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MULTIFLOCKS: EMERGENT DYNAMICS IN
SYSTEMS WITH MULTISCALE COLLECTIVE BEHAVIOR\ast 
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Abstract. We study the multiscale description of large-time collective behavior of agents driven
by alignment. The resulting multiflock dynamics arises naturally with realistic initial configura-
tions consisting of multiple spatial scaling, which in turn peak at different time scales. We derive a
``master-equation"" which describes a complex multiflock congregations governed by two ingredients:
(i) a fast inner-flock communication; and (ii) a slow(-er) interflock communication. The latter is
driven by macroscopic observables which feature the up-scaling of the problem. We extend the cur-
rent monoflock theory, proving a series of results which describe rates of multiflocking with natural
dependencies on communication strengths. Both agent-based, kinetic, and hydrodynamic descrip-
tions are considered, with particular emphasis placed on the discrete and macroscopic descriptions.

Key words. alignment, Cucker--Smale, large-time behavior, multiscale, multiflock, hydrody-
namics
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1. Introduction. We present (to our knowledge---a first) systematic study of
multiscale analysis for the large-time behavior of collective dynamics. Different scales
of the dynamics are captured by different descriptions. Our starting point is an agent-
based description of alignment dynamics in which a crowd of N agents, each with unit
mass, identified by (position, velocity) pairs (xi(t),vi(t)) \in \BbbR d \times \BbbR d, are governed by

\.xi(t) = vi(t),

\.vi(t) = \lambda 
\sum 
j\in \scrC 

\phi (xi,xj)(vj(t) - vi(t)), i \in \scrC := \{ 1, 2, . . . , N\} .(1.1)

The alignment dynamics is dictated by the symmetric communication kernel \phi (\cdot , \cdot ) \geqslant 
0. It is tacitly assumed here that the initial configuration of the agents are equidis-
tributed which justifies a scaling factor \lambda = 1/N , and thus (1.1) amounts to the
celebrated Cucker--Smale (CS) model [6, 7]. The tendency to align velocities leads to
the generic large-time formation of a flock.

In realistic scenarios, however, initial configurations are not equidistributed. In-
deed, fluctuations in initial density may admit different scales of spatial concentra-
tions. What is the collective behavior subject to such nonuniform initial densities?
This is the main focus of our work.

The presence of different spatial scales leads to formation of separate flocks at
different time scales, which are realized by mixing different formulations of alignment

\ast Received by the editors March 10, 2020; accepted for publication (in revised form) March 8,
2021; published electronically June 24, 2021.

https://doi.org/10.1137/20M1324454
Funding: The first author was supported in part by NSF grant DMS-1813351. The second

author was supported in part by NSF grants DMS16-13911, RNMS11-07444 (KI-Net), and ONR
grant N00014-1812465.

\dagger Department of Mathematics, Statistics, and Computer Science, University of Illinois, Chicago,
IL 60607-7045 USA (shvydkoy@uic.edu).

\ddagger Department of Mathematics and Institute for Physical Sciences \& Technology (IPST), University
of Maryland, College Park, MD 207423289 USA (tadmor@umd.edu).

1115

D
ow

nl
oa

de
d 

07
/0

2/
21

 to
 1

28
.8

.6
9.

51
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

https://doi.org/10.1137/20M1324454
mailto:shvydkoy@uic.edu
mailto:tadmor@umd.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1116 ROMAN SHVYDKOY AND EITAN TADMOR

dynamics---from agent-based to hydrodynamic descriptions. In section 2 we make a
systematic derivation, starting with the agent-based CS dynamics for a single flock
(1.1) and ending with dynamics which involves several flocks \scrC \alpha , \alpha = 1, . . . A: the
\alpha -flock consists of N\alpha agents, identified by (position, velocity) pairs \{ (x\alpha i,v\alpha i)\} i\in \scrC a ,

which is one part of a total crowd of size N =
\sum A

i=1N\alpha . The resulting multiflock
dynamics is governed by a ``master equation""

(1.2)\left\{         
\.x\alpha i = v\alpha i,

\.v\alpha i = \lambda \alpha 

N\alpha \sum 
j=1

m\alpha j\phi \alpha (x\alpha i,x\alpha j)(v\alpha j  - v\alpha i) + \mu 

A\sum 
\beta =1
\beta \not =\alpha 

M\beta \psi (X\alpha ,X\beta )(V\beta  - v\alpha i).

The system (1.2) arises naturally as an effective description for the alignment
dynamics with multiple spatial scaling, which in turn, yields multiple temporal scal-
ings. Such multiscaling appears when each \alpha -flock undergoes evolution on a time scale
much shorter than relative evolution between the flocks. Accordingly, the dynamics in
(1.2) have two main parts. The first sum on the right encodes short-range alignment
interactions among agents in flock \alpha , dictated by symmetric communication kernel \phi \alpha 
with amplitude \lambda \alpha . The new feature here is that spatial variations in initial density
require us to trace the different masses m\alpha j attached to different agents located at
x\alpha j . The second sum on the right encodes the interactions between agents in flock \alpha 
and the ``remote"" flocks \beta \not = \alpha . The communication is dictated by symmetric kernel
\psi with amplitude \mu : since these are long-range interactions, they are scaled with
relatively weak amplitude \mu \ll 1, and we therefore do not get into finer resolution of
different kernels, \psi \alpha \beta , to different flocks (interflocking interactions driven by different
\psi \alpha \beta is the topic of a recent study on multispecies dynamics [11]). The new feature
here is that the remote flocks in these long-range interactions, \scrC \beta \not =\alpha , are encoded in
terms of their macroscopic ``observables""---their mass, M\beta =

\sum 
i\in \scrC \beta 

m\beta i, and centers
of mass and momentum

X\beta :=
1

M\beta 

\sum 
i\in \scrC \alpha 

m\beta ix\beta i, V\beta :=
1

M\beta 

\sum 
i\in \scrC \beta 

m\beta iv\beta i, M\beta :=
\sum 
i\in \scrC \beta 

m\beta i.

These macroscopic quantities \{ (X\alpha ,V\alpha )\} are determined by the slow interflocking
dynamics: a weighted sum

\sum 
im\alpha i(1.2)i yields

(1.3)

\left\{     
\.X\alpha = V\alpha ,

\.V\alpha = \mu 
\sum 
\beta \not =\alpha 

M\beta \psi (X\alpha ,X\beta )(V\beta  - V\alpha ).

Thus, starting with agent dynamics (1.1) we end up with the same classical CS dy-
namics (1.3) for ``super agents,"" weighted by their respective masses and representing
macroscopic parameters of those flocks. This up-scaling---the process of bottom-up
integration [12], naturally yields X\beta ,V\beta , and M\beta and their corresponding commu-
nication kernel, \psi , as the the effective parameters for our multiscale description. At
the same time, our master equation (1.2) specifies how these up-scale parameters in-
teract with the subscales parameters x\alpha ,v\alpha , and \phi \alpha , much like models for collective
dynamics at the cellular scale that which include subcellular mechanisms [14]. The
importance of multiscaling in collective dynamics was highlighted in a recent theme
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MULTIFLOCKS: MULTISCALE COLLECTIVE BEHAVIOR 1117

issue of the Phil. Trans. Royal Soc. B devoted to collective migration in biological
systems; as the editors [8] indicate multiscale methods in collective migration uncover
new unifying organization principles and in particular shed light on the transition
from single to collective migration. These features are realized in our multiflocking
approach.

Remark 1.1 (smooth and singular kernels). In the case when the interflock and
internal communication kernels are smooth, the global existence of the system (1.2)
follows by a trivial application of the Picard iteration and continuation. If the kernels
\phi \alpha are singular, however, collisions lead to finite time blowup, so this case needs to be
addressed separately. In the appendix we show that multiflock dynamics governed by

singular communication kernels with ``fat head"" so that
\int 1

0
\phi \alpha (r) dr = \infty experiences

no internal collisions. Consequently, one can deduce global existence for systems with
smooth \psi and a family of either smooth kernels or fat head kernels.

1.1. Statement of main results. Much of the theory available in the literature
on monoscale flocking, e.g., [1, 2] and the references therein, admits proper extension
to the framework of multiflocks. We chose to carry out proofs to three main aspects
of (i) the large-time alignment behavior of (1.2); (ii) multiflocks in presence of addi-
tional attractive forcing ; and (iii) large-crowd hydrodynamics of multiflocks. Below
we highlight the main results.

We begin, in section 3, with the large-time alignment behavior of the multiflock
dynamics (1.2). We assume that the short- and long-range communication kernels \phi \alpha 
and \psi are bounded and fat-tailed in the sense that1

\phi \alpha (x,y) \gtrsim \langle | x - y| \rangle  - \eta \alpha , \psi (x,y) \gtrsim \langle | x - y| \rangle  - \zeta , \eta a, \zeta \leqslant 1.(1.4)

They dictate the fast alignment rates insides flocks and slow cross-flocks rates, sum-
marized in the following two theorems.

Theorem 1.2 (fast local flocking). Assume that the communication in an \alpha -
flock has a fat-tailed kernel \phi \alpha (x,y) \gtrsim \langle | x  - y| \rangle  - \eta \alpha , \eta \alpha \leqslant 1. Then, the diameter of
the \alpha -flock is uniformly bounded in time, \scrD \alpha (t) := maxi,j | x\alpha i(t) - x\alpha j(t)| \leqslant \scrD \alpha , and
the \alpha -flock aligns exponentially fast toward its center of momentum

max
i

| v\alpha i(t) - V\alpha (t)| \lesssim e - \delta \alpha t, \delta \alpha = \lambda \alpha M\alpha (\scrD \alpha )
 - \eta \alpha .(1.5)

The main message of this theorem is that the \alpha -flock alignment towards V\alpha 

depends only on the \alpha -flock own parameters but not the global values. The global
alignment has a slow(-er) rate reflecting weaker communication due to the smaller
amplitude \mu and the global diameter of the multiflock \scrD . Let V denote the center
of momentum of the whole crowd, V := 1

M

\sum 
\alpha M\alpha V\alpha (t), and observe that it is time

invariant.

Theorem 1.3 (slow global flocking). Suppose \psi has a fat tail, \psi (x,y) \gtrsim \langle | x  - 
y| \rangle  - \zeta , \zeta \leqslant 1. Then the diameter of the whole crowd is uniformly bounded in time,
\scrD (t) := max\alpha ,\beta | X\alpha (t)  - X\beta (t)| \leqslant \scrD , and solutions of (1.2) globally align with the
global center of momentum V,

max
\alpha ,i

| v\alpha i(t) - V| \lesssim e - \delta t, \delta = \mu M(\scrD ) - \zeta .(1.6)

1Here and below we abbreviate \langle X\rangle := (1 + | X| 2)1/2, while \langle v,u\rangle or simply v \cdot u stands for the
usual scalar product of vectors. We also adopt the convention of approximate inequality signs to
designate inequalities which hold up to a constant: A \gtrsim B if \exists c > 0 such that A \geqslant cB, etc.
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1118 ROMAN SHVYDKOY AND EITAN TADMOR

As a consequence of the two theorems above we obtain what is called ``strong flock-
ing,"" that is, when all the displacements between agents stabilize, x\alpha i(t) - x\alpha j(t) \rightarrow 
\=x\alpha ij as t\rightarrow \infty .

Indeed, x\alpha i(t) - x\alpha j(t) = x\alpha i(0) - x\alpha j(0) +

\int t

0

[v\alpha i(s) - v\alpha j(s)] ds, hence

\=x\alpha ij = x\alpha i(0) - x\alpha j(0) +

\int \infty 

0

[v\alpha i(s) - v\alpha j(s)] ds,

and the rate of convergence is obviously the same as that claimed for the velocities.

In section 4 we study the multiflock dynamics (1.2) with additional attractive
forcing (here we restrict attention to interactions determined by a radially symmetric
kernels)

(1.7)\left\{               

\.x\alpha i = v\alpha i,

\.v\alpha i =
1

N\alpha 

N\alpha \sum 
j=1

m\alpha j\phi \alpha (| x\alpha i  - x\alpha j | )(v\alpha j  - v\alpha i) + \mu 

A\sum 
\beta =1
\beta \not =\alpha 

M\beta \psi (| X\alpha  - X\beta | )(V\beta  - v\alpha i)

+ F\alpha i.

Here, F\alpha i(t) =  - 1
N\alpha 

\sum N\alpha 

j=1 \nabla U(| x\alpha i  - x\alpha j | ) is an external attractive forcing induced
by a convex potential U which belongs to the class of potentials outlined in (4.6)
below. Arguing along the lines of [16] we prove the following (the detailed result is
outlined in Theorem 4.1 below).

Theorem 1.4 (local flocking with attraction potential). Consider the multiflock
dynamics (1.7) with fat-tailed radial kernels, \phi \alpha (r) \gtrsim \langle r\rangle  - \eta and convex potential
U(r) \gtrsim r\beta with tamed growth U (k)(r) \lesssim r\beta  - k, k = 1, 2, for some \beta \geqslant 1 (further
outlined in (4.6) below). There exists \eta \beta specified in (4.7), such that for \eta \leqslant \eta \beta , the
dynamics of each flock admits asymptotic aggregation, lim supt\rightarrow \infty \scrD \alpha (t) \leqslant L, and
alignment decay

1

2N\alpha 

N\alpha \sum 
i=1

| v\alpha i  - V\alpha | 2 \lesssim 
C\delta 

\langle t\rangle 1 - \delta 
\forall \delta > 0, \alpha = 1, 2, . . . , A.

It should be emphasized that the confining action of the attraction potential is
assumed to act only on far-field, r > L, but otherwise is allowed to be ``turned off""
for U(r) = 0, r \leqslant L as depicted in Figure 1.1. This offers an extension of the recent
result [17] for the case L = 0. In fact, as noted in Theorem 4.2 below, if the potential
U has a global support, then there is exponential rate alignment.

When N\alpha \gg 1 one recovers the large-crowd dynamics in terms of the macroscopic
density and velocity (\rho a,u\alpha ), governed by the hydrodynamic multiflock system, which
is the topic of section 5\left\{             

\partial t\rho \alpha +\nabla \cdot (u\alpha \rho \alpha ) = 0

\partial tu\alpha + u\alpha \cdot \nabla u\alpha = \lambda \alpha 

\int 
\BbbR d

\phi \alpha (x,y)(u\alpha (y) - u\alpha (x))\rho \alpha (y) dy

+ \mu 
\sum 
\beta \not =\alpha 

M\beta \psi (X\alpha ,X\beta )(V\beta  - u\alpha (x, t)),

\alpha = 1, . . . , A.
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MULTIFLOCKS: MULTISCALE COLLECTIVE BEHAVIOR 1119

φ(r) U(r)

Alignment

b

L
Attraction

Fig. 1.1. Two-zone attraction-alignment model.

Here \{ (X\alpha ,V\alpha )\} \alpha are the macroscopic quantities which record the center of mass and
momentum of \alpha -flock governed by (1.3). The alignment dynamics reflects the discrete
framework of Theorems 1.2 and 1.3, namely, if \phi \alpha and \psi are fat-tailed then smooth
solutions of the \alpha -flock and, respectively, the whole crowd will align towards their
respective averages. The details can be found in Theorem 5.1 below. In particular,
we prove that the one-dimensional multiflock hydrodynamics with radial \phi \alpha 's, either
smooth or singular, and subject to subcritical initial condition u\prime \alpha (x, 0) + \lambda \alpha \phi \alpha \ast 
\rho \alpha (x, 0) \geqslant 0, \forall x \in \BbbR , admits global smooth solution and flocking insues.

2. From agents to multiflocks and back: Up-scaling.

2.1. Agent-based description. Our starting point is the alignment-based dy-
namics (1.1)

\.xi(t) = vi(t)

\.vi(t) =
\sum 
j\in \scrC 

\phi (xi,xj)(vj(t) - vi(t)), i \in \scrC := \{ 1, 2, . . . , N\} .(2.1)

This expresses the tendency of agents to align their velocities with the rest of the
crowd, dictated by the symmetric communication kernel \phi (\cdot , \cdot ) \geqslant 0. Let us assume
that each of the terms on the right is of the same order, \scrO (1); then the total action on
the right of order \scrO (N) will peak at time t = \scrO (1/N). Using the scaling parameter
\lambda = 1/N , one arrives at the celebrated CS model [6, 7]

\.vi = \lambda 
\sum 
j\in \scrC 

\phi (xi,xj)(vj  - vi), \lambda =
1

N
,

where the dynamics are rescaled to peak at the desired t \sim \scrO (1). But what happens
when the terms on the right of (2.1) are of different order? Assume that the crowd
consists of two mostly separated groups, \scrC = \scrC 1 \cup \scrC 2, where \scrC 1 has a large crowd of
N1 agents whereas \scrC 2 has a much smaller crowd of N2 \ll N1 agents. By ``mostly
separated"" we mean that the two groups have a very low level of communication so
that \{ \phi (xi,xj) \ll 1 | (xi,xj) \in (\scrC 1, \scrC 2)\} . We will quantify a precise statement of
separation in section 2.3 below. Now the dynamics (2.1) will experience two time
scales: the action of the larger crowd \scrC 1 will peak earlier at time t1 = \scrO (1/N1),
mostly ignoring the negligible effect of the ``far way"" crowd in \scrC 2. The crowd of \scrC 2
will peak much later at time t2 = \scrO (1/N2) \gg t1. In [13] we suggested an adaptive
scaling parameter

\.vi = \lambda i
\sum 
j\in \scrC 

\phi (xi,xj)(vj  - vi), \lambda i =
1\sum 

j \phi (xi,xj)
;
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1120 ROMAN SHVYDKOY AND EITAN TADMOR

here, \lambda i adapts itself to the different clocks of both crowds: when in the larger crowd
i \in \scrC 1, we have \lambda i \sim 1/N1, whereas for agents in the smaller crowd i \in \scrC 2 we have
\lambda i \sim 1/N2

\.vi =

\left\{       
\lambda i
\sum 

j\in \scrC 1
\phi (xi,xj)(vj  - vi), i \in \scrC 1 : \lambda i =

1\sum 
j \phi (xi,xj)

\sim 1

N1

\lambda i
\sum 

j\in \scrC 2
\phi (xi,xj)(vj  - vi), i \in \scrC 2 : \lambda i =

1\sum 
j \phi (xi,xj)

\sim 1

N2
.

Thus, \lambda i should be viewed as time scaling adapted for both crowds to peak at the
desired t = \scrO (1). While this scaling is satisfactory for \scrC 1, it neglects taking into
account that the activity of the smaller \scrC 2 peaks much later after the peak of the
larger crowd \scrC 1, which has an additional effect on the dynamics of \scrC 2.

2.2. Scale separation in time. We want to take both groups into account
while being precise of using the same ``clock."" To this end, it will be convenient to
observe the configurations of crowds \scrC 1 and \scrC 2 in terms of their empirical distribution

\mu 1(x,v, t) :=
1

N1

\sum 
k\in \scrC 1

\delta \bfx k(t)(x)\otimes \delta \bfv k(t)(v), \mu 2(x,v, t) :=
1

N2

\sum 
k\in \scrC 2

\delta \bfx k(t)(x)\otimes \delta \bfv k(t)(v).

We distinguish between three time scales.

(i) Time t \lesssim t1. The dynamics is captured by the agent-based description of the two
separate groups which form the crowd \scrC in (2.1).

(ii) Time t1 \ll t \lesssim t2. Since t2 \gg t1, crowd \scrC 1 is captured by its large-time dynamics,

which is realized as a continuum with macroscopic density \mu 
1
(x,v, t) dv

N1\gg 1 - \rightarrow \rho 1(x, t) :

\BbbR d \times \BbbR + \rightarrow \BbbR +, and momentum \mu 
1
(x,v, t)v dv

N1\gg 1 - \rightarrow (\rho 1u1)(x, t) : \BbbR d \times \BbbR + \mapsto \rightarrow 
\BbbR d. Observe that the dynamics at this stage involves two groups with two different
descriptions: crowd \scrC 1 is encoded in terms of its hydrodynamic observables, (\rho 1, \rho 1u1),
while crowd \scrC 2 is still encoded in terms of its agent-based description

\rho (y, t) = \rho 1(y, t)+

\rho 2(\bfy ,t)\underbrace{}  \underbrace{}  
1

N2

\sum 
k\in \scrC 2

\delta \bfx k(t)(y), \rho u(y, t) = \rho 1u1(y, t)+

\rho 2\bfu 2(\bfy ,t)\underbrace{}  \underbrace{}  
1

N2

\sum 
k\in \scrC 2

vk(t)\delta \bfx k(t)(y) .

The large-time dynamics of \scrC 1 is governed by the hydrodynamic system [10, 3]

(2.2)1

\left\{         
(\rho 1)t +\nabla \bfx \cdot (\rho 1u1) = 0,

(\rho 1u1)t +\nabla \bfx \cdot (\rho 1u1 \otimes u1 + P1) =

\int 
\BbbR n

\phi (x,y)
\bigl\{ 
(\rho u)(y, t)\rho 1(x, t)

 - \rho (y, t)(\rho 1u1)(x, t))
\bigr\} 
dy,

while crowd \scrC 2 is governed by the agent-based description (2.1) which takes the weak
formulation

(2.2)2

\left\{         
(\rho 2)t +\nabla \bfx \cdot (\rho 2u2) = 0,

(\rho 2u2)t +\nabla \bfx \cdot (\rho 2u2 \otimes u2 + P2) =

\int 
\BbbR n

\phi (x,y)
\bigl\{ 
(\rho u)(y, t)\rho 2(x, t)

 - \rho (y, t)(\rho 2u2)(x, t))
\bigr\} 
dy.
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MULTIFLOCKS: MULTISCALE COLLECTIVE BEHAVIOR 1121

Here, P1 = P (v  - u1 \otimes v  - u1) is a second-order fluctuations pressure tensor which
requires a closure relations between the microscopic and macroscopic variables. We
shall not dwell on its specific form: the large time behavior of \scrC 1 in (2.2)1 is indepen-
dent of the specifics of this closure. It will suffice to observe the center of mass and
average velocity of crowd \scrC 1:

X1(t) :=
1

M1

\int 
\scrS 1

x\rho 1(x, t) dx, V1(t) :=
1

M1

\int 
\scrS 1

\rho 1(x, t)u1(x, t) dx,

\scrS 1 := supp\{ \rho 1(t, \cdot )\} .

Integrating (2.2)1 over the support of the first crowd \scrS 1: since the ``self""-alignment
of \scrC 1 with itself vanishes for y \in \scrS 1, we are left with the contribution from the
second crowd \rho (y, t) \mapsto \rightarrow \rho 2 = 1

N2

\sum 
k\in \scrC 2

\delta \bfx k(t)(y) and (\rho u)(y, t) \mapsto \rightarrow \rho 2u2

= 1
N2

\sum 
k\in \scrC 2

vk(t)\delta \bfx k(t)(y), which yields

\.X1 = V1

M1
\.V1 =

\int 
\bfx \in \scrS 1

\int 
\bfy \in \scrS 2

\phi (x,y)
\bigl\{ 
(\rho 2u2)(y, t)\rho 1(x, t) - \rho 2(y, t)(\rho 1u1)(x, t))

\bigr\} 
dy dx

=
1

N2

\sum 
j\in \scrC 2

v2j(t)

\int 
\bfx \in \scrS 1

\phi (x,x2j)\rho 1(x, t) dx

 - 1

N2

\sum 
j\in \scrC 2

\int 
\bfx \in \scrS 1

\phi (x,x2j)(\rho 1u1)(x, t) dx.

Due to assumed relatively large separation between the flocks, we can approximate
the last two integrals by the values of the kernel integrands at the centers of mass:

(2.3)

\left\{             

\int 
\bfx \in \scrS 1

\phi (x,x2j)\rho 1(x, t) dx =: \mu \psi (X1,X2)M1,

\mu \psi (X,Y) \approx \phi (X,Y), \mu \ll 1\int 
\bfx \in \scrS 1

\phi (x,x2j)(\rho 1u1)(x, t) dx =: \mu \psi (X1,X2)M1V1,

obtaining

(2.4a)

\left\{             

\.X1(t) = V1(t)

\.V1(t) = \mu \psi (X1,X2)
\bigl( 
V2(t) - V1(t)

\bigr) 
, V2(t) =

1

M2

\int 
\rho 2u2(x, t) dx

=
1

N2

\sum 
j\in \scrS 2

v2j(t).

For the dynamics of the second group \scrC 2 we may take P2 \equiv 0 on the left of (2.2)2.
The cross-group interactions term (\rho , \rho u) \mapsto \rightarrow (\rho 1, \rho 1u1) on the right of (2.2)2 yields\int 

\bfy \in \scrS 1

\phi (x2j ,y)\rho 1(y, t) dy = \mu \psi (X2,X1)M1,\int 
\bfy \in \scrS 1

\phi (x2j ,y)(\rho 1u1)(y, t) dy = \mu \psi (X2,X1)M1V1,
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1122 ROMAN SHVYDKOY AND EITAN TADMOR

arriving at

(2.4b)

\left\{     
\.x2i = v2i, i \in \scrC 1,

\.v2i =
\sum 
j\in \scrC 2

\phi (x2i,x2j)(v2j  - v2i) + \mu \psi (X2,X1)M1(V1  - v2i).

Thus, we end up with a new agent-based dynamics, (2.4b), in which the dynamics
of group \scrC 1 is encoded as new agent governed by mean positionX1 and a mean velocity
V1. This is a precisely the system (1.2) written for the smaller flock \scrC 2.

(iii) Time t\gg t2. Now the second crowd \scrC 2 is also captured by its large-time dynamics,
realized in terms of macroscopic density \mu 2(x,v, t) dv \rightarrow \rho 2(x, t) : \BbbR d \times \BbbR + \mapsto \rightarrow \BbbR +,
and momentum \mu 2(x,v, t)v dv \rightarrow (\rho 2u2)(x, t) : \BbbR d \times \BbbR + \mapsto \rightarrow \BbbR d. Together, groups \scrC 1
and \scrC 2 form the crowd

\rho (y, t) = \rho 1(y, t) + \rho 2(y, t) \rho u(y, t) = \rho 1u1(y, t) + \rho 2u2(y, t),

\scrS i = \scrS i(t) := supp\{ \rho i(\cdot , t)\} ,

which is governed by (2.2)1--(2.2)2. Here, P2 = P (v - u2 \otimes v - u2) is a second-order
fluctuations pressure tensor which requires a closure relations between the microscopic
and macroscopic variables. But we do not dwell on its specific form, since the large
time behavior of \scrC 2 in (2.2)2 is captured by the center of mass and average velocity
of crowd \scrC 2:

X2(t) :=
1

M2

\int 
\scrS 2

x\rho 2(x, t) dx, V2(t) :=
1

M2

\int 
\scrS 2

u2(x, t)\rho 2(x, t) dx.

Integrating (2.2)2 over the support of the second crowd \scrS 2: since the ``self""-alignment
of \scrC 2 with itself vanishes for y \in \scrS 2, and using (2.3) we are left with

\.X2 = V2,

M2
\.V2 =

\int 
\bfx \in \scrS 2

\int 
\bfy \in \scrS 1

\phi (x,y)
\bigl\{ 
(\rho u)(y, t)\rho 2(x, t) - \rho (y, t)(\rho 2u2)(x, t))

\bigr\} 
dy dx

=

\int 
\bfx \in \scrS 2

\int 
\bfy \in \scrS 1

\phi (x,y)
\bigl\{ 
(\rho 1u1)(y, t)\rho 2(x, t) - \rho 1(y, t)(\rho 2u2)(x, t))

\bigr\} 
dy dx

=

\int 
\bfx \in \scrS 2

\phi (x,X1)
\bigl\{ 
M1V1\rho 2(x, t) - M1(\rho 2u2)(x, t))

\bigr\} 
dx.

We approximate the last two integrals by the same principle as before\int 
\bfx \in \scrS 2

\phi (x,X1)\rho 2(x, t) dx = \mu \psi (X2,X1)M2,\int 
\bfx \in \scrS 2

\phi (x,X1)(\rho 2u2)(x, t) dx = \mu \psi (X2,X1)M2V2,

(2.5)

arriving at a 2-agent system described by the dynamics of their center of mass/
momentum (x\alpha ,V\alpha ),

(2.6)

\left\{     
\.X\alpha (t) = V\alpha (t),

M\alpha 
\.V\alpha (t) = \mu 

\sum 
\beta \not =\alpha 

\psi (X\alpha ,X\beta )M\alpha M\beta (V\beta (t) - V\alpha (t)),
\alpha , \beta \in \{ 1, 2\} .
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MULTIFLOCKS: MULTISCALE COLLECTIVE BEHAVIOR 1123

In summary, we began with the agent based description for two crowds of N1 \gg 
N2 agents, (2.1) valid for t \lesssim t1. It evolved into an agent-based description for crowd
of N2 + 1 agents (2.4) valid for t1 \ll t \lesssim t2 and ended with 2-agent description (2.6)
valid for t \gg t2. This is a process of up-scaling in which the notion of an ``agent"" is
replaced with a ``multiflock"" --- a larger blob made of agents, which is identified by its
center of mass/momentum. The only difference is that the multiflock-based dynamics
now takes into account only the up-scaled quantities of the multiflock. Let us recall
that the more general system (1.2) permits up-scaling in the same way.

2.3. Scale separation in space. Following up on the idea of spatial sep-
aration between islands it is instructive to assess the scale on which approxima-
tion of mass/momentum given in (2.3), (2.5) is valid. To make analysis more pre-
cise we assume the large distance behavior of the communication kernel \phi (x,y) \sim 
| x - y|  - \eta . We consider the prototypical integrals in (2.3)

\int 
\bfx \in \scrS 1

\phi (x,y)\rho 1(x, t) dx and\int 
\bfx \in \scrS 1

\phi (x,y)\rho 1u1(x, t) dx for y \in \scrS 2. We now fix X \in conv\scrS 1 and Y \in conv\scrS 2, and

for any given pair of agents x \in \scrS 1, y \in \scrS 2 we decompose x  - y = (X  - Y) + (Y  - 
y)  - (X  - x). Thus, R := | X  - Y| is the (fixed) long-range distance between the
two groups, whereas r := | (Y  - y) - (X - x)| encapsulates the short-range distances
within the crowds, r \ll R. Similar decomposition holds for the weighted integral of
\rho 2 sought in (2.5). We have

1

| x - y| 
=

1\surd 
R2 + r2  - 2r cos \theta 

=
1

R

\infty \sum 
k=0

\Bigl( r
R

\Bigr) k
Pk(cos \theta ),

where cos \theta = \langle (X - y)/R, (X - x)/r\rangle and Pk are the k-degree Legendre polynomials,
P0(x) = 1, P1(x) = x, etc. We find

1

| x - y| 
=

1

R
+

r

R2

\biggl\langle 
X - Y

R
,
(Y  - y) - (X - x)

r

\biggr\rangle 
+\scrO 

\biggl( 
r2

R3

\biggr) 
=

1

R

\biggl( 
1 +

1

R2

\Bigl\langle 
X - Y, (Y  - y) - (X - x)

\Bigr\rangle 
+\scrO 

\biggl( 
r2

R2

\biggr) \biggr) 
,

x \in \scrS 1, y \in \scrS 2.

Since the contribution of the second term on the right is of order r/R \ll 1 we can
further approximate

\phi (x,y) \sim 1

| x - y| \eta 
=

1

R\eta 

\biggl( 
1 +

\eta 

R2

\Bigl\langle 
X - Y, (Y  - y) - (X - x)

\Bigr\rangle 
+\scrO 

\biggl( 
r2

R2

\biggr) \biggr) 
=

1

R\eta 
+

\eta 

R2+\eta 

\bigl\langle 
X - Y, (Y  - y) - (X - x)

\bigr\rangle 
+\scrO 

\biggl( 
r2

R2+\eta 

\biggr) 
.

The first key point is that by choosing X = X1 and Y = X2 as the centers of mass
of the flocks, so that M1X1 =

\int 
\bfx \in \scrS 1

x\rho 1(x, t); then the second term has a negligible
contribution. Indeed,\int 

\bfx \in \scrS 1

\phi (x,y)\rho 1(x, t) dx \sim 
\int 
\bfx \in \scrS 1

1

| x - y| \eta 
\rho 1(x, t) dx

=
1

R\eta 

\int 
\bfx \in \scrS 1

\rho 1(x, t) dx+
\eta 

R2+\eta 

\int 
\bfx \in \scrS 1

\langle X1  - X2, (X2  - y)

 - (X1  - x)\rangle \rho 1(x, t) dx+\scrO 
\biggl( 

r2

R2+\eta 

\biggr) 
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1124 ROMAN SHVYDKOY AND EITAN TADMOR

=
1

R\eta 
M1 +

\eta 

R2+\eta 

\int 
\bfx \in \scrS 1

\langle X1  - X2, (X2  - y)\rangle \rho 1(x, t) dx+\scrO 
\biggl( 

r2

R2+\eta 

\biggr) 
=

1

R\eta 
M1 +\scrO 

\Bigl( r

R1+\eta 

\Bigr) 
+\scrO 

\biggl( 
r2

R2+\eta 

\biggr) 
.

Noting that \phi (X1,X2) = R - \eta we conclude with the first part of (2.3)\int 
\bfx \in \scrS 1

\phi (x,y)\rho 1(x, t) dx = \phi (X1,y)M1 +\scrO 
\Bigl( r

R1+\eta 

\Bigr) 
, y \in \scrS 2.(2.7a)

Similarly, we recover the asymptotic formula for momentum (2.3)\int 
\bfx \in \scrS 1

\phi (x,y)(\rho 1u1)(x, t) dx = \phi (X1,X2)M1V1(t) +\scrO 
\Bigl( r

R1+\eta 

\Bigr) 
.(2.7b)

The same argument applies for crowd \scrC 2:\int 
\bfx \in \scrS 2

\phi (x,y)

\biggl\{ 
\rho 2(x, t)
(\rho 2u2)(x, t)

\biggr\} 
dx = \phi (X2,X1)

\biggl\{ 
M2

M2V2(t)

\biggr\} 
+\scrO 

\Bigl( r

R1+\eta 

\Bigr) 
,

y \in \scrS 1.

(2.8)

Remark 2.1. The bounds (2.7), (2.8) quantify first-order errors, \scrO (\epsilon ij) \ll 1, pro-
vided the diameters of crowds \scrC i, \scrC j are much smaller than their distance, \epsilon ij :=
max\{ ri, rj\} /Rij \ll 1.

3. Slow and fast alignment in multiflocks. In this section we focus on align-
ment dynamics for system (1.2) under conditions of Theorem 1.2 and 1.3. In fact,
with a slight abuse of notation we will make a more general assumption that there
exist radially symmetric subkernels

\phi \alpha (x,y) \geqslant \phi \alpha (| x - y| ), \psi (x,y) \geqslant \psi (| x - y| ),(3.1)

which are positive, monotonely decreasing, and fat tail at infinity\int \infty 

r0

\phi \alpha (r)dr = \infty ,

\int \infty 

r0

\psi (r)dr = \infty .(3.2)

We start by noting that any cluster system (1.2) satisfies the global maximum
principle---maximum of each coordinate in the total family v\alpha i is nonincreasing, and
the minimum is nondecreasing. Therefore the system (1.2) is well prepared ``as is"" for
establishing global flocking behavior. However, this is not the case for each individual
flock. Each flock satisfies ``internal maximum principle"" relative to its own time-
dependent momentum V\alpha . This dictates passage to the reference frame evolving
with that momentum and center of mass:

w\alpha i = v\alpha i  - V\alpha , y\alpha i = x\alpha i  - X\alpha .(3.3)

Using (1.2) and (1.3) one readily obtains the system

(3.4)

\left\{       
\.y\alpha i = w\alpha i,

\.w\alpha i = \lambda \alpha 

N\alpha \sum 
j=1

m\alpha j\phi \alpha ij(w\alpha i  - w\alpha j) - \mu R\alpha (t)w\alpha i,
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MULTIFLOCKS: MULTISCALE COLLECTIVE BEHAVIOR 1125

where
R\alpha (t) :=

\sum 
\beta \not =\alpha 

M\beta \psi (| X\alpha  - X\beta | ),

and we abbreviate
\phi \alpha ij = \phi \alpha (y\alpha i +X\alpha ,y\alpha j +X\alpha ).

This system now does have a maximum principle and is well prepared for establishing
flocking.

Let us denote individual flock parameters:

\scrD \alpha (t) := max
i,j=1,...,N\alpha 

| x\alpha i(t) - x\alpha j(t)| , \scrA \alpha = max
i,j=1,...,N\alpha 

| w\alpha i  - w\alpha j | 

= max
\ell \in \BbbR n:| \ell | =1
i,j=1,...,N\alpha 

\langle \ell ,w\alpha i  - w\alpha j\rangle .

By Rademacher's lemma, we can evaluate the derivative of \scrA \alpha by considering \ell , i, j
at which that maximum is achieved at any instance of time:

d

dt
\scrA \alpha = \langle \ell , \.w\alpha i  - \.w\alpha j\rangle = \lambda \alpha 

N\alpha \sum 
k=1

m\alpha k\phi \alpha ik\langle \ell ,w\alpha k  - w\alpha i\rangle 

 - \lambda \alpha 

N\alpha \sum 
k=1

m\alpha k\phi \alpha jk\langle \ell ,w\alpha k  - w\alpha j\rangle 

 - \mu R\alpha (t)\langle \ell ,w\alpha i  - w\alpha j\rangle 

= \lambda \alpha 

N\alpha \sum 
k=1

m\alpha k\phi \alpha ik(\langle \ell ,w\alpha k  - w\alpha j\rangle  - \langle \ell ,w\alpha i  - w\alpha j\rangle )

+ \lambda \alpha 

N\alpha \sum 
k=1

m\alpha k\phi \alpha jk(\langle \ell ,w\alpha i  - w\alpha k\rangle  - \langle \ell ,w\alpha i  - w\alpha j\rangle ) - \mu R\alpha (t)\scrA \alpha .

Each difference of the action of \ell is negative due to maximality of \ell , i, j. Hence, we
replace values of \phi \alpha 's with the use of (3.1) and its minimal value at \scrD \alpha :

d

dt
\scrA \alpha \leqslant \lambda \alpha \phi \alpha (\scrD \alpha )

N\alpha \sum 
k=1

m\alpha k(\langle \ell ,w\alpha k  - w\alpha j\rangle  - \langle \ell ,w\alpha i  - w\alpha j\rangle 

+ \langle \ell ,w\alpha i  - w\alpha k\rangle  - \langle \ell ,w\alpha i  - w\alpha j\rangle )
 - \mu R\alpha (t)\scrA \alpha =  - \lambda \alpha M\alpha \phi \alpha (\scrD \alpha )\scrA \alpha  - \mu R\alpha (t)\scrA \alpha .

At the same time, R\alpha (t) \geqslant M\psi (\scrD ), where

\scrD := max
\alpha ,\beta 

| X\alpha  - X\beta | , \scrA := max
\alpha ,\beta 

| V\alpha  - V\beta | .

Combining it with the system for (\scrD ,\scrA ) which follows a similar computation applied
to macroscopic values (1.3), we arrive at the following system of ordinary differential
inequalities (ODIs):

(3.5)

\left\{           
\.\scrA \alpha \leqslant  - \lambda \alpha M\alpha \phi \alpha (\scrD \alpha )\scrA \alpha  - \mu M\psi (\scrD )\scrA \alpha 

\.\scrD \alpha \leqslant \scrA \alpha 

\.\scrA \leqslant  - \mu M\psi (\scrD )\scrA 
\.\scrD \leqslant \scrA .
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1126 ROMAN SHVYDKOY AND EITAN TADMOR

This system encompasses prototypical systems of the form

(3.6)

\Biggl\{ 
\.A \leqslant  - \gamma \phi (D)A

\.D \leqslant A.

Following Ha and Liu [9] we can define a Lyapunov function

L = A+ \gamma 

\int D

0

\phi (r) dr,

which is nonincreasing. Hence, there exists D and \delta > 0 such that\int \infty 

D0

\phi (r) dr >
A0

\gamma 
\leadsto D(t) \leqslant D, A(t) \leqslant A0e

 - \gamma \phi (D)t.(3.7)

Note that condition (3.7) is always satisfied for a fat tail \phi .
Going back to (3.5) and ignoring the term  - \mu M\psi (\scrD )\scrA \alpha in the \scrA \alpha equation we

observe that the \alpha -flock completely decouples from the rest of the multiflock. We
arrive at (3.6) for the pair (\scrD \alpha ,\scrA \alpha ). One obtains the fast internal alignment result
(1.5) asserted in Theorem 1.2

max
i

| v\alpha i(t) - V\alpha (t)| \lesssim e - \delta \alpha t, \delta \alpha = \lambda \alpha M\alpha \phi \alpha (\scrD \alpha ).

As noted before, this indicates that the \alpha -flock behavior depends solely only on its
own parameters but not the global values. In particular, the \alpha -flock alignment to-
wards V\alpha (t) occurs regardless whether these centers of momentum align or not. The
latter will be guaranteed if the interflock communication \psi satisfies the fat tail con-
dition (3.2). In fact, in this case the global alignment ensues even if internal com-
munications are completely absent. This is evident from (3.5) where we ignore the
 - \lambda \alpha M\alpha \phi \alpha (\scrD \alpha )\scrA \alpha term and obtain boundedness of \scrD from the last two equations,
obtaining the slow alignment (1.6) asserted in Theorem 1.3

max
\alpha ,i

| v\alpha i(t) - V| \lesssim e - \delta t, \delta = \mu M\psi (\scrD ).

Alignment rate in this case is slow since it depends on \mu and the global diameter of
the multiflock.

Remark 3.1 (asymptotic rate). Asymptotic dependence of the implied alignment
rates for small \mu and large \lambda \alpha for the CS kernel can be worked out from (3.7) (we
omit the details). In the context of fast local alignment with \phi \alpha (r) \sim r - \eta a we obtain
\delta \sim \lambda \alpha for all \eta \alpha \leqslant 1, while in the context of slow alignment with \psi (r) = r - \zeta we
obtain

\delta \sim 
\biggl\{ 
\mu 

1
1 - \zeta , \zeta < 1,

\mu e - 1/\mu , \zeta = 1.

4. Multiflocking driven by alignment and attraction. In this section we
consider multiflock alignment model with additional attraction forces. Out goal is to
show that each flock would aggregate towards its center of mass within the radius of
influence of the potential. Our results present an extension of [16].
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We assume that the interactions are determined by a radially symmetric smooth
potential U \in C2(\BbbR +):

(4.1)\left\{         
\.x\alpha i = v\alpha i,

\.v\alpha i =
1

N\alpha 

N\alpha \sum 
j=1

\phi \alpha (| x\alpha i - x\alpha j | )(v\alpha j  - v\alpha i)+\mu 

A\sum 
\beta =1
\beta \not =\alpha 

\psi (| X\alpha  - X\beta | )(V\beta  - v\alpha i)+F\alpha (t),

where

F\alpha i(t) =  - 1

N\alpha 

N\alpha \sum 
j=1

\nabla U(| x\alpha i  - x\alpha j | ).

Here we assumed for notational simplicity that all masses are 1/N\alpha , and potentials
are the same. However, the statements below can easily be carried out for a general
set of parameters.

Note that the system upscales to the same CS system (1.3) for the flock-level
variables.

Using transformation (3.3), we rewrite the system in the new coordinate frame

(4.2)

\left\{       
\.y\alpha i = w\alpha i,

\.w\alpha i =
1

N\alpha 

N\alpha \sum 
j=1

\phi \alpha ij(w\alpha i  - w\alpha j) - \mu R\alpha (t)w\alpha i + F\alpha i(t).

The classical energy \scrE \alpha = \scrK \alpha + \scrP \alpha where2

\scrK \alpha :=
1

2N\alpha 

N\alpha \sum 
i=1

| w\alpha i| 2 =
1

4N2
\alpha 

N\alpha \sum 
i=1

| w\alpha ij | 2, w\alpha ij = w\alpha i  - w\alpha j ,

\scrP \alpha :=
1

2N2
\alpha 

N\alpha \sum 
i,j=1

U(| y\alpha ij | ), y\alpha ij = y\alpha i  - y\alpha j ,

(4.3)

satisfies

d

dt
\scrE \alpha =  - 1

N2
\alpha 

N\alpha \sum 
i,j=1

\phi \alpha ij | w\alpha ij | 2  - \mu R\alpha (t)\scrK \alpha .

Denoting the dissipation term by

\scrI \alpha :=
1

N2
\alpha 

N\alpha \sum 
i,j=1

\phi \alpha ij | w\alpha ij | 2,

we obtain the energy law

d

dt
\scrE \alpha =  - \scrI \alpha  - \mu R\alpha (t)\scrK \alpha .(4.4)

At this stage already we can see that if \mu > 0 and \psi has a fat tail, then global
slow exponential alignment will ensue regardless of internal flock communications.

2Here and in what follows we occasionally use a shortcut for a\alpha ij = a\alpha i  - a\alpha j .
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1128 ROMAN SHVYDKOY AND EITAN TADMOR

Indeed, the up-scaled dynamics (1.3) will stabilize the macroscopic values which im-
plies boundedness of R\alpha . Hence, ignoring dissipation term \scrI \alpha in (4.4) we obtain
exponential decay of all the energies:

\scrE \alpha \lesssim e - c\mu t.

In this section we show that flocking occurs also in each individual \alpha -flock regardless
of global communication, although it may be happening at a slower rate. To fix the
notation we consider regular communication kernels with power-like decay:

\phi \prime \alpha (r) \leqslant 0, \phi \alpha (r) \geqslant 
c0
\langle r\rangle \gamma 

for r \geqslant 0.(4.5)

For the potential we assume essentially a power law: for some \beta > 1 and L\prime > L > 0,

Support: U \in C2(\BbbR +), U(r) = 0 \forall r \leqslant L,

Growth: U(r) \geqslant a0r
\beta , | U \prime (r)| \leqslant a1r

\beta  - 1, | U \prime \prime (r)| \leqslant a2r
\beta  - 2 \forall r > L\prime ,

Convexity: U \prime (r), U \prime \prime (r) \geqslant 0 \forall r > 0.

(4.6)

Theorem 4.1 (local flocking with interaction potential). Under the assumptions
(4.5) and (4.6) on the kernel and potential in the range of parameters given by

(4.7) \gamma <

\left\{           
1, 1 < \beta <

4

3
,

3

2
\beta  - 1,

4

3
\leqslant \beta < 2,

2, \beta \geqslant 2,

all solutions to the system (4.1) flock with the bound independent of N\alpha :

\scrD \alpha (t) < \scrD \alpha \forall t > 0,

asymptotically aggregate
lim sup
t\rightarrow \infty 

\scrD \alpha (t) \leqslant L,

and align

1

2N\alpha 

N\alpha \sum 
i=1

| v\alpha i  - V\alpha | 2 +
1

2N2
\alpha 

N\alpha \sum 
i,j=1

U(| x\alpha i  - x\alpha j | ) \leqslant 
C\delta 

\langle t\rangle 1 - \delta 
\forall \delta > 0.(4.8)

Note that the latter statement follows from local alignments (4.8) and the expo-
nential alignment of the flock parameters governed by the upscaled system (1.3).

Proof. We will operate with the particle energy defined similarly to [16]

\scrE \alpha i =
1

2
| w\alpha i| 2 +

1

N\alpha 

N\alpha \sum 
k=1

U(| y\alpha ik| ), \scrE \alpha \infty = max
i

\scrE \alpha i.

First, we observe that the particle energy controls the diameter of the flock. Indeed,
by convexity and our assumptions on the growth of the potential, we have

\scrE \alpha i \geqslant U(| y\alpha i| ) \geqslant (| y\alpha i|  - L\prime )\beta +.(4.9)
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MULTIFLOCKS: MULTISCALE COLLECTIVE BEHAVIOR 1129

So,

\scrD \alpha \leqslant \scrE 1/\beta 
\alpha \infty + L\prime .(4.10)

Let us now establish a bound on \scrE \alpha \infty . For each i we test (4.2) with w\alpha i and ignore
that R\alpha -term:

d

dt
\scrE \alpha i \leqslant 

1

N\alpha 

N\alpha \sum 
k=1

\phi \alpha ikw\alpha ki \cdot w\alpha i  - 
1

N\alpha 

N\alpha \sum 
k=1

\nabla U(| y\alpha ik| ) \cdot w\alpha k.(4.11)

For the kinetic part we use the vector identity

aki \cdot ai =  - 1

2
| aki| 2  - 

1

2
| ai| 2 +

1

2
| ak| 2.(4.12)

Discarding all the negative terms, we bound

1

N\alpha 

N\alpha \sum 
k=1

\phi \alpha ikw\alpha ki \cdot w\alpha i \leqslant | \phi \alpha | \infty \scrK \alpha .

Due to the energy law \scrK \alpha will remain bounded, but we will keep it in the bound
above for now. As for the potential term, there are several ways we can handle it.

For any 1 \leqslant \beta \leqslant 4
3 we apply a direct estimate from the first derivative:\bigm| \bigm| \bigm| \bigm| \bigm| 1

N\alpha 

N\alpha \sum 
k=1

\nabla U(| y\alpha ik| ) \cdot w\alpha k

\bigm| \bigm| \bigm| \bigm| \bigm| \leqslant \sqrt{} \scrK \alpha 

\Biggl( 
1

N\alpha 

N\alpha \sum 
k=1

| \nabla U(| y\alpha ik| )| 2
\Biggr) 1

2

\leqslant 
\sqrt{} 
\scrK \alpha \scrD \beta  - 1

\alpha .

Consequently,

d

dt
\scrE \alpha i \leqslant c1\scrK \alpha + c2

\sqrt{} 
\scrK \alpha \scrD \beta  - 1

\alpha \lesssim 
\sqrt{} 
\scrK \alpha (1 + \scrE 

\beta  - 1
\beta 

\alpha \infty ),

and

d

dt
\scrE \alpha \infty \leqslant c3

\sqrt{} 
\scrK \alpha (1 + \scrE 

\beta  - 1
\beta 

\alpha \infty ) \Rightarrow \scrE \alpha \infty \lesssim \langle t\rangle \beta \Rightarrow \scrD \alpha \lesssim \langle t\rangle .(4.13)

In the range 4
3 \leqslant \beta \leqslant 2 it is better to make use of the second derivative:\bigm| \bigm| \bigm| \bigm| \bigm| 1

N\alpha 

N\alpha \sum 
k=1

\nabla U(| y\alpha ik| ) \cdot w\alpha k

\bigm| \bigm| \bigm| \bigm| \bigm| = 1

N\alpha 

N\alpha \sum 
k=1

(\nabla U(| y\alpha ik| ) - \nabla U(| y\alpha i| )) \cdot vk

\leqslant \| D2U\| \infty 
\sqrt{} 
\scrK \alpha 

\Biggl( 
1

N\alpha 

N\alpha \sum 
k=1

| y\alpha k| 2
\Biggr) 1

2

\leqslant c4
\sqrt{} 
\scrK \alpha 

\left(  1

N2
\alpha 

N\alpha \sum 
i,j=1

| y\alpha ij | 2
\right)  1

2

.

(4.14)

The following inequality will be used repeatedly

1

N2
\alpha 

N\alpha \sum 
i,j=1

| y\alpha ij | 2 \leqslant (L\prime )2 +
1

N2
\alpha 

N\alpha \sum 
i,j=1

(| y\alpha ij |  - L\prime )2+ \leqslant C(1 +\scrD (2 - \beta )+
\alpha \scrP \alpha ).(4.15)
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1130 ROMAN SHVYDKOY AND EITAN TADMOR

Continuing the above,\bigm| \bigm| \bigm| \bigm| \bigm| 1

N\alpha 

N\alpha \sum 
k=1

\nabla U(| y\alpha ik| ) \cdot w\alpha k

\bigm| \bigm| \bigm| \bigm| \bigm| \leqslant c4
\sqrt{} 

\scrK \alpha (1 +\scrD 2 - \beta 
\alpha \scrP \alpha )

1/2 \leqslant c5
\sqrt{} 

\scrK \alpha (1 + \scrE \alpha \infty )
2 - \beta 
2\beta .

In this case,

d

dt
\scrE \alpha \infty \leqslant c6

\sqrt{} 
\scrK \alpha (1 + \scrE \alpha \infty )

2 - \beta 
2\beta \Rightarrow \scrE \alpha \infty \lesssim \langle t\rangle 

2\beta 
3\beta  - 2 \Rightarrow \scrD \alpha \leqslant \langle t\rangle 

2
3\beta  - 2 .(4.16)

Finally, for \beta > 2, we argue similarly, using that | D2U(| y\alpha ik| )| \leqslant \scrD \beta  - 2
\alpha , and

(4.15), to obtain \bigm| \bigm| \bigm| \bigm| \bigm| 1

N\alpha 

N\alpha \sum 
k=1

\nabla U(| y\alpha ik| ) \cdot w\alpha k

\bigm| \bigm| \bigm| \bigm| \bigm| \leqslant \sqrt{} \scrK \alpha \scrD \beta  - 2
\alpha ,

and hence,

d

dt
\scrE \alpha \infty \leqslant c7

\sqrt{} 
\scrK \alpha (1 + \scrE \alpha \infty )

\beta  - 2
\beta \Rightarrow \scrE \alpha \infty \lesssim \langle t\rangle 

\beta 
2 \Rightarrow \scrD \alpha \leqslant \langle t\rangle 1

2 .(4.17)

We have proved the following a priori estimate:

(4.18) \scrD \alpha (t) \lesssim \langle t\rangle d, where d =

\left\{             
1, 1 \leqslant \beta <

4

3
,

2

3\beta  - 2
,

4

3
\leqslant \beta < 2,

1

2
, \beta \geqslant 2.

Denote \zeta (t) = \langle t\rangle  - \gamma d. Then according to the basic energy equation (4.4) we have

d

dt
\scrE \alpha \leqslant  - 1

2
\scrI \alpha  - c\zeta (t)\scrK \alpha  - \mu R\alpha (t)\scrK \alpha .(4.19)

Considering this as a starting point, just like in the quadratic confinement case, we
will build correctors to the energy to achieve full coercivity on the right-hand side of
(4.19). We introduce one more auxiliary power function

\eta (t) = \langle t\rangle  - a, \gamma d \leqslant a < 1.

First, we consider the same longitudinal momentum

\scrX \alpha =
1

N\alpha 

N\alpha \sum 
i=1

y\alpha i \cdot w\alpha i.

It will come with a prefactor \delta \eta (t), where \delta is a small parameter. Let us estimate
using (4.15):

\delta \eta (t)| \scrX \alpha | \leqslant \delta \scrK \alpha + \delta \eta 2(t)
1

N2
\alpha 

N\alpha \sum 
i,j=1

| y\alpha ij | 2 \leqslant \delta \scrK \alpha + c\delta \eta 2(t) + \delta \eta 2(t)\scrD (2 - \beta )+
\alpha \scrP \alpha .

The potential term is bounded by \delta \scrP \alpha as long as 2a \geqslant d(2 - \beta )+. Hence,

\delta \eta (t)| \scrX \alpha | \leqslant \delta \scrE \alpha + c\eta 2(t).(4.20)

D
ow

nl
oa

de
d 

07
/0

2/
21

 to
 1

28
.8

.6
9.

51
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MULTIFLOCKS: MULTISCALE COLLECTIVE BEHAVIOR 1131

This shows that
\scrE \alpha + \delta \eta (t)\scrX \alpha + 2c\eta 2(t) \sim \scrE \alpha + c\delta \eta 2(t).

Let us now consider the derivative

\scrX \prime 
\alpha =

1

N\alpha 

N\alpha \sum 
i=1

| \bfw \alpha i| 2 +
1

N2
\alpha 

N\alpha \sum 
i,k=1

\bfy \alpha ik \cdot \bfw \alpha ki\phi \alpha ki  - 
1

N2
\alpha 

N\alpha \sum 
i,k=1

\bfy \alpha ik \cdot \nabla U(| \bfy \alpha ik| ) - \mu R\alpha (t)\scrX \alpha 

= \scrK \alpha +A - B  - \mu R\alpha (t)\scrX \alpha .

The gain term B, by convexity dominates the potential energy B \geqslant \scrP \alpha . As to A:

| A| \leqslant | \phi | \infty 
2\delta 1/2\eta (t)

\scrI \alpha +
\delta 1/2\eta (t)

2

1

N2
\alpha 

N\alpha \sum 
i,j=1

| \bfy \alpha ij | 2 \lesssim 
1

\delta 1/2\eta (t)
\scrI + \delta 1/2\eta (t) + \delta 1/2\eta (t)\scrD (2 - \beta )+

\alpha \scrP \alpha .

By requiring a more stringent assumption on parameters

\alpha \geqslant d(2 - \beta )+,

we can ensure that the potential term is bounded by \sim \mu 1/2\scrP , which can be absorbed
by the gain term.

The interflock term in (4.19) helps abosrb the corresponding residual term
\mu R\alpha (t)\scrX \alpha . Indeed,

\mu R\alpha (t)\scrX \alpha \leqslant 
1

2\delta \eta (t)
\mu R\alpha (t)\scrK \alpha + \mu R\alpha (t)\delta \eta (t)

N\alpha \sum 
i,j=1

| y\alpha ij | 2

\leqslant 
1

2\delta \eta (t)
\mu R\alpha (t)\scrK \alpha + C1\delta \eta (t) + C2\delta \eta (t)\scrD (2 - \beta )+

\alpha \scrP \alpha ,

with the latter absorbed into the gain term as in the case of A.
So far, we have obtained

d

dt
(\scrE \alpha + \delta \eta (t)\scrX \alpha + 2c\eta 2(t)) \leqslant  - c1\delta \eta (t)\scrE + c2\eta 

2(t) + \delta \eta \prime (t)\scrX \alpha .(4.21)

In view of (4.20),

| \delta \eta \prime (t)\scrX \alpha | \leqslant \delta 
1

\langle t\rangle 
\eta (t)| \scrX \alpha | \leqslant \delta 

1

\langle t\rangle 
\scrE \alpha + \delta 

\eta 2(t)

\langle t\rangle 
.

Since a < 1, the energy term will be absorbed, and the free term is even smaller then
\eta 2. Denoting

E\alpha = \scrE \alpha + \delta \eta (t)\scrX \alpha + 2c\eta 2(t),

we obtain
d

dt
E\alpha \leqslant  - c1\eta (t)E\alpha + c2\eta 

2(t).

By Duhamel's formula,

E\alpha (t) \lesssim exp\{  - \langle t\rangle 1 - a\} + exp\{  - \langle t\rangle 1 - a\} 
\int t

0

e\langle s\rangle 
1 - a

\langle s\rangle 2a
ds.

By an elementary asymptotic analysis,\int t

0

e\langle s\rangle 
1 - a\prime 

\langle s\rangle a\prime \prime ds \sim exp\{ \langle t\rangle 1 - a\prime 
\} 1

\langle t\rangle a\prime \prime  - a\prime .

D
ow

nl
oa

de
d 

07
/0

2/
21

 to
 1

28
.8

.6
9.

51
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1132 ROMAN SHVYDKOY AND EITAN TADMOR

Thus, we obtain an algebraic decay rate

E\alpha (t) \lesssim 
1

\langle t\rangle a
\forall a < 1,(4.22)

provided

d\gamma < 1 and d(2 - \beta )+ < 1.(4.23)

This translates exactly into the conditions on \gamma given by (4.7), and (4.22) automati-
cally implies (4.8)

Going back to the estimates (4.13) and (4.16) but keeping the kinetic energy with
its established decay, we obtain a new decay rate for the diameter

\scrD \alpha \leqslant C\delta \langle t\rangle 
d
2+\delta \forall \delta > 0.

At the next stage we prove flocking: \scrD \alpha (t) < \=D\alpha . In order to achieve this we
return again to the particle energy estimates. Let us denote

\scrP \alpha i =
1

N\alpha 

N\alpha \sum 
k=1

U(| y\alpha ik| ), \scrI \alpha i =
1

N\alpha 

N\alpha \sum 
k=1

\phi \alpha ik| w\alpha ki| 2, \scrX \alpha i = y\alpha i \cdot w\alpha i.

Using (4.11), (4.12), (4.14), (4.15), and the fact that \scrD (2 - \beta )+
\alpha \scrP has a negative rate of

decrease, we obtain

d

dt
\scrE \alpha i \leqslant \scrK \alpha  - 1

2
\phi \alpha (\scrD \alpha )| w\alpha i| 2  - \scrI \alpha i + c

\sqrt{} 
\scrK \alpha  - \mu R\alpha (t)| w\alpha i| 2

\lesssim  - 1

2
\phi \alpha (\scrD \alpha )| w\alpha i| 2  - \scrI \alpha i +

1

\langle t\rangle 1
2 - \delta 

 - \mu R\alpha (t)| w\alpha i| 2 \forall \delta > 0.

In view of (4.23), we can pick a and small b such that

d\gamma 

2
+ b\gamma <

1

2
 - 2b < a <

1

2
 - b

(2 - \beta )+d+ 2\delta (2 - \beta )+ < 2a.
(4.24)

We use as before the auxiliary rate function \eta (t) = \langle t\rangle  - a. Let us estimate the corrector

| \delta \eta (t)\scrX \alpha i| \leqslant \mu | w\alpha i| 2 + \delta \eta 2(t)| y\alpha i| 2 \leqslant \delta | w\alpha i| 2 + \delta \eta 2(t)\scrD 2 - \beta 
\alpha \scrP \alpha i + L2\delta \eta 2(t)

\leqslant \delta | w\alpha i| 2 + c\delta \scrP \alpha i + L2\delta \eta 2(t).

So,
E\alpha i := \scrE \alpha i + \delta \eta (t)\scrX \alpha i + 2L2\delta \eta 2(t) \sim \scrE \alpha i + L2\delta \eta 2(t).

Differentiating,

\scrX \prime 
\alpha i = | w\alpha i| 2 +

1

N\alpha 

N\alpha \sum 
k=1

y\alpha i \cdot w\alpha ki\phi \alpha ki  - 
1

N\alpha 

N\alpha \sum 
k=1

y\alpha ik \cdot \nabla U(| y\alpha ik| )

+
1

N\alpha 

N\alpha \sum 
k=1

y\alpha k \cdot (\nabla U(| y\alpha ik| ) - \nabla U(| y\alpha i| )) - \mu R\alpha (t)\scrX \alpha i

\leqslant | w\alpha i| 2 + \delta 1/2\eta (t)| y\alpha i| 2 +
1

\delta 1/2\eta (t)
\scrI \alpha i  - \scrP \alpha i +

1

N2
\alpha 

N\alpha \sum 
l,k=1

| y\alpha kl| 2

+
1

2\delta \eta (t)
\mu R\alpha (t)| w\alpha i| 2 + 2\delta \eta (t)\mu R\alpha (t)| y\alpha i| 2,
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MULTIFLOCKS: MULTISCALE COLLECTIVE BEHAVIOR 1133

where the last term is already smaller than \delta 1/2\eta (t)| y\alpha i| 2 for small enough \delta ,

\leqslant | w\alpha i| 2 + \delta 1/2L2\eta (t) + \delta 1/2\scrD (2 - \beta )+
\alpha \eta (t)\scrP \alpha i +

1

\delta 1/2\eta (t)
\scrI \alpha i  - \scrP \alpha i + C

+
1

2\delta \eta (t)
\mu R\alpha (t)| w\alpha i| 2

in view of (4.24), \mu 1/2\scrD (2 - \beta )+\eta (t) \lesssim \mu 1/2, so the potential term is absorbed by  - \scrP i,

\leqslant | w\alpha i| 2 +
1

\eta (t)
\scrI \alpha i  - 

1

2
\scrP \alpha i + C +

1

2\delta \eta (t)
\mu R\alpha (t)| w\alpha i| 2.

Again in view of (4.24), \eta (t) decays faster than \phi \alpha (\scrD \alpha ), so plugging into the energy
equation we obtain

d

dt
E\alpha i \leqslant  - \delta \eta (t)E\alpha i + \eta (t) +

\sqrt{} 
\scrK \alpha + \delta \eta \prime (t)\scrX \alpha i,

and as before \delta \eta \prime (t)\scrX \alpha i is a lower-order term which is absorbed into the negative
energy term and +\eta 2. So,

d

dt
E\alpha i \leqslant  - \delta \eta (t)E\alpha i + \eta (t) +

\sqrt{} 
\scrK \alpha .

By our choice of constants (4.24),
\surd 
\scrK \alpha decays faster than \eta (t); hence,

d

dt
E\alpha i \lesssim  - \delta \eta (t)E\alpha i + \eta (t).

This proves boundedness of E\alpha i, and hence that of \scrE \alpha i +L2\delta \eta 2(t), and hence that of
\scrE \alpha i. In view of (4.10), this implies the flocking bound \scrD \alpha (t) < \scrD \alpha for all t > 0.

It is interesting to note that when the support of the potential spans the entire
line, L = 0, and U lands at the origin with at least a quadratic touch:

U(r) \geqslant a0r
2, r < L\prime ,(4.25)

then we can establish exponential alignment in terms of the energy \scrE \alpha . Indeed, since
we already know that the diameter is bounded, the basic energy equation reads

d

dt
\scrE \alpha \leqslant  - c0\scrK \alpha  - 1

2
\scrI \alpha .

The momentum corrector needs only an \delta -prefactor to satisfy the bound

| \delta \scrX \alpha | \leqslant \delta \scrK \alpha + \delta c\scrP \alpha .

This is due to the assumed quadratic order of the potential near the origin and, again,
boundedness of the diameter. Hence, \scrE \alpha + \delta \scrX \alpha \sim \scrE \alpha . The rest of the argument is
similar to the general case. We obtain

\scrX \alpha \lesssim \scrK \alpha + \delta 1/2\scrP \alpha +
1

\delta 1/2
\scrI \alpha  - \scrP \alpha \leqslant \scrK \alpha  - 1

2
\scrP \alpha 

1

\delta 1/2
\scrI \alpha .

Thus,
d

dt
(\scrE \alpha + \delta \scrX \alpha ) \leqslant  - c1\scrE \alpha \sim  - c1(\scrE \alpha + \delta \scrX \alpha ).
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1134 ROMAN SHVYDKOY AND EITAN TADMOR

This proves exponential decay of the energy \scrE \alpha . Going further to consider the indi-
vidual particle energies, we discover similar decays. Indeed, denoting by Exp(t) any
quantity that decays exponentially fast, we follow the same scheme:

d

dt
\scrE \alpha i \leqslant  - c1| w\alpha i| 2  - 

1

2
\scrI \alpha i + Exp(t), Exp(t) \lesssim e - Ct.

In view of | y\alpha i| 2 \lesssim \scrP \alpha i,
\delta | \scrX \alpha i| \leqslant \delta | w\alpha i| 2 + \delta \scrP \alpha i,

so \scrE \alpha i + \delta \scrX \alpha i \sim \scrE \alpha i. Further following the estimates as in the proof,

\scrX \prime 
\alpha i \lesssim | w\alpha i| 2 +

1

\delta 1/2
\scrI \alpha i  - 

1

2
\scrP \alpha i.

Thus,
d

dt
(\scrE \alpha i + \delta \scrX \alpha i) \leqslant  - c1(\scrE \alpha i + \delta \scrX \alpha i) + Exp(t).

This establishes exponential decay for \scrE \alpha \infty , and hence for the individual velocities.
This also proves that \scrD \alpha (t) = Exp. So, the long time behavior here is characterized
by exponential aggregation to a point.

Theorem 4.2. Let us assume that the support of the potential spans the entire
space and (4.25). Then the solutions aggregate exponentially fast:

\scrD \alpha (t) + max
i

| v\alpha i(t) - V\alpha (t)| \infty \leqslant Ce - \delta t

for some C, \delta > 0.

5. Hydrodynamics of multiflocks. In the case of smooth communication ker-
nels, one can formally derive the corresponding kinetic model from (1.2) via the clas-
sical BBGKY (Bogoliubov--Born--Green--Kirkwood--Yvon) hierarchy. Let f\alpha (x, v, t)
denote a density distribution of the \alpha -flock, and define the corresponding flock pa-
rameters:

M\alpha =

\int 
\BbbR 2d

f\alpha (x,v, t) dx dv, X\alpha =
1

M\alpha 

\int 
\BbbR 2d

xf\alpha (x,v, t) dx dv,

V\alpha =
1

M\alpha 

\int 
\BbbR 2d

vf\alpha (x,v, t) dx dv.

(5.1)

The kinetic model reads as follows:

\partial tf\alpha + v \cdot \nabla \bfx f\alpha + \lambda \nabla \bfv \cdot Q\alpha (f\alpha , f\alpha ) + \mu \nabla \bfv \cdot 

\left[  \sum 
\beta \not =\alpha 

M\beta \psi (X\alpha ,X\beta )(V\beta  - v)f\alpha 

\right]  = 0,

(5.2)

where

Q\alpha (f, f)(x,v, t) = f(x,v, t)

\int 
\BbbR 2d

\phi \alpha (x,x
\prime )(v\prime  - v)f(x\prime ,v, t\prime ) dx\prime dv\prime .(5.3)

The macroscopic system can be obtained, again formally, from (5.2) by considering
monokinetic closure f\alpha = \delta 0(v  - u\alpha (x, t))\rho \alpha (x, t). The resulting system presents as
hybrid of hydrodynamic and discrete parts, where the hydrodynamic part corresponds
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MULTIFLOCKS: MULTISCALE COLLECTIVE BEHAVIOR 1135

to the classical CS dynamics within flocks, while the discrete part governs commu-
nication of a given flock with other flocks' averaged quantities. To write down the
equations, we denote macroscopic variables by (\rho \alpha ,u\alpha )

A
\alpha =1,

\rho \alpha (x, t) =

\int 
\BbbR d

f\alpha (x,v, t) dv, \rho \alpha u\alpha =

\int 
\BbbR d

vf\alpha (x,v, t) dv,

while (5.1) represent upscale parameters of the flocks. The full hydrodynamic system
reads

(5.4)\left\{             

\partial t\rho \alpha +\nabla \cdot (u\alpha \rho \alpha ) = 0

\partial tu\alpha + u\alpha \cdot \nabla u\alpha = \lambda \alpha 

\int 
\BbbR d

\phi \alpha (x,y)(u\alpha (y) - u\alpha (x))\rho \alpha (y) dy

+ \mu 
\sum 
\beta \not =\alpha 

M\beta \psi (X\alpha ,X\beta )[V\beta  - u\alpha (x, t)].

\alpha = 1, . . . , A.

Writing the momentum equation in conservative form we obtain

\partial t(\rho \alpha u\alpha ) +\nabla x(\rho \alpha u\alpha \otimes u\alpha ) = \lambda \alpha 

\int 
\BbbR d

\phi \alpha (x,y)(u\alpha (y) - u\alpha (x))\rho \alpha (x)\rho \alpha (y) dy

+ \mu 
\sum 
\beta \not =\alpha 

M\beta \psi (X\alpha ,X\beta )[V\beta  - u\alpha (x, t)]\rho \alpha (x).
(5.5)

Integrating (5.5) over \BbbR d, (5.4) up-scales to the same discrete CS system (1.3) for
macroscopic parameters \{ X\alpha ,V\alpha \} \alpha .

5.1. Slow and fast alignment of hydrodynamic multiflocks. As in the
discrete case, we will deal with kernels that admit fat tail subkernels (3.1). Alignment
dynamics for hydrodynamic description mimics that of the discrete one once we pass
to Lagrangian coordinates. Denote by x\alpha (x, t) the characteristic flow map of the
u\alpha . From the continuity equation we conclude that the mass measure \rho \alpha (y, t) dy is
the push-forward of the initial measure \rho \alpha (y, 0) dy by the flow. So, passing to the
Lagrangian coordinates v\alpha (x, t) = u\alpha (x\alpha (x, t), t) we obtain

d

dt
v\alpha = \lambda \alpha 

\int 
\BbbR d

\phi \alpha (x\alpha (x, t),x\alpha (y, t))(v\alpha (y) - v\alpha (x))\rho \alpha (y, 0) dy

+ \mu 
\sum 
\beta \not =\alpha 

M\beta \psi (X\alpha ,X\beta )[V\beta  - v\alpha (x, t)].

Passing to the reference frame moving with the average velocity in each flock

w\alpha (x, t) := v\alpha (x, t) - V\alpha (t),(5.6)

we obtain the momentum system quite similar to its discrete counterpart (3.4)

d

dt
w\alpha (x, t) = \lambda \alpha 

\int 
\BbbR d

\phi \alpha (x\alpha (x, t),x\alpha (y, t))(w\alpha (y, t) - w\alpha (x, t))\rho \alpha (y, 0) dy - \mu R\alpha (t)w\alpha .

Thus, all the alignment statements of Theorem 1.2 and Theorem 1.3 carry over directly
to these settings. In the original variables these translate into the following.
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1136 ROMAN SHVYDKOY AND EITAN TADMOR

Theorem 5.1. Assuming that the initial diameter of the \alpha -flock is finite, and \phi \alpha 
has fat tail, the \alpha -flock aligns at a rate dependent on \lambda \alpha :

diam (supp \rho \alpha (\cdot , t)) < \scrD \alpha , max
\bfx \in supp \rho \alpha (\cdot ,t)

| u\alpha (x, t) - V\alpha (t)| \lesssim e - \delta \alpha t,

where \delta \alpha = \lambda \alpha M\alpha \phi \alpha (\scrD \alpha ). Furthermore, if \psi has a fat tail, the kernels \phi \alpha \geqslant 0
are arbitrary, and the multiflock has a finite diameter initially; then global alignment
occurs at a rate dependent on \mu :

diam (\cup \alpha supp \rho \alpha (\cdot , t)) < \scrD , max
\bfx \in supp \rho \alpha (\cdot ,t),\alpha =1,...,A

| u\alpha (x, t) - V| \lesssim e - \delta t,

where \delta = \mu M\psi (\scrD ).

5.2. External forcing. Theorems 4.1 and 4.2 have similar analogues for the
system with additional external interaction forces [17]

F\alpha =  - \nabla \bfx U \ast \rho \alpha .

This is due to the fact that our arguments establish rates independent of the number
of agents. The hydrodynamic proofs repeat the discrete case ad verbatim; we therefore
leave them out entirely.

5.3. Global existence and one-dimensional multiflocking: Smooth ker-
nel case. We restrict attention to radial communication kernels \phi \alpha , \psi \in W 2,\infty . The
most convenient form of (5.4) to study regularity is in the shifted reference frame
attached to the flock:

v\alpha (x, t) := u\alpha (x - X\alpha (t), t) - V\alpha (t), r\alpha := \rho \alpha (x - X\alpha (t), t).

The new pair satisfies

(5.7)

\left\{             

\partial tr\alpha + (v\alpha r\alpha )
\prime = 0

\partial tv\alpha + v\alpha v
\prime 
\alpha = \lambda \alpha 

\int 
\BbbR d

\phi \alpha (| x - y| )(v\alpha (y) - v\alpha (x))r\alpha (y) dy  - \mu R\alpha (t)v\alpha ,

R\alpha (t) =
\sum 
\beta \not =\alpha 

M\beta \psi (| X\alpha  - X\beta | ).

In the case of the classical hydrodynamic alignment system the global well-
posedness in one dimension relies on a threshold condition for the auxiliary quan-
tity e = v\prime + \phi \ast \rho , which satisfies the same continuity as the density; see [23]. For
multiflocks we define, accordingly, the family of such quantities

e\alpha (x, t) = v\prime \alpha + \lambda \alpha \phi \alpha \ast r\alpha .

By virtue of (5.7), e\alpha satisfies

\partial te\alpha + (v\alpha e\alpha )
\prime =  - \mu R\alpha (t)v

\prime 
\alpha ,

which can be written as a nonautonomous logistic equation along characteristics of
v\alpha :

d

dt
e\alpha = (\mu R\alpha + e\alpha )(\phi \alpha \ast r\alpha  - e\alpha ),

d

dt
:= \partial t + v\alpha \partial x.(5.8)

It is therefore natural to a expect threshold condition to guarantee global existence.
We elaborate on that in the next result.
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MULTIFLOCKS: MULTISCALE COLLECTIVE BEHAVIOR 1137

Theorem 5.2 (global existence). Let \psi , \phi \alpha \in W 2,\infty (\BbbR ). For any initial condi-
tions (u\alpha , \rho \alpha ) \in W 2,\infty \times (W 1,\infty \cap L1) satisfying

u\prime \alpha (x, 0) + \lambda \alpha \phi \alpha \ast \rho \alpha (x, 0) \geqslant 0 \forall x \in \BbbR , \alpha = 1, . . . , A(5.9)

there exists a unique global solution (u\alpha , \rho \alpha ) \in L\infty 
loc([0,\infty );W 2,\infty \times (W 1,\infty \cap L1)). On

the other hand, if for some x0 \in \BbbR and \alpha \in \{ 1, . . . , A\} 

u\prime \alpha (x0, 0) + \lambda \alpha \phi \alpha \ast \rho \alpha (x0, 0) <  - \mu M\psi (0),(5.10)

then the solution develops a finite time blowup.

The gap between the threshold levels is due to the fact that it is hard to predict
the dumping coefficient \mu R\alpha (t), which may fluctuate in time. In particular, if \psi has
a fat tail, then the argument below shows that the threshold for global existence is
improvable to

e\alpha (x, 0) \geqslant  - \mu M\psi (\scrD ) \forall x \in \BbbR , \alpha = 1, . . . , A,(5.11)

where \=D is determined from the initial conditions by (5.12):

\mu 

\int \scrD 

\scrD 0

\psi (r) dr = \scrA 0.(5.12)

Proof. Let us start with the negative result. Noting that \mu M\psi (0) is the global
upper bound for \mu R\alpha , from (5.8) we conclude that d/dte\alpha \leqslant 0. So, e\alpha will remain
below  - \mu (1+\delta )M\psi (0) for some \delta > 0 along the characteristics starting at x0. Hence,

d

dt
e\alpha \leqslant 

\delta 

1 + \delta 
e\alpha (\phi \alpha \ast r\alpha  - e\alpha ) \lesssim  - e2\alpha .

Hence, e\alpha blows up in finite time.
On the other hand, if (5.9) holds initially, then since

e\alpha (\phi \alpha \ast r\alpha  - e\alpha ) \leqslant \.e\alpha \leqslant (\mu R\alpha + e\alpha )(| \phi \alpha | \infty M\alpha  - e\alpha ),

e\alpha will remain nonnegative and asymptotically bounded from above by | \phi \alpha | \infty M\alpha .
Hence, \| v\prime \alpha \| \infty is uniformly bounded. Next, solving the continuity equation along
characteristics

r\alpha (x\alpha (x0; t), t) = r\alpha (x0, 0) exp

\biggl\{ 
 - 
\int t

0

v\prime \alpha (x\alpha (x0; s), s) ds

\biggr\} 
,

we conclude that r\alpha remains a priori bounded on any finite time interval.
Next, differentiating the e-equation,

d

dt
e\prime \alpha + v\prime \prime \alpha e\alpha + 2v\prime \alpha e

\prime 
\alpha + v\alpha e

\prime \prime 
\alpha =  - \mu R\alpha v

\prime \prime 
\alpha ,

passing to Lagrangian coordinates and replacing v\prime \prime \alpha = e\prime \alpha  - \lambda \alpha \phi 
\prime 
\alpha \ast \rho \alpha we obtain, in

view of already known information,

d

dt
| e\prime \alpha | 2 \leqslant f(t)| e\prime \alpha | 2 + g(t),

D
ow

nl
oa

de
d 

07
/0

2/
21

 to
 1

28
.8

.6
9.

51
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1138 ROMAN SHVYDKOY AND EITAN TADMOR

where f and g are bounded functions. Hence, e\prime \alpha remain bounded as well, and conse-
quently so does v\prime \prime \alpha . Finally, r

\prime 
\alpha \in L\infty follows from differentiating and integrating the

continuity equation.
The obtained a priori estimates lead to a construction of global solutions by the

standard approximation and continuation argument (see [18] for systematic exposi-
tion).

We proceed with two strong flocking results that demonstrate alignment in cluster
with interflock slow and inner-flock fast rates as expected.

Theorem 5.3 (strong flocking). Suppose the threshold condition (5.9) holds so
the solution exists globally. If for some \alpha \in \{ 1, . . . , A\} the \alpha -flock has compact support
and the kernel \phi \alpha has a fat tail, then there exists \delta \alpha = \delta \alpha (\phi \alpha , \lambda \alpha , u\alpha (0), \rho \alpha (0)) such
that

sup
x\in supp \rho \alpha (\cdot ,t)

| u\alpha (x, t) - U\alpha (t)| + | u\prime \alpha (x, t)| + | u\prime \prime \alpha (x, t)| \lesssim e - \delta \alpha t,

and the density \rho \alpha converges to a traveling wave with profile \=\rho \alpha in the metric of C\gamma 

for any 0 < \gamma < 1:

\| \rho \alpha (\cdot , t) - \=\rho \alpha (\cdot  - X\alpha (t))\| C\gamma \lesssim e - \delta \alpha t.

Furthermore, if \psi has a fat tail, the kernels \phi \alpha \geqslant 0 are arbitrary, and the mul-
tiflock has a finite diameter initially, then global alignment occurs at a rate \delta =
\delta (\psi , \mu , u(0), \rho (0)):

sup
x\in supp \rho \alpha (\cdot ,t),\alpha =1,...,A

| u\alpha (x, t) - U | + | u\prime \alpha (x, t)| + | u\prime \prime \alpha (x, t)| \lesssim e - \delta t,

\| \rho \alpha (\cdot , t) - \=\rho \alpha (\cdot  - Ut)\| C\gamma \lesssim e - \delta t.

Proof. Let us prove the local statement first. Note that the alignment itself is a
consequence of Theorem 5.1. Plus we have a global bound \scrD \alpha on the diameter of the
\alpha -flock. Next, let us make the following observation: since

\phi \alpha \ast \rho \alpha (x) \geqslant M\alpha \phi \alpha (\scrD \alpha ) = c0 \forall x \in supp r\alpha ,

then from (5.8) we obtain
d

dt
e\alpha \geqslant e\alpha (c0  - e\alpha ).

Consequently, there exists a time t0 starting from which e\alpha (x) \geqslant c0/2 for all x \in 
supp r\alpha . This follows by direct solution of the ODI.

Let us now write the equation for v\prime \alpha 

d

dt
v\prime \alpha + v\alpha v

\prime \prime 
\alpha =

\int 
\BbbR 
\phi \prime \alpha (x - y)(v\alpha (y) - v\alpha (x))r\alpha (y) dy  - (\mu R\alpha (t) + e\alpha )v

\prime 
\alpha .(5.13)

We already know from Theorem 5.1 that the velocity variations are exponentially
decaying with the desired rate. Let us denote, as before, by Exp(t) a generic function
with such exponential decay. Then, in Lagrangian coordinates,

d

dt
| v\prime \alpha | 2 \leqslant Exp(t)v\prime \alpha  - c0

2
| v\prime \alpha | 2 \leqslant Exp(t) - c0

4
| v\prime \alpha | 2.

This establishes the decay for v\prime \alpha on the support of r\alpha . Next,
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d

dt
v\prime \prime \alpha + 2v\prime \alpha v

\prime \prime 
\alpha =

\int 
\BbbR 
\phi \prime \prime \alpha (x - y)(v\alpha (y) - v\alpha (x))r\alpha (y) dy

 - 2v\prime \alpha \phi 
\prime 
\alpha \ast r\alpha  - (\mu R\alpha (t) + e\alpha )v

\prime \prime 
\alpha .

(5.14)

So, similar to the previous

d

dt
| v\prime \prime \alpha | 2 \leqslant Exp(t) - c0

4
| v\prime \prime \alpha | 2.

Thus, | v\prime \prime \alpha | \sim Exp(t). As to the density,

d

dt
r\prime \alpha =  - 2v\prime \alpha r

\prime 
\alpha  - v\prime \prime \alpha r\alpha = Exp(t)r\prime \alpha + E(t),(5.15)

and we obtain uniform in time control over \| r\prime \alpha \| \infty .
To conclude strong flocking we write

d

dt
r\alpha =  - v\alpha r\prime \alpha  - v\prime \alpha r\alpha = Exp(t).(5.16)

This shows that r\alpha (t) is Cauchy in t in the metric of L\infty . Hence, there exists \=r\alpha \in L\infty 

such that \| r\alpha (t)  - \=r\alpha \| \infty = Exp(t). Since r\prime \alpha is uniformly bounded, this also shows
that \=r\alpha is Lipschitz. Convergence in C\gamma , \gamma < 1, follows by interpolation. Finally,
passing to the original coordinate frame gives the desired result.

As to the global statement, the result follows from exact same argument above
by noting that \mu R\alpha (t) \geqslant \mu M\psi ( \=D) = c0, and all the macroscopic momenta U\alpha align
by Theorem 5.1.

Remark 5.4. We note that the strong flocking result is new even in the classical
monoflock context. The work [20] treats the more restrictive case of a kernel with
positive infimum, while [23] only claims bounded diameter.

5.4. Global existence and one-dimensional multiflocking: Singular ker-
nel case. In the case when \psi is smooth and inner communication kernels are singular

\phi \alpha (r) =
1

r1+s
, 0 < s < 2,(5.17)

the system (5.7) becomes of fractional parabolic type with bounded drift (due to the
maximum principle) and bounded dumbing term. Considered under periodic settings
\BbbT with no vaccum initial condition \rho \alpha > 0 for all \alpha = 1, . . . , A, we encounter no
additional issues in the application of the regularity results obtained in [19, 20, 21].
Indeed, the dumping term \mu R\mu v\alpha has no effect on the continuity equation written in
parabolic form

\partial tr\alpha + v\alpha r
\prime 
\alpha + e\alpha r\alpha = r\alpha \Lambda sr\alpha ,

where \Lambda s =  - ( - \Delta )s/2 is the fractional s-Laplacian. As to the momentum equation
it can be viewed as a bounded force for the initial H\"older regularization applied from
[22, 15] in the way identical to our previous works. Further adaptation of the non-
local maximum principal estimates of Constantin--Vicol [5] and continuation criteria
for higher-order Sobolev spaces is straightforward.

Theorem 5.5. Let \psi be a smooth kernel and \phi \alpha be the kernel of \Lambda s on \BbbT 1. Then
system (5.4) admits a global solition for any initial data in u\alpha \in H4(\BbbT 1), \rho \alpha \in 
H3+s(\BbbT 1) with no vacuum:

min
\alpha ,x\in \BbbT 1

\rho \alpha (x, 0) > 0.

The solution belongs locally to

u\alpha \in C([0,\infty ), H4) \cap L2([0,\infty ), H4+ s
2 ), \rho \alpha \in C([0,\infty ), H3+s) \cap L2([0,\infty ), H3+ 3s

2 ).
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6. Appendix. Global existence for singular kernels. Although collisions
between the agents are possible with smooth kernels, this does not cause issues from
the point of view of proving global existence of (1.2), using Picard iteration and
continuation. If the kernels \phi \alpha are singular, however, collisions lead to finite time
blowup, so this case needs to be addressed separately. As was shown in [4], if the
kernel is sufficiently singular collisions are prevented by strong close range alignment.
We revisit this result in the context of multiflocks.

Theorem 6.1 (singular communication kernels). Suppose the \alpha -flock is governed
by a singular communication so that\int 1

0

\phi \alpha (r) dr = \infty .(6.1)

Then the flock experiences no internal collisions between agents.

Proof. The proof given below is a simplified version of the argument given in [4].
First, we assume for notational simplicity that all the masses are unity. Let us assume
that for a given noncollisional initial condition (x\alpha i,v\alpha i)i,\alpha a collision occurs at time
T \ast for the first time. Let \Omega \ast 

\alpha \subset \Omega \alpha = \{ 1, . . . , N\alpha \} be the indexes of the agents that
collided at one point. Hence, there exists a \delta > 0 such that | x\alpha i(t) - x\alpha k(t)| \geqslant \delta for
all i \in \Omega \ast 

\alpha and k \in \Omega \alpha \setminus \Omega \ast 
\alpha . Denote

\scrD \ast 
\alpha (t) = max

i,j\in \Omega \ast 
\alpha 

| \bfx \alpha i(t) - \bfx \alpha j(t)| , \scrA \ast 
\alpha (t) = max

i,j\in \Omega \ast 
\alpha 

| \bfv \alpha i(t) - \bfv \alpha j(t)| = max
\ell \in \BbbR n:| \ell | =1

i,j\in \Omega \ast 
\alpha 

\langle \ell ,\bfv \alpha i  - \bfv \alpha j\rangle .

Directly from the characteristic equation we obtain | \.\scrD \ast 
\alpha | \leqslant \scrA \ast 

\alpha , and hence

 - \.\scrD \ast 
\alpha \leqslant \scrA \ast 

\alpha .(6.2)

Let us fix a maximizing triple (\ell , i, j) for \scrA \ast 
\alpha (t) and compute using the momentum

equation

d

dt
\scrA \ast 

\alpha =

N\sum 
k=1

m\alpha k[\phi \alpha (| xik| )\ell (v\alpha ki) - \phi \alpha (| xjk| )\ell (v\alpha kj)] - \scrA \ast 
\alpha R\alpha (t)

=
\sum 
k\in \Omega \ast 

\alpha 

m\alpha k[\phi \alpha (| xik| )\ell (v\alpha kj  - v\alpha ij) + \phi \alpha (| xjk| )\ell ( - v\alpha ki  - v\alpha ij)]

+
\sum 
k \not \in \Omega \ast 

\alpha 

m\alpha k[\phi \alpha (| xik| )\ell (v\alpha ki) - \phi \alpha (| xjk| )\ell (v\alpha kj)] - \scrA \ast 
\alpha R\alpha (t).

The term  - \scrA \ast 
\alpha R\alpha (t) is negative and will be dropped. In the first sum all terms are

negative, so we can pull out the minimal value of the kernel which is \phi \alpha (\scrD \ast 
\alpha ). In the

second sum, all the distances | xik| , | xjk| are separated by \delta up to the critical time
T \ast . So, the kernel will remain bounded. Putting together these remarks we obtain

d

dt
\scrA \ast 

\alpha \leqslant C1  - C2\phi \alpha (\scrD \ast 
\alpha )\scrA \ast 

\alpha .

Let us consider the energy functional

E\alpha (t) = \scrA \ast 
\alpha (t) + C2

\int 1

\scrD \ast 
\alpha (t)

\phi \alpha (r) dr.

From the above we obtain d/dtE\alpha (t) \leqslant C1. So, E\alpha remains bounded up to the critical
time, which implies that \scrD \ast 

\alpha (t) stays away from zero.
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Corollary 6.2. Suppose \psi is a smooth kernel, and each kernel \phi \alpha is either
smooth or condition (6.1) holds. Then the system (1.2) admits a unique global solution
from any initial datum.

We conclude by noting that this does not preclude collisions between agents from
different flocks.
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