(x) + Ku(y) − ∇U (x) + ∇U (y)
)
ρ(x)ρ(y)

]
dx dy (5.18)

=
∫∫ [(

K (x − y) + u(x) − u(y) + ∇xu(x)(x − y + β(u(x) − u(y)))
)

· u(x)

+
(

− K (x − y) − (u(x) − u(y)) − ∇yu(y)(x − y + β(u(x) − u(y)))
)

· u(y)

+
(
x − y + β(u(x) − u(y))

)
·
(

− u(x) · ∇xu(x) + u(y) · ∇yu(y)

− Ku(x) + Ku(y) − ∇U (x) + ∇U (y)
)]

ρ(x)ρ(y) dx dy

=
∫∫ [

− (Kβ − 1)|u(x) − u(y)|2 − (x − y) · (∇U (x) − ∇U (y))

− β(u(x) − u(y)) · (∇U (x) − ∇U (y))
]
ρ(x)ρ(y) dx dy. (5.19)

Notice that

(x − y) · (∇U (x) − ∇U (y)) =
∫ 1

0
(x − y)�∇2U ((1 − θ)y + θx)(x − y) dθ � a|x − y|2,

(5.20)

and similarly that

|(u(x) − u(y)) · (∇U (x) − ∇U (y))| � A|u(x) − u(y)| · |x − y|. (5.21)

Then we obtain

(5.19) � −(Kβ − 1)|u(x) − u(y)|2ρ − a|x − y|2ρ + Aβ|u(x) − u(y)|ρ · |x − y|ρ.

(5.22)

We want to choose a β such that the RHS of (5.22), as a quadratic form, is negative-
definite, i.e., its discriminant is

A2β2 − 4a(Kβ − 1) = A2β2 − 4aKβ + 4a < 0. (5.23)
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This is possible, since by (3.12) (4aK )2 − 16A2a = 16a(aK 2 − A2) > 0, and we
can take

β := 2aK

A2 , (5.24)

and then

dF

dt
� −μ1

(|u(x) − u(y)|2ρ + a|x − y|2ρ
) = −μ1δE, (5.25)

for some μ1 > 0 (whose explicit form will be given in Remark 5.2). With this
choice of β, the discriminant of the LHS of (5.19) is

12 − 4
K

2

β

2
= 1 − 2aK 2

A2 < 1 − 2aA2

aA2 = −1,

and thus it is positive definite. One can estimate F above and below by μ3δE �
F � μ2δE for some μ2 > μ3 > 0. Therefore F(t) � F(0)e

− μ1
μ2 and then

δE(t) � 1

μ3
F(t) � 1

μ3
F(0)e

− μ1
μ2 � μ2

μ3
δE(0)e

− μ1
μ2 .

�
Remark 5.1. The key idea of the proof is the cancellation of the term K (x − y) ·
(u(x) − u(y)) in (5.19). For large K , this term is O(K ), while the two good terms
are O(K ) and O(1) respectively. If this term was not cancelled, then it could not
be absorbed by the good terms.

In fact, the positive/negative K (x − y) · (u(x) − u(y)) terms are given by the
time derivative of K

2 |x− y|2ρ and 〈x− y,u(x) −u(y)〉ρ , respectively. Therefore, in
the Lyapunov functional, one cannot change the coefficient ratio between a square
term |x−y|2ρ and the cross term 〈x−y,u(x)−u(y)〉ρ . This is an essential difference
from the standard hypocoercivity theory (for which the cross term can be arbitrarily
small).

Remark 5.2. One can obtain the explicit expression ofμ1 from (5.22) by letting the
good terms absorb the bad term exactly, i.e., solving the quadratic equation

(Kβ − 1 − μ1)(a − aμ1) = A2β2

4

yields μ1 = aK 2

A2 −
√

a2K 4

A4 − aK 2

A2 + 1 > 0; similarly, one obtains μ2,3 as

μ2,3 = 1

2a

⎛

⎝
a2K

A2 + K

2
±
√
(a2K

A2 + K

2

)2 − 4a
(aK 2

2A2 − 1

4

)
⎞

⎠ > 0.

To handle the case with non-constant φ, we start with the following lemma:



Flocking Hydrodynamics with External Potentials 371

Lemma 5.3. With the same assumptions as Theorem 3.6, further assume the apriori
uniform bound on the velocity field

max
t�0, x∈supp {ρ(·,t)}(|u(x, t)| + |x|) � umax < ∞. (5.26)

Fix any ε1 small enough. Assume that at time t0, one can write supp ρ(·, t0) into
the disjoint union of two subsets:

supp ρ(·, t0) = S1 ∪ S2, S1 ∩ S2 = ∅, (5.27)

which satisfies

∫

S2
ρ(x, t0) dx � ηε1, (5.28)

with η > 0 depending on φ, U , umax but independent of ε1, and

δP(t0; S1) := sup
x,y∈S1

(|u(x) − u(y)|2 + a|x − y|2) � ε1. (5.29)

Let S1(t), S2(t) be the image of S1, S2 under the characteristic flow map from t0 to
t . Then

δP(t; S1(t)) � ε1, ∀t � t0 (5.30)

In this lemma, S1 consists of the particles which are almost concentrated as a Dirac
mass, and S2 the other particles, which can be far away from the Dirac mass, but
whose total mass is small. The lemma claims that the Dirac mass will not scatter
around for all time. This can be viewed as a perturbative extension of the constant
φ case, applied to the Dirac mass S1.

Also notice that (3.3) gives (5.26) with umax being the RHS of (3.3).

Proof. Define

F(x, y, t) := K

2
|x − y|2 + (x − y) · (u(x, t) − u(y, t)) + β

2
|u(x, t) − u(y, t)|2,

F∞(t; S) = max
x,y∈S F(x, y, t)

where K = m0φ(0), and the choice of β is the same as the proof of Theorem 3.7, so
that F is a positive-definite quadratic form. Fix two characteristicsx(t) andy(t)with
x(t0), y(t0) ∈ S1, and we compute the time derivative of F along characteristics:
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d

dt
F(x(t), y(t), t)

= ∂t F + u(x) · ∇xF + u(y) · ∇yF

= ((x − y) + β(u(x) − u(y))) ·
(

− u(x) · ∇xu(x) + u(y) · ∇xu(y)

+
∫

φ(x − z)(u(z) − u(x))ρ(z) dz −
∫

φ(y − z)(u(z) − u(y))ρ(z) dz
)

+ u(x) · (K (x − y) + (u(x) − u(y)) + (x − y) · ∇xu(x) + β(u(x) − u(y)) · ∇xu(x))

− u(y) · (K (x − y) + (u(x) − u(y)) + (x − y) · ∇yu(y) + β(u(x) − u(y)) · ∇yu(y)
)

= −(Kβ − 1)|u(x) − u(y)|2
− (x − y) · (∇U (x) − ∇U (y)) − β(u(x) − u(y)) · (∇U (x) − ∇U (y))

+ ((x − y) + β(u(x) − u(y))
) ·
( ∫

(φ(x − z) − φ(0))(u(z) − u(x))ρ(z) dz

−
∫

(φ(y − z) − φ(0))(u(z) − u(y))ρ(z) dz
)
.

The first three terms are less than a negative definite quadratic form, as in the proof
of Theorem 3.7. Now we handle the last term, which results from the fact that φ is
not constant.

By the definition of S1(t), one has x(t), y(t) ∈ S1(t) for all t � t0. If z ∈ S1(t),
then |x − z| �

√
δP(t; S1(t))/a � C1

√
F∞(t; S1(t)) for some constant C1, since

F is comparable with |u(x) − u(y)|2 + a|x − y|2. Therefore
|φ(x − z) − φ(0)| � |φ′|∞C1

√
F∞(t; S1(t)). (5.31)

It follows that

∣
∣
∣
∣
∣
((x − y) + β(u(x) − u(y))) ·

∫

S1(t)
(φ(x − z) − φ(0))(u(z) − u(x))ρ(z) dz

∣
∣
∣
∣
∣
� C2F∞(t; S1(t))3/2,

with C2 = (1/
√
a + β)m0|φ′|∞C3

1 .
If z ∈ S2(t), then we use the uniform bound (5.26) to estimate u(z)−u(x), and

obtain

∣
∣
∣
∣((x − y) + β(u(x) − u(y))) ·

∫

S2(t)
(φ(x − z) − φ(0))(u(z) − u(x))ρ(z) dz

∣
∣
∣
∣ � C3ηε1F∞(t; S1(t))1/2,

with C3 = (1/
√
a + β)C1 · 2φ+ · 2umax. Similar conclusions hold with x and y

exchanged.
Therefore we conclude that

d

dt
F(x(t), y(t), t) � −μF(x(t), y(t), t) + C2F∞(t; S1(t))3/2 + C3ηε1F∞(t; S1(t))1/2,

with μ > 0 a constant. Taking x(t), y(t) as the characteristics where
maxx,y∈S1(t) F(x, y, t) is achieved, we obtain

d f

dt
� −μ f + C2 f

3/2 + C3ηε1 f
1/2, f (t) = F∞(t; S1(t)).
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Now set η = C3

C2
and assume ε1 � μ2

16C2
2

, then
d f

dt
< 0 whenever f (t) = ε1, and

hence the bound f (t) < ε1 persists in time. The conclusion of the theorem follows
from the fact that f and δP(t; S1(t)) are comparable (up to adjust the upper bound
ε1 by constant multiple). �

The next lemma guarantees the existence of a partition satisfying the assumptions
of Lemma 5.3, in case the L2 variation of velocity and location is small.

Lemma 5.4. With the same assumptions as in Theorem 3.6, for any ε1 > 0,

δE(t0) <
m0ηε21

2
(5.32)

implies the existence of a partition satisfying (5.28) and (5.29).

Proof. Recall that (xc(t),uc(t)) denote the mean location and velocity (2.3). Then

∫∫

(|u(x) − u(y)|2 + a|x − y|2)ρ(x)ρ(y) dx dy

=
∫∫

(|(u(x) − uc) − (u(y) − uc)|2 + a|(x − xc) − (y − xc)|2)ρ(x)ρ(y) dx dy

= 2m0

∫

(|u(x) − uc|2 + a|x − xc|2)ρ(x) dx. (5.33)

Thus, at time t0,

∫

|u(x)−uc |2+a|x−xc |2� ε1
4

ρ(x) dx � 4

ε1

∫

(|u(x) − uc|2 + a|x − xc|2)ρ(x) dx � 4

ε1

1

2m0

m0ηε21

2
= ηε1.

Therefore, we can take S2 := {x : |u(x) − uc|2 + a|x − xc|2 � ε1/4}, and (5.28)
is satisfied. Then for any x, y ∈ S1 := supp ρ\S2, one has

|u(x) − u(y)|2 + a|x − y|2 � |(u(x) − uc) − (u(y) − uc)|2 + a|(x − xc) − (y − xc)|2
� 2(|u(x) − uc|2 + a|x − xc|2 + |u(y) − uc|2 + a|y − xc|2)
� 4

ε1

4
= ε1,

which means (5.29) is also satisfied. �
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Proof of Theorem 3.6. We start by a hypocoercivity argument on the energy esti-
mate. Using the notation in the proof of Theorem 3.7,

d

dt
〈x − y, u(x) − u(y)〉

=
∫∫ [

(x − y) · (u(x) − u(y))(−∇x · (ρ(x)u(x))ρ(y) − ∇y · (ρ(y)u(y))ρ(x))

+ (x − y) ·
(

− u(x) · ∇xu(x) +
∫

φ(x − z)(u(z) − u(x))ρ(z) dz − ∇U (x)

− u(y) · ∇yu(y) +
∫

φ(y − z)(u(z) − u(y))ρ(z) dz − ∇U (y)
)
ρ(x)ρ(y)

]
dx dy

= |u(x) − u(y)|2 +
∫∫

(x − y) ·
( ∫

φ(x − z)(u(z) − u(x))ρ(z) dz

+
∫

φ(y − z)(u(z) − u(y))ρ(z) dz
)
ρ(x)ρ(y) dx dy − 〈x − y, ∇U (x) − ∇U (y)〉

� |u(x) − u(y)|2 − a|x − y|2 + 2(
a

4
|x − y|2 + m2

0φ
2+

a
|u(x) − u(y)|2)

= −a

2
|x − y|2 +

(
1 + 2m2

0φ
2+

a

)
|u(x) − u(y)|2,

(5.34)

where we used
∣
∣
∣
∣

∫∫

(x − y) ·
∫

φ(x − z)(u(z) − u(x))ρ(z) dzρ(x)ρ(y) dx dy

∣
∣
∣
∣

� φ+c1|x − y|2 + φ+
4c1

∫∫ (∫

|(u(z) − u(x))|ρ(z) dz
)2

ρ(x)ρ(y) dx dy

� φ+c1|x − y|2 + φ+
4c1

∫∫

m0

∫

|(u(z) − u(x))|2ρ(z) dzρ(x)ρ(y) dx dy

� φ+c1|x − y|2 + m2
0φ+
4c1

|u(x) − u(y)|2,

(5.35)

with c1 = a/4φ+. Combined with the energy estimate (1.5), we obtain, for any
c > 0,

d

dt

(
E(t) + c〈x − y,u(x) − u(y)〉) � −

(φ−
2

− c
(
1 + 2m2

0φ
2+

a

))|u(x) − u(y)|2 − ca

2
|x − y|2.

Then, setting

c := min
{ φ−/2

1 + 2m2
0φ

2+/a + 1/2
,

√
a

8m0

}
, (5.36)

we have

d

dt
(E(t) + c〈x − y, u(x) − u(y)〉) � − c

2
(|u(x) − u(y)|2 + a|x − y|2) = − c

2
δE(t).
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Notice that, since U (x) � a
2 |x|2,

〈x − y,u(x) − u(y)〉 � 1

2
√
a

(a|x − y|2 + |u(x) − u(y)|2)

� 2m0√
a

∫

(a|x|2 + |u(x)|2)ρ(x) dx � 4m0√
a
E(t).

Therefore E(t) + c〈x − y,u(x) − u(y)〉 � 0, which in turn implies that∫ ∞

0
δE(t) dt =: C0 < ∞.

Next, for anyfixed t1 > 0, there exists t0 � t1 such that δE(t0) � C0

t1
(otherwise

the integral
∫ t1
0 δE(t) dt would exceed C0). Lemma 5.4 implies that there exists a

partition at t = t0 satisfying (5.28) and (5.29), with ε1 given by ε1 =
√

2C0

m0ηt1
.

If t1 is large enough, then ε1 is small enough, so that we can apply Lemma 5.3 to
get that (5.30) holds for all t � t0. In particular, (5.30) holds for t = t1. Therefore,
by using (5.30) for pairs (x, y) with x, y ∈ S1(t1) and the uniform bound (3.3) for
other pairs, we obtain (umax denoting the RHS of (3.3))

δE(t1) � m2
0ε1 + 2m0ηε1 · 4(1 + a)u2max = Cε1, (5.37)

and the proof is finished by noticing that ε1 = O(1/
√
t1) for large t1. �

6. Proof of Main Results: Existence of Global Smooth Solutions

The proof of the existence of smooth solutions proceed in two parallel tracks.
Both the restricted solution and the global flow map address similar apriori
bounds—the former is restricted to x ∈ supp {ρ(·, t)} and the latter applies through-
out space, x ∈ �.

6.1. The One-Dimensional Case

The proof of the existence of global smooth solutions for 1d follows the tech-
nique of [1]: we analyze the ODE satisfied by the quantity ∂xu + φ ∗ ρ along
characteristics.

Proof of Theorem 4.2. Write d := ∂xu. Differentiate the second equation of (6.1)
with respect to x to get

∂tρ + u∂xρ = −ρd

∂td + u∂xd + d2 = −u
∫

∂xφ(x − y)ρ(y) dy −
∫

φ(x − y)∂tρ(y) dy

− d

∫

φ(x − y)ρ(y) dy −U ′′(x).

(6.1)
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Expressed in terms of e := d+ φ ∗ ρ and the time derivative along characteristics
denoted by ′, then (6.1) reads

ρ′ = −ρ(e − φ ∗ ρ)

e′ = −e(e − φ ∗ ρ) −U ′′.
(6.2)

If e > 0, then by (4.5),

e′ � −e(e − m0φ−) − A = −
(

e − m0φ−
2

)2

+
(

(m0φ−)2

4
− A

)

.

Then since by (4.5) A < (m0φ−)2/4, one has

e′ > 0, for
m0φ−
2

−
√

(m0φ−)2

4
− A < e <

m0φ−
2

+
√

(m0φ−)2

4
− A.

By (4.6), initially e >
m0φ−
2

−
√

(m0φ−)2

4
− A for all x . Therefore the same

inequality persists for all time.
Also notice that if e � 2m0φ+ then e′ � −e2/2 − a, which implies e is

bounded above by e � max{maxx e0, 2m0φ+,
√
max{0,−2a}}. Since φ ∗ ρ is

bounded above and below, this implies that ∂xu is uniformly bounded, and thus
global smooth solution exists. �
Proof of Theorem 4.3. We start from (6.2), the dynamic of e, which is derived in
the previous proof. We analyze the sign of e′ in the cases of positive and negative
e:

• If e � 0, then

e′ � −e(e − m0φ+) − a = −
(

e − m0φ+
2

)2

+
(

(m0φ+)2

4
− a

)

(6.3)

– If (4.7) holds, then e′ < 0.
– If (4.7) does not hold, then if

e <
m0φ+
2

−
√

(m0φ+)2

4
− a (6.4)

then e′ < 0.
• If e < 0 then

e′ � −e(e − m0φ−) − a = −
(

e − m0φ−
2

)2

+
(

(m0φ−)2

4
− a

)

(6.5)

– If a > 0, then e′ < 0.
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– If a � 0, then if

e <
m0φ−
2

−
√

(m0φ−)2

4
− a (6.6)

then e′ < 0.

Notice that for all the e′ < 0 cases above, we actually have e′ < −ε < 0.
Therefore, as long as one stays in the e′ < 0 cases, ewill keep decreasing until it is
negative enough so that the−e2 term blows it up. Therefore, we have the following
situations where we can guarantee a finite time blow-up:

• If (4.7) holds, then any negative values of e will have e′ < 0 since a > 0, and
any positive values of e will have e′ < 0.

• If (4.7) does not hold but a > 0 and (4.8) holds (which means (6.4) holds
initially), then (6.4) will propagate since e′ < 0 for positive or negative values
of e.

• If (4.7) does not hold and a � 0 but (4.9) holds (which means (6.6) holds
initially: in particular, e starts with negative values), then (6.6) will propagate
since e′ < 0 (because e stays negative). �

6.2. The Two-Dimensional Case

We follow [9], tracing the dynamics of the matrix Mi j = ∂ j ui associated with
the solution to (1.1). Since most steps are the same as in [9, Theorem 2.1] except for
the additional external potential term on the right of (1.1), we outline the derivation
along the same steps as in [9] while omitting excessive details.
Step 1: M satisfies

∂t M + u · ∇M + M2 = −(φ ∗ ρ)M + R − ∇2U, (6.7)

where

Ri j = ∂ jφ ∗ (ρui ) − ui (∂ jφ ∗ ρ). (6.8)

The divergence d = ∇ · u satisfies

∂td + u · ∇d + TrM2 = −(φ ∗ ρ)d + TrR − �U. (6.9)

The two traces in this equation are evaluated as follows: by (6.8), TrR = −(φ ∗ρ)′;
also, TrM2 ≡ 1

2

(
d2 + η2M

)
where ηM is the spectral gap of the two eigenvalues of

M . We find

(d + φ ∗ ρ)′ = −1

2
η2M − 1

2
d(d + 2φ ∗ ρ) − �U. (6.10)

Decompose M into its symmetric and anti-symmetric parts, M = S + �, then
η2M = η2S − 4ω2 where ηS is the spectral gap of S and ω = (∂1u2 − ∂2u1)/2 is the
scaled vorticity. Then, by introducing e = d + φ ∗ ρ, we finally end up with

e′ = 1

2
(4ω2 + (φ ∗ ρ)2 − η2S − e2 − 2�U ), e := d + φ ∗ ρ. (6.11)
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Step 2: The ‘e-equation’ is complemented by the dynamics of the spectral gap ηS .
To this end, we follow the spectral dynamics of S:

S′ + S2 = ω2 I − (φ ∗ ρ)S + Rsym − ∇2U, Rsym = 1

2
(R + R�);

where I stands for the identity matrix. The dynamics of the eigenvalues μi of S is
given by

μ′
i + μ2

i = ω2 − (φ ∗ ρ)μi + 〈si , Rsymsi 〉 − 〈si ,∇2Usi 〉,
where s1, s2 are the orthonormal eigenpair of S. Taking their difference,

η′
S + eηS = q := 〈s2, Rsyms2〉 − 〈s1, Rsyms1〉 − 〈s2,∇2Us2〉 + 〈s1,∇2Us1〉.

(6.12)

Step 3: We need to estimate ηS based on (6.12). A good estimate of ηS will give a
non-negative lower bound of e.
Step 4: Finally we need an upper bound of e. The dynamics of ω is independent of
the symmetric forcing term ∇2U ,

ω′ + eω = 1

2
Tr(J R), J =

[
0 −1
1 0

]

, (6.13)

Therefore we can bound ω in the same way as we bound ηS , and this yields an
upper bound of e. This would conclude the proof of the uniform boundedness of
d = ∇·u. Combinedwith the uniform boundedness of ηS andω, we get the uniform
boundedness of ∇u.

Proof of Theorem 4.4. Observe that outside the horizon range, dist
{x, supp {ρ(·, t)}} > R∞, the the entries of R(x, t) vanish since ∂ j φ̃(|x − y|)
does; otherwise, we have, in view of the assumed bound (4.11),

|Ri j (x, t)| � 2m0|φ′|∞umax. (6.14)

Therefore, since s1, s2 are unit vectors,

|〈s2, Rsyms2〉 − 〈s1, Rsyms1〉| � 8m0|φ′|∞umax,

while
∣
∣− 〈s2,∇2Us2〉 + 〈s1,∇2Us1〉

∣
∣ � A − a, and we end up with

|q| � 8m0|φ′|∞umax + A − a =: Cmax . (6.15)

Hence, assuming that we have the lower bound (which is true initially, by assump-
tion (4.16a))

e �
√

CA −
√

C2
A − C2

max =: c2 > 0 where CA = m2
0φ

2−
2

− 2A (6.16)

(the quantity inside the inner square root is positive, by assumption (4.12)), ηS does
not exceed

|ηS| � max
{
max
x

|(ηS)0(x)|, Cmax

c2

}
:= ηS,max. (6.17)
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Step 3: (6.11) implies

e′ � 1

2
(c21 − e2), c21 := m2

0φ
2− − η2S,max − 4A = 2CA − η2S,max, (6.18)

with well-defined c1 > 0 provided the quantity on the right is positive. In fact,
assumption (4.16b) gives

2CA − max
x

|(ηS)0(x)|2 � CA −
√

C2
A − C2

max = c22,

and by (6.16), 2CA −
(
Cmax

c2

)2

= c22. Thus we have 2CA − η2S,max = c22, and

therefore c1 is well-defined and coincides with c1 = c2 > 0. With this, (6.18) now
reads e′ � 1/2(c22−e2) and hence e is increasing whenever e � c2. This means the
initial bound e � c2 can be propagated for all time, so we can identify c2 = emin.
Step 4: Similarly ,we obtain from (6.13) that ω is uniformly bounded:

|ω| � max

{

max
x

|ω0(x)|, 8m0|φ′|∞umax

c2

}

=: ωmax.

Then (6.11) shows, since |�U | � 2A, e′ � 1
2 (4ω

2
max + m2

0φ
2+ + 4A − e2). Thus

we get the upper bound e � max

{

maxx e0(x),
√

4ω2
max + m2

0φ
2+ + 4A

}

. �

Remark 6.1. (Improved thresholds in the case of quadratic potentials) In the special
case quadratic potential, one can replace (6.17) with the uniform-in-time bound of
maxx |ηS(x, t)| � maxx |(ηS)0| + 2|φ′|∞CR , (4.15). In particular, since the latter
is independent of c2, we can reorganize the proof with emin = c2 = 0, ending with
global regularity in time for sub-critical data satisfying (4.16).

We close this section by noting that a key step of the existence proof, going back
to [9], is the upper-bound of the residual terms

Ri j (x, t) =
∫

y
∂ jφ(|x − y|)(ui (x, t) − ui (y, t)

)
ρ(y, t) dy.

In fact, we can be slightly more precise in bounding these terms in (6.14). By
(2.15), the term

(
ui (x, t) − ui (y, t)

)
ρ(y, t) is exponentially small and hence can

be neglected whenever x ∈ supp {ρ(·, t)}. Thus, for x /∈ supp {ρ(·, t)}, we are left
with the bound

|Ri j (x, t)| � m0|φ′|∞δumax + l.o.t., δumax := max
x,y∈A∞

|̃u(x, t) − ũ(y, t)|,

where A∞ = {x : 0 < dist{x, supp {ρ(·, t)}} < R∞
}
is the vacuous horizon

region surrounding supp {ρ(·, t)}. However, there is no reason to expect velocity
alignment inside the horizon region, where the dynamics is dictated possibly by
different extension procedures. The study of such extensions is left open for future
work.
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