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SWARMING:

HYDRODYNAMIC ALIGNMENT WITH PRESSURE

EITAN TADMOR

Abstract. We study the swarming behavior of hydrodynamic alignment.
Alignment reflects steering toward a weighted average heading. We consider
the class of so-called p-alignment hydrodynamics, based on 2p-Laplacians and

weighted by a general family of symmetric communication kernels. The main
new aspect here is the long-time emergence behavior for a general class of
pressure tensors without a closure assumption, beyond the mere requirement
that they form an energy dissipative process. We refer to such pressure laws
as “entropic”, and prove the flocking of p-alignment hydrodynamics, driven
by singular kernels with a general class of entropic pressure tensors. These
results indicate the rigidity of alignment in driving long-time flocking behavior
despite the lack of thermodynamic closure.
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1. Introduction—Alignment dynamics and entropic pressure

Alignment reflects steering toward an average heading [Rey1987]. It plays an
indispensable role in the process of emergence in swarming dynamics and, in
particular—in flocking, herding, schooling, . . . , [VCBCS1995, CF2003, CKFL2005,
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CS2007a, CS2007b, Bal2008, Kar2008, VZ2012, MCEB2015, PT2017], as well as
the formation of other self-organized clustering in human interactions and in dy-
namics of sensor-based networks [Kra2000, BeN2005, BHT2009, JJ2015, RDW2018,
DTW2019, Alb2019]; more can be found in [MT2014, §9], in the book series on ac-
tive matter [BDT2017/19, BCT2022], and in the recent Gibbs’ Lecture [Tad2022a].

We discuss alignment dynamics in two parallel descriptions. Historically, align-
ment models were introduced in the context of agent-based description [Aok1982,
Rey1987, VCBCS1995]. In particular, our discussion is motivated by the cele-
brated Cucker–Smale model [CS2007a, CS2007b], in which alignment is governed
by weighted graph Laplacians. Our main focus, however, is on the corresponding hy-
drodynamic description, the so-called Euler alignment equations, governed by a gen-
eral class of weighted p-graph Laplacians [HT2008,CFTV2010,HHK2010,Shv2021].
In both cases—the agent-based and hydrodynamic descriptions—the weights for the
protocol of alignment reflect pairwise interactions, and they are quantified by proper
communication kernel. Communication kernels are either derived empirically, de-
duced from higher-order principles, learned from the data, or postulated based
on phenomenological arguments; e.g., [CS2007a, CDMBC2007, Bal2008, Ka2011,
GWBL2012, JJ2015, LZTM2019, MLK2019, ST2020b]. The specific structure
of such kernels, however, is not necessarily known. Instead, we ask how different
classes of communication kernels affect the swarming behavior.

The passage from agent-based to hydrodynamic descriptions requires a proper
notion of hydrodynamic pressure. In Section 1 we introduce a class of entropic
pressures for hydrodynamic alignment, and in Section 2 we extend the discussion
to the larger class of hydrodynamic p-alignment. Our goal is to make a systematic
study of the long-time swarming behavior of hydrodynamic alignment, portrayed
in Section 3, with entropic pressure laws. Specifically, we use the decay of energy
fluctuations, discussed in Section 4, in order to quantify the emergence of flocking
behavior, depending on the communication kernel. Almost all available literature
is devoted to the case of pressureless alignment. We review these results in Sec-
tion 5. The main theme here is unconditional flocking for pressureless p-alignment,
driven by heavy-tailed communication kernels. In Section 6 we discuss hydrody-
namic alignment driven by a general class of entropic pressure. The remarkable
aspect here is that despite the lack of closure of such entropic pressure laws, there
holds unconditional flocking of p-alignment driven by singular-head, heavy-tailed
communication kernels. We are aware that the methodology developed here can be
utilized with other Eulerian-based dissipative systems. The detailed computations
are outlined in Appendices A, B, C, D, and E.

1.1. Hydrodynamic description of alignment. We study the long-time behav-
ior of the hydrodynamic description for alignment,

(1.1a)

{
∂tρ+∇x · (ρu) = 0,

∂t(ρu) +∇x · (ρu⊗ u+ P) = A(ρ,u),
(t,x) ∈ (Rt,R

d).

The dynamics is captured by density ρ : Rt × R
d �→ R+, momentum ρu : Rt ×

R
d �→ R

d, and pressure tensor P : Rt × R
d �→ R

d × R
d, subject to initial data

(ρ,u,P)|t=0
= (ρ0,u0,P0), and is driven by an alignment term acting on the support
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S(t) := supp ρ(t, ·),

(1.1b) A(ρ,u) :=

∫
S(t)

φ(x,x′)(u(t,x′)− u(t,x))ρ(t,x)ρ(t,x′) dx′,

φ(x,x′) = φ(x′,x).

The alignment term on the right reflects steering toward an average heading. Here,
different weighted averages are dictated by symmetric communication kernel φ(·, ·).
Prototypical examples include metric kernels φ(x,x′) = k(|x− x′|), which go back
to [CS2007a]. Other classes of symmetric kernels that are either dictated by the
problem or learned from the data can be found in [GWBL2012, JJ2015,LZTM2019,
MLK2019], and finally we mention topologically based kernels studied in [ST2020b]

φ(x,x′) = k(m(C(x,x′))), where m(C(x,x′)) =

∫
C

ρ(t, z) dz is the mass enclosed

in an intermediate domain C = C(x,x′) with tips at x and x′. The prominent role
of metric kernels enters when we assume that there exists a radial kernel, k(r), such
that

(1.1c) φ(x,x′) � k(|x− x′|).

We further assume that the metric kernel k(r) is decreasing with the distance r,
reflecting the typical observation that the intensity of alignment decreases with the
distance. In particular, we address general metric kernels φ(| · |) whether decreasing
or not, in terms of their decreasing envelope k(r) := min{φ(|x|) | |x| � r}. Ob-
serve that we do not place any restriction on the upper bound of φ; in particular,
therefore, our discussion includes the important subclass of singular communication
kernels k(r) = r−α, α > 0 [ST2017a, DKRT2018, MMPZ2019, AC2021b].

1.2. Entropic pressure. System (1.1) is not closed in the sense that the pressure
P is not specified—neither in terms of algebraic relations with (ρ,u), nor do we
specify the precise dynamics of P. We do not dwell here on the details of the
underlying pressure tensor. Instead, we treat a rather general class of pressure laws
satisfying an essential structural (dissipative) property which, as we shall show,
maintains long-time flocking behavior. This brings us to the following.

Definition 1.1 (Entropic pressure). We say that P is an entropic pressure associ-
ated with (1.1) if it has a nonnegative trace, ρe

P
:= 1

2 trace(P) � 0, which satisfies

∂t(ρeP
) +∇x · (ρe

P
u+ q) + trace(P∇u)

� −2

∫
S(t)

φ(x,x′)e
P
(t,x)ρ(t,x)ρ(t,x′) dx′.(1.2)

Here q is an arbitrary C1-flux.

Why entropic pressure? System (1.1) falls under the general category of hyper-
bolic balance laws [Daf2016, Chapter III], and (1.2) can be viewed as an entropy
inequality associated with such balance law. To this end, we note that a formal

manipulation of the mass and momentum equations, (1.1a)1 × |u|2
2

+ (1.1a)2 · u
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yields1

∂t

(ρ
2
|u|2

)
+∇x ·

(ρ
2
|u|2u+ Pu

)
− trace

(
P∇u

)
= −

∫
S(t)

φ(x,x′)ρu · (u− u′)ρ′ dx′.
(1.3)

Adding the entropic description of the pressure postulated in (1.2) leads to the

entropic statement for the total energy, E :=
|u|2
2

+ e
P
,

(1.4) ∂t(ρE) +∇x · (ρEu+ Pu+ q) � −
∫

S(t)

φ(x,x′)
(
|u|2 − u · u′ + 2e

P

)
ρρ′ dx′.

Thus, the notion of entropic pressure (1.2) complements the balance laws in (1.1)
to form the entropy inequality (1.4).

To further motivate this notion of entropic pressure, we appeal to its under-
lying kinetic formulation. The hydrodynamics (1.1) corresponds to the large-

crowd dynamics of N agents with position/velocity (xi(t),vi(t)) : Rt �→ R
d × R

d,
governed by the celebrated agent-based alignment model of Cucker and Smale
[CS2007a, CS2007b],

(1.5)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d

dt
xi(t) = vi(t),

d

dt
vi(t) =

1

N

N∑
j=1

φij(t)(vj(t)− vi(t)),
i = 1, 2, . . . , N.

The alignment dynamics is driven by a weighted graph Laplacian on the right of
(1.5)2, dictated by the symmetric communication kernel, φij(t) := φ(xi(t),xj(t)).
The passage from the agent-based to the hydrodynamic description is realized by
moments of the empirical distribution

fN (t,x,v) :=
1

N

N∑
i=1

δxi(t) ⊗ δvi(t), (t,x,v) ∈ Rt × R
d × R

d.

The large-crowd limits, which are assumed to exist, recover (1.1) with

ρ(t,x) = lim
N→∞

∫
Rd

fN (t,x,v) dv and ρu(t,x) = lim
N→∞

∫
Rd

vfN (t,x,v) dv.

This passage from agent-based to macroscopic description is outlined in Appen-
dix A.1. It was justified for smooth kernels [HT2008, CFTV2010, CCR2011,
FK2019, NP2021, Shv2021] and at least mildly singular kernels [Pes2015, PS2019,
MMPZ2019]. In this context, the pressure or Reynolds stress tensor corresponds
to the second-order moments

(1.6) P(t,x) = lim
N→∞

∫
Rd

(v − u)⊗ (v − u)fN (t,x,v) dv.

1Here and below for a quantity � = �(t,x) we abbreviate �′ := �(t,x′).



SWARMING: HYDRODYNAMIC ALIGNMENT WITH PRESSURE 289

We observe that the kinetic description of pressure in (1.6) is consistent with the
entropic inequality postulated in (1.2). Indeed, ρe

P
:= 1

2 trace(P) is the internal
energy which quantifies microscopic fluctuations around the bulk velocity u,

(1.7) ρe
P
= lim

N→∞

∫
Rd

1

2
|v − u|2fN (t,x,v) dv.

This kinetic description of internal energy yields (detailed derivation is carried out
in Appendix A.2),

(1.8) ∂t(ρeP
) +∇x · (ρe

P
u+ qh) + trace(P∇u) = −2

∫
S(t)

φ(x,x′)e
P
(t,x)ρρ′ dx′,

with the so-called heat flux qh := lim
N→∞

1

2

∫
|v − u|2(v − u)fN (t,x,v) dv. For-

mally, any kinetic-based pressure tensor is in particular an entropic pressure, in
the sense of satisfying the equality (1.8). But here one encounters the familiar
problem of lack of closure, which arises whenever one is dealing with the highest
truncated v-moments of fN : the second moments encoded in ρe

P
and P now re-

quire the third moment encoded in qh, and so on. In classical particle dynamics,
the closure problem is resolved by compatibility with a preferred state of ther-
mal equilibrium, a Maxwellian induced by the thermal equilibrium of the system
[Lev1996, Gol1998, Cer2003, Vil2003]. In the current setup, however, the agent-
based dynamics (1.5) governs active matter made of social particles which admit
no universal Maxwellian closure. Then, there are multiple reasons which led us to
postulate the corresponding entropy inequality (1.2).

Scalar pressure. We discuss the case of scalar pressure law P = PI. A large part
of the existing literature on swarming assumes a mono-kinetic closure,

(1.9) fN (t,x,v)
N→∞−→ ρ(t,x)δ(v− u(t,x)),

which is realized in terms of zero pressure, P = 0; e.g., [HT2008,CFTV2010,FK2019,
NP2021, Shv2021] and the references therein. We mention the derivation from
first principles [Bia2012], the isentropic closure, P = ργ , of [KMT2013, KMT2015,
KV2015,Cho2019,TCGW2020,Shv2022], or equations of state fitted by observation
that can be found in [Sin2021] as examples of detailed thermodynamic closures for
scalar pressure laws in the form of equality in (1.10).

The notion of entropic pressure covers all these scalar examples of entropic pres-
sure laws, as it applies to a broad class of pressure laws satisfying the entropy
inequality postulated in (1.2) but otherwise require no algebraic closure. Indeed,
our notion of entropic pressure becomes more transparent in the scalar case P = PI,

where the inequality postulated in (1.2) for P :=
2

d
ρe

P
reads (assuming no heat flux

q = 0),

(1.10) ∂tP +∇x · (Pu) + 2

d
P∇x · u � −2P

∫
S(t)

φ(x,x′)ρ(t,x′) dx′.
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Formal manipulation, (1.10)×ρ−γ− (1.1a)1 × γρ−γ−1
P with γ = 1+ 2

d , leads to the

equivalent entropic statement for S = ln
(
Pρ−γ

)
,

∂t(ρS) +∇x · (ρuS)

� −2

∫
S(t)

φ(x,x′)ρ(t,x)ρ(t,x′) dx′, S := ln
(
Pρ−(1+ 2

d )
)
.(1.11)

We point out that the inequality (1.11) is the reversed entropy inequality encoun-
tered for −S in compressible Euler equations. The difference, which was already
noted in [HT2008, §6], is due to different states of thermodynamic equilibria.

Entropic energy dissipation. An entropy inequality is intimately connected
with the irreversibility of the underlying process; see, e.g., the enlightening dis-
cussion in [Vil2003, §2.4]. In the present context of hydrodynamic alignment, the
entropy inequality (1.2), or in its equivalent form (1.4), yields

d

dt

∫
S(t)

ρE dx+

∫
∂S(t)

(
(Pu) · n+ q · n

)
dS

� −
∫∫

S(t)×S(t)

φ(x,x′)
(
|u|2 − u · u′ + 2e

P

)
ρρ′ dx dx′

= −1

2

∫∫
S(t)×S(t)

φ(x,x′)
(
|u′ − u|2 + 2e

P
+ 2e′

P

)
ρρ′ dx dx′ < 0,

(1.12)

which reflects the dissipativity of the total energy

∫
ρE dx. Thus, the entropy

inequality (1.2) complements the balance laws in (1.1) to govern the energy dissi-
pation (1.12). This is reminiscent of P.-L. Lions’s notion of dissipative solutions in
the context of the Euler equations [Lio1996, §4.4].

One of the main aspects of this work is dealing with arbitrary pressure, with-
out any specifics about the second-order closure for P. The definition of entropic
pressure in (1.2) is not concerned with the detailed balance of internal energy. In-
stead, its main purpose is to secure the dissipative nature of the total energy, ρE.
This partially echoes Vicsek and Zaferis, who argued that in the context of collec-
tive motion “The source of energy making the motion possible . . . are not relevant”
[VZ2012, §1.1]. Here, we abandon a closure in the form of thermal equality (1.8)
and, instead, retain the inequality postulated in (1.2), compatible with the dis-
sipativity of internal fluctuations, which we argued for in [Tad2021, p. 501]. In
particular, our definition of a pressure in (1.2) can be realized in any intermediate
scale between the microscopic agent-based description, (1.5), and the macroscopic
hydrodynamics (1.1), and hence can be viewed as mesoscopic. These considerations
become even more pronounced when we extend our discussion to a larger class of
so-called p-alignment hydrodynamics.
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2. p-alignment

We begin with the agent-based description,
(2.1)⎧⎪⎪⎪⎨⎪⎪⎪⎩

d

dt
xi(t) = vi(t),

d

dt
vi(t) =

1

N

N∑
j=1

φij(t)|vj(t)− vi(t)|2p−2(vj(t)− vi(t)),
i = 1, 2, . . . , N.

The case p = 1 coincides with the Cucker–Smale model (1.5), while for p > 1,
the alignment term on the right of (2.1) corresponds to the weighted graph 2p-
Laplacian2 which is found in recent applications of neural networks [FZN2021],
spectral clustering [BH2009], and semi-supervised learning [ST2019, Fu2021]. In
the context of alignment dynamics it was introduced in [HHK2010, CCH2014]. We
were motivated by the example of the Elo rating system [JJ2015, DTW2019], in
which the alignment of scalar ratings {qi} is governed by the odd function of local
gradients (qj − qi), e.g., |qj − qi|2p−2(qj − qi).

The long-time behavior of the p-alignment model with p > 1 is distinctly differ-
ent from the pure alignment model when p = 1. Specifically, Corollary 4.2 asserts
a polynomial time decay of energy fluctuations when p > 1, compared with expo-
nential decay when p = 1. These distinctly different time decay bounds are echoed
throughout Section 5. In particular, it is the polynomial-in-time decay when p > 1,
which enables us to treat p-alignment with pressure in Section 6. We note in pass-
ing that there is yet a different behavior of finite time rendezvous for p-alignment
when 0 � p < 1, which we comment upon in Remark 5.5.

The large-crowd dynamics associated with (2.1) is captured by the corresponding
hydrodynamic description

(2.2a)

{
∂tρ+∇x · (ρu) = 0,

∂t(ρu) +∇x · (ρu⊗ u+ P) = Ap(ρ,u),

with p-alignment term

(2.2b) Ap(ρ,u) :=

∫
S(t)

φ(x,x′)|u′ − u|2p−2(u′ − u)ρρ′ dx′, p � 1.

Remark 2.1 (General p-alignment terms). A detailed derivation of the p-alignment
term Ap(ρ,u) in (2.2b) is outlined in Appendix A.1. This kinetic-based deriva-
tion is compatible with the mono-kinetic closure (1.9). In fact, our line of argu-
ments below does not require the detailed form of Ap(ρ,u), except for satisfying
two structural conditions. The first condition requires that it has a zero average∫
S(t)

Ap(ρ,u)(t,x) dx = 0. This clearly holds for the p-alignment (2.2b), and in fact

it holds for any kinetic closure; see equation (A.4). The second and essential con-
dition requires a p-alignment term which induces an entropic pressure. We discuss
this notion of entropic pressure in context of p-alignment next.

We assume that P belongs to a class of entropic pressures, whose definition is
adapted to the case of p-alignment.

2To simplify computations, we proceed with 2p-Laplacians rather than p-Laplacians.
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Definition 2.2 (Entropic pressure for p-alignment). We say that P is an entropic
pressure associated with (2.2) if it has a nonnegative trace, ρe

P
:= 1

2 trace(P) � 0,
satisfying

∂t(ρeP
) +∇x · (ρe

P
u+ q) + trace(P∇u)

� −1

2

∫
S(t)

φ(x,x′)
(
(2e

P
)p + (2e′

P
)p
)
ρρ′ dx′.(2.3)

Here q is an arbitrary C1-flux.

Definition 2.2 is motivated by the underlying kinetic formulation, where one
encounters the p-alignment quantity (see Appendix A.2),3

−1

2

∫
S(t)

φ(x,x′)

∫∫
Rd×Rd

|v − v′|2pfNf ′
N dv dv′ dx′.

One cannot close the kinetic expression,

∫∫
|v−v′|2pfNf ′

N dv dv′, p > 1, in terms

of the quadratic moment encoded in the thermodynamic quantity e
P
, without tak-

ing into account a more detailed thermodynamic information, i.e., higher moments
of the empirical distribution fN . It is here that we abandon the detailed ther-
mal equality in favor of the inequality which follows from polarization, v − v′ ≡
(v− u) + (u− u′) + (u′ − v′),

−1

2

∫∫
|v − v′|2pfNf ′

N dv dv′

� −1

2

(∫∫ (
|v − u|2 + |v′ − u′|2

)
fNf ′

N dv dv′
)p(

ρρ′
)− p

p′

N→∞−→ −1

2

(
(2e

P
)p + (2e′

P
)p
)
ρρ′.

This leads to the corresponding term of p-entropic pressure postulated on the right
of (2.3).

The special case of pure alignment, p = 1, offers an alternative derivation where
polarization implies the equality (consult (A.8)),∫∫

(v − u) · (v − v′)fNf ′
N dv′ dv

= −
∫∫

|v − u|2fNf ′
N dv′ dv −

∫
(v − u)fN dv ·

∫
(u− v′)f ′

N dv′

N→∞−→ −2e
P
ρρ′,

which in turn formally yields the entropy equality (1.8),

(2.4) ∂t(ρeP
) +∇x · (ρe

P
u+ q) + trace(P∇u) = −2

∫
S(t)

φ(x,x′)e
P
ρρ′ dx′.

Thus, while for p = 1 the inequality of entropic pressure (1.2) could be viewed
as a matter of choice made in the equalities (1.8) or (2.4), for p > 1 the entropic
inequality (2.3) is a necessity in order to have a macroscopic interpretation of an
entropic pressure.

3Here and below we abbreviate �′ := �(t,x′,v′).
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Remark 2.3 (Local vs. global flux). We observe that the entropic statement for
p-alignment (2.3) with p = 1 is a symmetric version of the entropic inequality of
pure alignment, (1.2). Apparently, the two definitions do not agree when p = 1,
but in fact, their difference is encoded in different fluxes q. In particular, while the
entropic pressure in pure alignment (1.2) is encoded in terms of a local heat flux,
qh in equation (A.6), the case of p-alignment (2.3) requires a global flux, qh+qφ in
equation (A.13). Alternatively, we could be less pedantic and combine both cases of
alignment and of p-alignment under the same notion of entropic pressure inequality

∂t(ρeP
) +∇x · (ρe

P
u+ q) + trace(P∇u) � −2p−1

∫
S(t)

φ(x,x′)ep
P
ρρ′ dx′, p � 1.

This will not affect any of the follow-up results.

Of course, a general C1-flux, q, can also absorb the convective term ρe
P
u; our

main focus is in the global dissipative structure entailed by (2.3).

Entropic energy dissipation in p-alignment. Following the same formal ma-
nipulations as before for p = 1 (see (1.3)) yields

∂t

(ρ
2
|u|2

)
+∇x ·

(ρ
2
|u|2u+ Pu

)
− trace

(
P∇u

)
� −

∫
S(t)

φ(x,x′)|u− u′|2p−2u · (u− u′)ρρ′ dx′.

Adding (2.3) and integrating, we find

d

dt

∫
S(t)

ρE(t,x) dx+

∫
∂S(t)

(
(Pu) · n+ q · n

)
dS

� −
∫∫

S(t)×S(t)

φ(x,x′)
(
|u− u′|2p−2

(
|u|2 − u · u′) +

1

2

(
(2e

P
)p + (2e′

P
)p
))

ρρ′ dx′

= −1

2

∫∫
S(t)×S(t)

φ(x,x′)
(
|u′ − u|2p + (2e

P
)p + (2e′

P
)p
)
ρρ′ dx dx′ < 0,

(2.5)

which extends the dissipativity statement of pure alignment in the case p = 1 in
(1.12).

3. Swarming

The hydrodynamic alignment (1.1) occupies a distinct blob of mass,

S(t) = supp ρ(t, ·).
We shall refer to this blob of mass simply as a crowd—a continuum of agents which
encodes the large-crowd dynamics associated with (1.5). In most of the existing
literature on collective dynamics, the edge of such a swarm is assumed to be tailored
to the surrounding vacuum so that ρ(t, ·)|∂S = 0. Instead, we argue here for a more
realistic scenario in which the density inside the crowd remains strictly bounded
away from the vacuum,

(3.1) min
x∈S(t)

ρ(t,x) � ρ− > 0,
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while its boundary, Σt = ∂S(t), forms a shock discontinuity, a moving interface
moving with velocity u|Σt

. A detailed discussion on the nature of boundary condi-
tions (BCs) for swarming dynamics is missing; most of the mathematical literature
is devoted to the Cauchy problem (but see [AC2021a] for the special one-dimen-
sional case with p = ρ). The important open issue of developing realistic swarming
BCs remains the task of future works. Instead, here we restrict ourselves to (1.1)
augmented with Neumann BCs,

(3.2) Pn|Σt
= 0 and q · n|Σt

= 0.

In particular, it follows that the total mass of the crowd, M = M(t), is conserved
in time,

(3.3) M(t) :=

∫
S(t)

ρ(t,x) dx ≡ M0,

and by the symmetry of φ(·, ·)
d

dt

∫
S(t)

ρu dx =−
∫
Σt

Pn ρdS

−
∫∫

S(t)×S(t)

φ(x,x′)|u′ − u|2p−2(u′ − u)ρρ′ dx dx′ = 0,

and hence the total momentum of the crowd, m = m(t), is also conserved,4

(3.4) m(t) :=

∫
S(t)

ρ(t,x)u(t,x) dx ≡ m0.

Finally, (2.5) yields that the total energy is nonincreasing

d

dt

∫
S(t)

ρE(t,x) dx

� −1

2

∫∫
S(t)×S(t)

φ(x,x′)
(
|u′ − u|2p + (2e

P
)p + (2e′

P
)p
)
ρρ′ dx dx′.

(3.5)

In particular, we have the space-time enstrophy bound

t∫
0

∫∫
S(t)×S(t)

φ(x,x′)
(
|u′ − u|2p + (2e

P
)p + (2e′

P
)p
)
ρρ′ dx dx′dt

� C2
0 := 2

∫
S(0)

ρ0E0 dx.

(3.6)

4This is the only stage that requires the zero-average p-alignment term argued in Remark 2.1,∫
S(t)

Ap(ρ,u)(t,x) dx =

∫∫
S(t)×S(t)

φ(x,x′)|u′ − u|2p−2(u′ − u)ρρ′ dx dx′ = 0,

which in turn implies conservation of total momentum m(t) = m0.



SWARMING: HYDRODYNAMIC ALIGNMENT WITH PRESSURE 295

Flocking. A characteristic feature of alignment dynamics is the emergence of co-
herent structure with limiting velocity u∞ such that

(3.7) u(t,x)− u∞(t,x)
t→∞−→ 0,

and the corresponding limiting density ρ∞. This is typical in flocking phenomena.
In the present context of hydrodynamic alignment (1.1), the limiting behavior of the

dynamics (1.1) can only approach the time-invariant mean velocity u∞ = u :=
m0

M0
with a limiting density carried out as a traveling wave ρ∞(x − ut) [ST2017b, §2].
The presence of additional repulsion, attraction, and external forces introduce a
richer set of possible emerging limiting configurations, e.g., [CDMBC2007]; for
example, alignment with quadratic forcing approaching an harmonic oscillator
ü∞(t) + a2u∞(t) = 0 [ST2020a, §2.4]. The precise notion of flocking convergence
in (3.7) may vary. Ideally, we seek uniform convergence. A more relaxed notion of
L2
ρ-convergence becomes accessible by studying energy fluctuations (see Section 4),

∫
S(t)

|u− u∞|2ρ dx t→∞−→ 0.

In practice, as we shall see below, the analysis may gain by a combination of the
two.

We are also interested in the limiting configuration of the support S∞(t) :=
supp ρ∞(t, ·). For example, S∞(t) is a Dirac mass in the presence of additional
attractive forces [ST2021, Theorem 1]. Ideally, we are interested in tracing the
shape of the boundary ∂S∞(t), but this seems to be out of reach in the current
literature (but see [LLST2022]). In general, one expects that alignment is at least
strong enough to keep the dynamics contained in a finite ball,

D(t) � D+ < ∞, D(t) := max
x,x′∈S(t)

|x− x′|.

In practice we may need to address to a more accessible notion of diameter which
allows a slow time growth, D(t) � CD(1 + t)γ with some fixed γ > 0.

The qualitative behavior of the equations of alignment dynamics can be classified
according to a number of factors. Here is a brief readers’ digest to the different
scenarios of flocking studied in this work. The two main factors are (A) the as-
sumption made on having an entropic pressure, P, and (B) the alignment protocol,
Ap(ρ;u). In the class of pressure laws, we distinguish between two notable cases:
(A1) the mono-kinetic, pressureless case, P = 0, studied in Section 5; and (A2)—
the main contribution of this work—studying a general class of entropic pressure
laws, introduced in Sections 1 and 2. As for the alignment protocol, we can also
distinguish between two main factors: (B1) the behavior of its communication ker-
nel, φ—specifically (B1a) its regularity or singularity near the origin discussed in
Section 6, and (B1b) its heavy-tailed decay of at infinity, which is the topic of
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Section 4; and (B2) the exponent p of the p-alignment term, introduced in Section
2. Here there are the subcases: (B2a) pure alignment, p = 1, and the other main
contribution of this work in (B2b) studying p-alignment, p > 1, in conjunction with
heavy-tailed kernels with a singular head, which is studied in Section 6.

4. Decay of energy fluctuations

We study the hydrodynamics of the p-alignment (2.2), assuming it admits a
strong entropic solution (2.3); see further comments on (H1) in Section 6.1.

Consider the energy fluctuations ([HT2008, §5], [Tad2021])
(4.1)

δE (t) :=
1

2M2

∫∫
S(t)×S(t)

(1
2
|u(t,x)−u(t,x′)|2+e

P
(t,x)+e

P
(t,x′)

)
ρ(t,x)ρ(t,x′) dx dx′.

It can be expressed in the equivalent form,5

δE (t) =
1

M

∫
S(t)

(1
2
|u(t,x)− u(t)|2 + e

P
(t,x)

)
ρ(t,x) dx.

Thus, δE (t) reflects macroscopic velocity fluctuations

∫
S(t)

1

2
|u − u(t)|2ρ(t,x) dx

around the mean velocity, u(t) :=
1

M

∫
S(t)

ρu(t, ·) dx =
m

M
, and in the context

of kinetic formulation (1.6)–(1.7), it also reflects the microscopic velocity fluctua-

tions, ρe
P
= lim

N→∞

∫
1

2
|v − u|2fN (t,x,v) dv. We have the following decay bound

on energy fluctuations

(4.2)
d

dt
δE (t) � −2pMk(D(t))

(
δE (t)

)p
.

The derivation follows the energy inequality (3.5). Noting that

δE (t) ≡ 1

M

∫
S(t)

ρE dx− 1

2
|u|2

5Specifically

1

M2

∫∫
S(t)×S(t)

1

2
|u(t,x)− u(t,x′)|2ρρ′ dxdx′

=
1

M2

∫∫
S(t)×S(t)

(
1

2
|u(t,x)− u|2 + (u− u) · (u− u′) +

1

2
|u(t,x′)− u|2

)
ρρ′ dxdx′

=
1

M

∫
S(t)

|u(t,x)− u|2ρ(t,x) dx.
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with mean velocity u =
m

M
, which is conserved in time, M(t) = M0, m(t) = m0,

we end up with

d

dt
δE (t) =

d

dt

1

M

∫
S(t)

ρE(t,x) dx

� − 1

2M

∫∫
S(t)×S(t)

φ(x,x′)
(
|u− u′|2p + (2e

P
)p + (2e′

P
)p
)
ρρ′ dx dx′

� − 1

M

∫∫
S(t)×S(t)

φ(x,x′)
(1
2
|u− u′|2 + e

P
(t,x) + e

P
(t,x′)

)p

ρρ′ dx dx′

� −k(D(t))

M

( ∫∫
S(t)×S(t)

(1
2
|u− u′|2 + e

P
+ e′

P

)
ρρ′ dx dx′

)p

×
( ∫∫
S(t)×S(t)

ρρ′ dx dx′
)− p

p′

= −2pMk(D(t))
(
δE (t)

)p
.

(4.3)

The first inequality on the right quotes (3.5); the second follows from Jensen in-
equality, and the third from Hölder inequality, and the obvious radial bound (1.1c),
φ(x,x′) � k(D(t)). Integration of (4.3) yields the following.

Theorem 4.1. Let (ρ,u,P) be a strong solution6 of the hydrodynamic p-alignment
(2.2), satisfying the entropy condition (2.3), and subject to compactly supported
initial data, (ρ0,u0,P0) with D0 < ∞, and boundary conditions (3.2). Then the
energy fluctuations δE (t) admits the bound

(4.4) δE (t) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp

⎧⎨⎩−2M

t∫
0

k
(
D(s)

)
ds

⎫⎬⎭ δE (0), p = 1,

1⎧⎨⎩(p− 1)2pM

t∫
0

k(D(s))ds

⎫⎬⎭
1

p−1

, p > 1.

The result applies to p-alignment dynamics with a general class of entropic pres-
sure tensors satisfying (2.3) (or (1.2) in the special case of p = 1). We refer to such
solutions as entropic solutions. The symmetric communication protocol φ in (1.1c)
need not be metric nor bounded and no assumption of a uniform velocity bound is
made.

We close by noting that the bound (4.4)2 depends on the initial mass M , but
otherwise it is independent of the initial fluctuations δE (0)—a typical scenario for
the Ricatti type inequality (4.2) with p > 1.

6That is,
(
ρ(t, ·),u(t, ·),P(t, ·)

)
has sufficient smoothness—say ∈ (L∞

+ ∩ L1)
(
S(t)

)
×

W 1,∞(
S(t)

)
×W 1,∞(

S(t)
)
, so that (1.1) can be interpreted in a pointwise sense.
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4.1. Heavy-tailed kernels. The bound (4.4) reflects a competition between the
expansion rate of the diameter of the crowd, D(t), and the decay rate in its com-
munication strength, k(r): their composition is required to have a nonintegrable
heavy-tail in order to enforce L2

ρ-flocking decay. We make these considerations
precise in our next statement.

Communication kernels of order β � 0. There exist constants Ck > 0, R > 0
such that

(4.5) φ(x,x′) � k(|x− x′|) with

⎧⎪⎨⎪⎩
∫

|x|�R

k(|x|) dx < ∞,

k(r) = Ck(1 + r)−β, r � R.

This emphasizes the fact that besides the mere requirement for integrability of φ
near the origin, only its tail behavior matters.

Notations. We use the following two constants. We let CR denote a constant,
with different values in different contexts, depending of R as well as on the other
fixed parameters β, γ, . . . and possibly p > 1. Also, we denote the scaled mass

Mp :=

{
2MCkC

−β
D , p = 1,(

2pMCkC
−β
D

)− 1
p−1 , p > 1.

Corollary 4.2 (Decay of L2
ρ-energy fluctuations). Let (ρ,u,P) be a strong entropy

solution of the hydrodynamic p-alignment system (2.2),(2.3), p � 1, with commu-
nication kernel φ of order β � 0, (4.5). Assume that the crowd disperses at a rate
of order γ � 0,

(4.6) D(t) � CD(1 + t)γ , γ � 0, D(t) = max{|x− x′|, x,x′ ∈ supp ρ(t, ·)}.
If the heavy-tail condition holds in the sense that βγ < 1, then there is long-time
flocking behavior such that the following decay bound holds:

(4.7) δE (t) �

⎧⎨⎩CR exp
{
−M1t

(1−βγ)
}
δE (0), p = 1,

CRMp t
− 1−βγ

p−1 , p > 1.

In case of pure alignment, p = 1, (4.7)1 recovers an exponential decay of frac-
tional order 1 − βγ, [Tad2021, Corollary 1], while for p > 1, (4.7)2 implies a

Pareto-type decay of fractional order
1− βγ

p− 1
. Thus, Corollary 4.2 implies that

for heavy-tailed kernels such that βγ < 1, both the macroscopic and microscopic
fluctuations around the mean u(t) = u0 decay to zero. In particular, this shows
the trend toward equilibrium of a kinetic-based hydrodynamics, as it decays toward
mono-kinetic closure (1.9)

1

2

∫
S(t)

‖P(t,x)‖2 dx =

∫
S(t)

e
P
(t,x)ρ(t,x) dx

t→∞−→ 0.

A key aspect, therefore, is to study the possible expansion of the spatial diameter
with time growth of order γ (possibly depending on β), so that βγ < 1. This will
occupy us in the rest of the work.

Remark 4.3. One can refine the statement of Corollary 4.2 to include the borderline
case, βγ = 1.
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5. Flocking with mono-kinetic (“pressureless”) closure

One strategy for verifying flocking is to seek a uniform bound on velocity,
u+ := max |u(t, ·)| < ∞, which in turn implies a dispersion bound on the diameter
of order � (1 + t),

d

dt
D(t) � δu(t), δu(t) := max

x,x′∈S(t)
|u(t,x′)− u(t,x)|

� D(t) � D0 + 2u+t,

(5.1)

and then appeal to Corollary 4.2 with γ = 1. An instructive example for this line
of argument is found in the prototype case of mono-kinetic closure, P = 0,

(5.2) ∂t(ρu) +∇x · (ρu⊗ u) = Ap(ρ,u).

A main feature of the mono-kinetic closure is that the resulting system (5.2) de-
couples into scalar transport equations: set u := u ·ω, then for any fixed ω ∈ S

d−1

we have

ut + u · ∇xu =

∫
S(t)

φ(x,x′)|u′ − u|2p−2(u′ − u)ρ′ dx′,

in which case, the coercivity of the (scalar) p-alignment term on the right implies
a maximum principle, max |u(t, ·)| � max |u0|, hence

D(t) � D0 + 2u+ · t, u+ := max |u0|.

Appealing to Corollary 4.2 with γ = 1 implies that for heavy-tailed φ’s of order
β < 1, there exists CR = C(R,D0, u+, β, p) such that

δE (t) �

⎧⎨⎩CR exp
{
− 2M(D0 + 2u+ · t)(1−β)

}
δE (0), p = 1,

CRMp

(
D0 + 2u+ · t

)−1−β
p−1 , p > 1.

In fact, more is true—a refined argument shows that for such heavy-tailed φ’s of
order β < 1, the pressureless diameter remains uniformly bounded, D(t) � D+, and
hence Corollary 4.2 applies with γ = 0. To this end, we split out discussion, dis-
tinguishing between the case of pure alignment, p = 1, and the case of p-alignment
p > 1.

5.1. Flocking with pure alignment (p = 1). We begin with the following point-
wise bound of velocity fluctuations, which is reproduced in Appendix B.1,

(5.3)
d

dt
δu(t) � −k(D(t))Mδu(t), δu(t) = sup

x,x′∈S(t)

|u(x, t)− u(x′, t)|.

In particular, δu(t) � δu0 and hence (4.6) holds with γ = 1 in view of D(t) �
D0 + δu0 · t. Consequently, for β-tailed kernels of order β < 1, (4.5), there exists a
constant cR such that

t∫
0

k(D(s))ds �
R∫
0

k(D(s))ds+

max{R,t}∫
R

k(D(s))ds

� cR
(1− β)δu0

(1 + δu0 · t)1−β, 0 � β < 1.
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Revisiting (5.3) again yields a decay of pointwise velocity fluctuations of fractional

exponential order, δu(t) � δu0 exp{−c′R(1 + δu0 · t)1−β} with c′R =
M

(1− β)δu0
cR,

which in turn implies that the diameter remains uniformly bounded,

d

dt
D(t) � δu0 e

−c′R(1+δu0·t)1−β

� D(t) � D+ := δu0

∞∫
0

e−c′R(1+δu0·t)1−β

dt < ∞.

Alternatively, one can use the decreasing Liapunov functional of [HL2009], δu(t) +

M

D(t)∫
D0

k(s)ds to conclude that any heavy-tailed kernel, in the sense that

∫
k(s)ds =

∞, implies D(t) � D+ < ∞. Thus, whenever β < 1, Corollary 4.2 then applies
with γ = 0 and CD = D+, and one recovers the exponential decay of mono-kinetic
dynamics [CS2007a, HT2008, HL2009, CFTV2010, Shv2021].

Proposition 5.1 (Mono-kinetic p-alignment, p = 1). Let (ρ,u) be a strong solution
of the mono-kinetic alignment system (1.1) with heavy-tailed communication kernel
φ of order 0 � β < 1, (4.5). There is long-time flocking behavior with decay rate

(5.4)

∫
S(t)

|u(t,x)− u|2ρ(t,x)dx

� CR e−M1t

∫
S(t)

|u0(x)− u|2ρ0(x)dx, M1 = 2MCkD
−β
+ .

Integration of (5.3) then implies pointwise bound on the decay of velocity fluc-
tuations,

(5.5) max
x

|u(t,x)− u| � CR e−M1t max
x

|u0(x)− u|.

5.2. Flocking with p-alignment (p > 1). Our starting point is the pointwise
bound of velocity fluctuations corresponding to (5.3), which is outlined in Appendix
B.2,

(5.6)
d

dt
δu(t) � −1

2
Mk(D(t))(δu(t))2p−1, δu(t) = sup

x∈S(t)

|u(x, t)− u|.

In particular, δu(t) � δu0 implies D(t) � D0 + 2δu0 · t; that is, (4.6) holds with
γ = 1,

D(t) � CD(1 + t), CD = max{D0, 2δu0},

and Corollary 4.2 implies L2
ρ-decay rate of order

1− β

p− 1
.

Proposition 5.2 (Flocking for mono-kinetic alignment, p > 1). Let (ρ,u) be a
strong solution of the mono-kinetic p-alignment system (2.2) with heavy-tailed com-
munication kernel φ of order 0 � β < 1, (4.5). Then there is long-time flocking
behavior with decay rate

(5.7) δE (t) � CRMp(1 + t)−
1−β
p−1 , p > 1, 0 � β < 1.
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We can improve these bounds, at least in the restricted range 1 < p < 3/2. To
this end, use an iterative argument starting with the γ-bound

D(t) � CD(1 + t)γ .

Integrating (5.6) for t � R1/γ , where k(D(t)) � CRCkC
−β
D (1 + t)−βγ , leads to

d

dt

(
δu(t)

)2−2p � CR(p− 1)M1(1 + t)−βγ , p > 1,

where, as before, M1 = MCkC
−β
D . We conclude with the flocking bound

δu(t) � CR
1{

M1(1 + t)1−βγ + (δu0)2−2p
} 1

2p−2

� CRM
− 1

2p−2
1 (1 + t)

− 1−βγ
2p−2 ,

and hence

d

dt
D(t) � 2δu(t) � D(t) � D0 + CR2

2M
− 1

2p−2
1

γ′ (1 + t)γ
′
,

γ′ :=
2p− 3

2p− 2
+

βγ

2p− 2
.

(5.8)

We distinguish between two cases. If 2p+ β < 3, then after one iteration, starting
with γ = 1, we obtain

γ′ =
2p− 3 + β

2p− 2
< 0.

If, however, 2p + β � 3 and β < 1/2, then β
2p−2 < 1 and hence the fixed point

iterations γ �→ γ′ form a contraction, approaching the negative value

γ∞ =
2p− 3

2p− 2− β
< 0, p < 3/2.

In either case, the range 1 < p < 3/2 and β < 1/2 implies that after finitely many
iterations, (5.8) holds with γ < 0, and we conclude that the diameter D(t) remains
uniformly bounded in time, D(t) � D+, that is, (4.6) holds with γ = 0 and CD =
D+. Corollary 4.2 implies the following refinement of Proposition 5.2.

Proposition 5.3 (Flocking for mono-kinetic p-alignment, 1 < p < 3/2). Let (ρ,u)
be a strong solution of the mono-kinetic p-alignment system (2.2), 1 < p < 3/2 with
heavy-tailed communication kernel φ of order 0 � β < 1/2, (4.5). Then there is
long-time flocking behavior with decay rate

(5.9) δE (t) � CRMp(1 + t)
− 1

p−1 , 1 < p < 3/2, 0 � β < 1/2.

Thus, we have L2
ρ-velocity fluctuations with optimal decay rate � (1 + t)−

1
2p−2 .

Moreover, integration of (5.6) with k(D(t)) � CRk(D+) implies uniform decay of
velocity fluctuations at the same optimal rate,7

(5.10) max
x

|u(t,x)− u| � CRM
− 2−p

2p−2
1 (1 + t)

− 1
2p−2 , 1 < p < 3/2.

7According to [HHK2010, Theorem 3.1] and [RLLW2023, Theorem 3.2], there are different
scenarios of a finite time flocking for p ∈ (1/2, 1).
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5.3. Agent-based description. The hydrodynamic p-alignment with mono-kine-
tic closure is the continuum counterpart of the corresponding agent-based descrip-
tion (2.1). In particular, we have bounds on the velocity fluctuations—both the
	2-energy fluctuations and uniform fluctuations, which are worked out in Appendix
B.3,

d

dt
δE (t) � −2p−1k(D(t)) (δE (t))

p
, δE (t) :=

1

2N2

N∑
i,j=1

|vi(t)− vj(t)|2

(5.11a)

d

dt
δv(t) � −1

2
k(D(t))

(
δv(t)

)p
, δv(t) := max

i
|vj(t)− v|, v(t) :=

1

N

N∑
j=1

vj(t).

(5.11b)

There is one-to-one correspondence between (5.11) and the hydrodynamic fluctu-
ations bounds—the L2

ρ-energy fluctuations (4.2) and uniform velocity fluctuations
in (5.6).

When p = 1, (5.11a) implies the exponential decay of heavy-tailed kernels. This
should be contrasted with the case p > 1, where the p-graph Laplacian in (2.1)
implies polynomial decay. A typical scenario is summarized in the following propo-
sition.

Proposition 5.4. Consider the p-alignment system (2.1), with a heavy-tailed com-
munication kernel of order 0 � β < 1, (4.5). Then there is a uniform convergence
toward the mean velocity

(5.12) max |vi(t)− v| �

⎧⎨⎩CR exp
{
− Ck(1 + t)(1−β)

}
δE (0), p = 1,

CR(1 + t)
− 1−β

2p−2 , p > 1.

Remark 5.5 (Finite time alignment for 0 � p < 1). The dynamics of p-alignment
with p � 1 is driven by the gradient of velocities, vj − vi. For 0 � p < 1, the
dynamics emphasizes the orientation of the velocities’ gradient. The prototypical
case is p = 1/2, in which case (2.1) reads

(5.13)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d

dt
xi(t) = vi(t),

d

dt
vi(t) =

1

N

N∑
j �=i

φij(t)
vj(t)− vi(t)

|vj(t)− vi(t)|
,

i = 1, 2, . . . , N.

When p = 0, (2.1)2 reads

d

dt
vi(t) =

1

N

N∑
j �=i

φij(t)
vj(t)− vi(t)

|vj(t)− vi(t)|2
, i = 1, 2, . . . , N.

The balance of its energy fluctuations

d

dt
δE (t) = − 1

2N2

N∑
i,j=1

φ(xi,xj) � −1

2
k(D(t)) � δE (t) � δE0 −

1

2

t∫
0

k(D(s))ds,
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proving that there is finite time alignment, δE (t)
t→tc−→ 0, for heavy-tailed ker-

nels such that k(D(s)) is nonintegrable. Finite time alignment (also known as
the rendezvous behavior in first-order alignment models of opinion dynamics, e.g.,
[CMB06, FHK11]) is typical for p-alignment in the singular range 0 � p < 1,
[CCH2014, Theorem 2.2],

|δv(t)| �
(
|δv0|1−p − 2p−1(1− p)

t∫
0

k(D(s))ds
) 1

1−p
, 0 � p < 1.

In this context, at least for 0 � p � 1/2, one encounters the need to avoid collisions,

|vi(t)− vj(t)|+ |xi(t)− xj(t)| 
= 0, i 
= j, t < tc.

Collision avoidance is discussed in [Mar2018] for p ∈ (1/2, 3/2) and for the case of
pure alignment, p = 1, with possibly singulars, k(r) = r−α, in [ACHL2021,Pes2014,
CCH2014, CCMP2017].

We close this section by referring to Appendix C, where we consider alignment
dynamics driven by matrix-valued communication kernels, Φ(|x − x′|). This is
an instructive example where the coupling of u-components defies a maximum
principle encoded in (5.3). Instead, a β-tailed Φ yields a dispersion bound of order
γ = 2/(2−β), and the general framework of Corollary 4.2 applies for β < 2/3.

6. Flocking of hydrodynamic p-alignment with entropic pressure

We consider hydrodynamic alignment (2.2) driven by the class of singular kernels
kp(r) := r−(d+2sp), 0 < s < 1, p � 1,

∂t(ρu) +∇x(ρu⊗ u+ P)

= p.v.

∫
S(t)

|u′ − u|2p−2
(
u(t,x′)− u(t,x)

)
|x′ − x|d+2sp

ρ(t,x)ρ(t,x′) dx′, 0 < s < 1.

We emphasize that in this case of strongly singular kernels, there is no formal justi-
fication for the passage from the agent-based description (2.1) to the hydrodynamic
description. In particular, the near-origin integrability sought in (4.5) is given up
for the usual notion of singular integration in terms of principle value (p.v.). The
alignment term on the right amounts to a weighted fractional 2p-Laplacian, (−Δ)s2p,
which is properly interpreted to act on supp ρ(t, ·); see [TGCV2021, BV2015] and
the references therein.

The tail of the singular kernel, kp(r) = r−(d+2sp), r � R, is too thin to enforce
the heavy-tail condition sought in Corollary 4.2. Accordingly, we keep the singular
head and adjust it with the heavy tail of order β,

(6.1) φs,β(x,x
′)

{
= |x− x′|−(d+2sp), |x− x′| � R with 0 < s < 1,

� Ck(1 + |x− x′|)−β, |x− x′| > R.

Clearly, there exists a constant K = KR, such that kp(|x − x′|) � KRφs,β(x,x
′)

for all (x,x′). Without loss of generality, we may assume that the spatial scale R

is large enough, (1 +R)βR−(d+2sp) < Ck, so that we may take KR = 1,

(6.2) kp(|x− x′|) � φs,β(x,x
′) ∀x,x′ ∈ R

d.



304 EITAN TADMOR

We refer to such heavy-tailed, singular kernels as having order (s, β). If we let φβ

denote its tail of order β, then the p-alignment dynamics now reads

∂t(ρu) +∇x · (ρu⊗ u+ P)

= p.v.

∫
|x′−x|�R

|u′ − u|2p−2
(
u′ − u′)

|x′ − x|d+2sp
ρρ′ dx′

+

∫
|x′−x|>R

φβ(x,x
′)|u′ − u|2p−2

(
u′ − u′)ρρ′ dx′,

φβ(x,x
′) � Ck(1 + |x− x′|)−β.

(6.3)

Remark 6.1 (Entropic pressure with singular kernel). In the case of a singular kernel
φs,β, we need to adjust the definition (Definition 2.2) of entropic pressure,

∂t(ρeP
) +∇x · (ρe

P
u+ q) + trace(P∇u)

� −1

2
kp(D(t))

∫
S(t)

(
(2e

P
)p + (2e′

P
)p
)
ρρ′ dx′.(6.4)

Thus, the entropic part of the internal energy avoids the singularity of φs,β and
emphasizes only its tail behavior. It leads to the adjusted energy fluctuations bound,

d

dt
δE (t) � − 1

2M

∫∫
S(t)×S(t)

{φs,β(x,x
′)|u− u′|2p

+ kp(D(t))
(
(2e

P
)p + (2e

P
)p
)
}ρρ′ dx dx′,

(6.5)

which in turn, arguing along the lines of (4.3), yields (4.2); that is, the main
Theorem 4.1 and its Corollary 4.2 survive. In particular, the enstrophy bound
(3.6) holds for φ = φs,β . Taking into account (6.2), φs,β(x,x

′) � |x′ − x|−(d+2sp),
we find

(6.6)
d

dt
δE (t) � − 1

2M

∫∫
S(t)×S(t)

|u(t,x′)− u(t,x)|2p
|x′ − x|d+2sp

ρρ′ dx dx′.

The presence of pressure, let alone a pressure with an unknown closure, cou-
ples the different components of velocity in a manner that defies a straightforward
derivation of a uniform bound on velocity fluctuations, δu(t), along the lines of
what we have done in the mono-kinetic case. Instead, we introduce a new strategy
for verifying flocking in this case, in which we use an enstrophy bound associ-
ated with the singular kernel, kp(r) = r−(d+2sp), in order to control the diameter
D(t) � (1 + t)γ . This enables us to treat the flocking in presence of entropic pres-
sure. The remarkable aspect here is that although the presence of pressure defies a
maximum principle on the velocity field, the corresponding enstrophy bound asso-
ciated with (6.3) will suffice for control of velocity fluctuations and, hence, flocking
will follow. Thus, short-term interactions governed by kernel with a singular head
secure the spread of velocity fluctuations, while the heavy-tailed kernel governing
the long-term interactions secure flocking.
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6.1. Enstrophy and dispersion bounds. Throughout this section we make the
following assumptions.

(H1) The alignment hydrodynamics, (1.1a), (6.3), admits a strong entropic so-
lution, (6.4).

(H2) The support, S(0) = supp ρ(0, ·), has a smooth boundary satisfying a Lip-
schitz or a cone condition.

(H3) The dynamics remains uniformly bounded away from vacuum; namely,
there exists ρ− > 0 such that

min
x∈S(t)

ρ(t,x) � ρ− > 0, t � 0.

Several comments regarding these assumptions are in order. The literature about
the question of global regularity (H1) is devoted mostly to mono-kinetic pressureless
closure; we mention the one-dimensional studies [TT2014, CCTT2016, HT2017,
ST2017a,ST2017b,ST2020b,Tan2021,LS2022], the two-dimensional case [HT2017],
and multi-dimensional cases [Shv2019, DMPW2019, CTT2021, Tad2022b]. Much
less is known about alignment with pressure, typically when (scalar) pressure is
augmented with the additional process of relaxation and/or dissipation [Cho2019,
CDS2020, TCGW2020]. On the other hand, there are relatively few works on
weak solutions of (1.1), [CCR2011, CFGS2017, LT2021]. As for (H2), we are
aware of only few results on the geometric structures that emerge from alignment,
[LS2019,LLST2022]. The question of a uniform bound away from vacuum assumed
in (H3) plays an important role in driving global regularity [Tan2020, Shv2021,
AC2021a, Tad2021]. It can be relaxed to allow mild time decay, e.g., ρ−(t) �
(1 + t)−1/2 ([ST2020b, Theorem 1.1], [Tad2021, Theorem 3]) but as already noted
in previous works, some sort of nonvacuous assumption is necessary.

We begin by noting that since φs,β dominates kp(r), (6.2), then by the nonvac-
uous hypothesis (H3), ρ � ρ− > 0, we have the Sobolev bound∫∫

S(t)×S(t)

|u(t,x′)− u(t,x)|2p
|x′ − x|d+2sp

dx dx′

� C2
ρ

∫∫
S(t)×S(t)

|u(t,x′)− u(t,x)|2p
|x′ − x|d+2sp

ρρ′ dx dx′, Cρ :=
1

ρ−
.

(6.7)

The space-time enstrophy bound (3.6)—or more precisely, its singular version in
(6.6)—then yields

t∫
0

‖u(τ, ·)‖2p
Ẇs,2p(S)

dτ � C2
ρMC2

0 ,

‖u(t, ·)‖2p
Ẇs,2p(S)

:=

∫∫
S(t)×S(t)

|u(t,x′)− u(t,x)|2p
|x′ − x|d+2sp

dx dx′.

(6.8)

The enstrophy bound (6.8) guarantees that the velocity u slows down the dispersion
of the crowd so that its diameter D(t) may not grow faster than � (1+ t)γ . Below
we derive sharp bounds on the dispersion rate γ.
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To this end, we note that propagation along particles paths in (1.1a)1 yields, as
in (5.1),

d

dt
D(t) � δu(t), δu(t) = max

x,x′∈S(t)
|u(t,x′)− u(t,x)|.

By Gagliardo–Nirenberg inequality (which we recall in Appendix D),

|u(t,x)− u(t,x′)| � Cs‖u‖Ẇs,2p(S(t))
|x− x′|s−θ,

x,x′ ∈ S(t), θ :=
d

2p
< s < 1.

(6.9)

This yields,
d

dt
D(t) � δu(t)| � Cs‖u(t, ·)‖Ẇ s,2p(S(t))D

s−θ(t), or

(6.10)
d

dt
D1+θ−s(t) � C ′

s‖u(t, ·)‖Ẇ s,2p(S(t)), C ′
s = (1 + θ − s)Cs,

and hence, in view of (6.8),

D1+θ−s(t) � D1+θ−s
0 +

( t∫
0

‖u(τ, ·)‖2p
Ẇ s,2p(S(τ))

dτ
) 1

2p
( t∫

0

1dτ
) 1

(2p)′

� D1+θ−s
0 + C ′

s(C
2
ρMC2

0 )
1
2p t

1
(2p)′ .

We conclude that the crowd of multi-dimensional p-alignment dynamics (6.3) can
be dispersed at a rate no faster than

(6.11) D(t) � CD(1 + t)γp , γp =
2p− 1

2p(1 + θ − s)
, θ =

d

2p
< s < 1.

This bound can be improved using a bootstrap argument outlined in Appendix
E. In particular, for 1 < p < 3/2 we obtain a uniform dispersion bound which we
summarize in the following key result.

Lemma 6.2 (Uniform dispersion bound for p-alignment, d � 2). Consider the
multi-dimensional p-alignment dynamics, (6.3), 1 < p < 3/2, with heavy-tailed,
singular kernel of order (s, β), satisfying (H1)–(H3). Then we have a uniform
bound

(6.12) D(t) � D+, 0 � β < (3/2 − p)d, 1 < p < 3/2.

Remark 6.3. Observe that since we require d = 2pθ < 3, the uniform bound (6.12)
is restricted to one- and two-dimensional cases.

We are unable to secure such a uniform dispersion bound for p > 3/2, but we can
still improve the dispersion bound (6.11) as shown in Remark E.2,

D(t) � C ′
D(1 + t)γ , γ =

2p
(
p− 3/2

)
(p− 1)d− β

, 0 � β <
d

2p− 1
, p > 3/2.

6.2. Flocking of alignment with pressure: the one-dimensional case. The
case of pure alignment p = 1 restricts the use of Lemma 6.2 to the one-dimensional
case (d < 2p), driven by singular kernel k1(r) = r−(1+2s), 1

2 < s < 1, with the
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β-tailed adjustment,

∂t(ρu) + ∂x(ρu
2 + P) = p.v.

∫
|x′−x|�R

u(t, x′)− u(t, x)

|x− x′|1+2s
ρ(t, x′)dx′

+

∫
|x′−x|>R

φβ(x, x
′)
(
u(t, x′)− u(t, x)

)
ρ(t, x′)dx′.

(6.13a)

The integrals on the right are restricted to the interval S(t) = [ρ−(t), ρ+(t)] sup-
porting ρ(t, ·), φβ is a β-tailed communication kernel,

(6.13b) φβ(x, x
′) � Ck(1 + |x− x′|)−β, |x− x′| � R,

and P is any scalar entropic pressure satisfying (1.2)—or more precisely, its singular
version (6.4),

(6.13c) ∂t(ρP) + ∂x(ρPu+ q) + 2P∂xu � −2PD−(1+2s)(t)M.

By (6.11) we can apply Corollary 4.2 with γ1 = 1
3−2s which yields the following:

Theorem 6.4 (One-dimensional alignment, p = 1). Consider the one-dimension-
al alignment dynamics of (6.13), and assume (H1),(H3), hold. Let (ρ, u, P) be a
strong entropic solution with a β-tailed singular kernel, φβ, satisfying the heavy-tail
condition

(6.14) β + 2s < 3, β � 0,
1

2
< s < 1.

Then there is a large-time flocking behavior with the fractional exponential rate

(6.15) δE (t) � CR exp
{
− 2MCk(1 + t)

3−2s−β
3−2s

}
δE (0).

This extends the mono-kinetic pressureless studies in [ST2017a, ST2017b,
ST2018a, DKRT2018, DMPW2019, MMPZ2019]. It is instructive to compare this
result with the flocking statement in the mono-kinetic closure, which is based on
the uniform bound on velocity, D(t) � (1 + t). Theorem 6.4 allows for a larger
class of heavy-tailed kernels since it is based on a sharper bound on the velocity
fluctuations, leading to D(t) � (1 + t)γ with γ < 1. This result can be further
improved by extending the uniform dispersion bound in Lemma 6.2 to the limiting
case p = 1.

6.3. Flocking of p-alignment with pressure: the multi-dimensional case.
We consider the p-alignment dynamics (6.3) driven by the singular kernel kp(r) =

r−(d+2sp), d
2p < s < 1. Using (6.11) we can apply Corollary 4.2 with γ = γp, which

yields the following.

Theorem 6.5 (Multi-dimensional alignment, p > 1). Consider the multi-dimen-
sional p-alignment dynamics (6.3) and assume (H1)–(H3) hold. Let (ρ,u,P) be a
strong entrpoic solution, (6.4), with a β-tailed singular kernel φs,β satisfying the
heavy-tail condition

βγp < 1, β � 0, γp :=
2p− 1

2p(1 + θ − s)
, θ =

d

2p
< s < 1.

Then there is a large-time flocking behavior with a polynomial decay rate of order

(6.16) δE (t) � CRMp t
−

1−βγp

p−1 .
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Remark 6.6 (Decay of internal fluctuations). A sufficient condition for the heavy-
tailed restriction βγp < 1 sought in (6.16) is given by

(6.17) β � d

2p− 1
� βγp < β

2p− 1

d
� 1.

It still allows heavy tails of order β � 1, compared with the β < 1 restriction in the
mono-kinetic closure. In particular, when β = d

2p−1 , one finds the decay of order(
δE (t)

)p−1 � t−(1−βγp) � t
− 1−s

1+θ−s .

Remark 6.7. Theorem 6.5 implies the decay of both—the macroscopic velocity fluc-

tuations

∫
|u−u|2ρ dx and, in the context of kinetic formulation, the microscopic

fluctuations

∫∫
|v − u|2fN dv dx.

The decay bound (6.16) is not sharp, a reflection of the fact that the dispersion
bound (6.11) can be improved with smaller γp (as noted in Remark 6.3). In partic-
ular, when p is in the restricted range 1 < p < 3/2, then Corollary 4.2 applies with
γ = 0 and CD = D+, which yields the following.

Theorem 6.8 (Multi-dimensional alignment, 1 < p < 3/2). Consider the multi-di-
mensional p-alignment dynamics (6.3), 1 < p < 3/2, and assume (H1)–(H3) hold.
Let (ρ,u,P) be a strong entrpoic solution (6.4) with a heavy-tailed singular kernel
of order (s, β). Then there is a large-time flocking behavior with a polynomial decay
rate of order

δE (t) � CRMp(1 + t)
− 1

p−1 ,

0 � β < (3/2 − p)d,
d

2p
< s < 1, 1 < p < 3/2.

(6.18)

Theorem 6.8 is the analogue of the mono-kinetic pressureless case in Proposition
5.3. In particular, it is rather remarkable that we obtain here the same optimal
decay rate of order 1

p−1 in the respective range 1 < p < 3/2 for the one- and two-

dimensional cases. An optimal flocking scenario with a uniform dispersion bound
remains open for d � 3.

Appendix A. Derivation of entropic inequality in p-alignment

A.1. From agent-based to hydrodynamic description. We begin with the
passage from the agent-based dynamics of p-alignment (2.1) to its hydrodynamic
description (2.2). The large-crowd dynamics is encoded in terms of their empirical

distribution fN (t,x,v) :=
1

N

N∑
i=1

δxi(t)(x) ⊗ δvi(t)(v), which are governed by the

kinetic Vlasov equation in state variables (t,x,v) ∈ Rt × R
d × R

d,

(A.1) ∂tfN + v · ∇xfN +∇v ·Qp(fN , fN ) = 0,

and are driven by the interaction kernel

Qp(fN , fN )(t,x,v) :=

∫
S(t)

∫
Rd

φ(x,x′)|v′ − v|2p−2(v′ − v)fNf ′
N dv′ dx′.
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We distinguish between the cases of pure alignment, Q1 = Q, and enhanced p-
alignment Qp of order p > 1.

For p = 1, the large-crowd dynamics of fN ’s is captured by their first two

moments, which we assume to exist—the density ρ := lim
N→∞

∫
Rd

fN (t,x,v) dv and

momentum ρu := lim
N→∞

∫
Rd

vfN (t,x,v) dv; that is,

(A.2) ρ(v′ − u) = lim
N→∞

∫
Rd

(v′ − v)fN (t,x,v) dv for all v′ ∈ R
d.

Integration of (A.1) yields the mass equation (1.1a)1,

(A.3a) ∂tρ+∇x · (ρu) = 0.

The first v-moment of (A.1) yields

∂t

∫
Rd

vfN dv = −∇x ·
∫
Rd

v ⊗ vfN dv +

∫
Rd

Q1(fN , fN ) dv.

We now treat the two terms on the right. For the first term, we decompose v⊗v ≡
−u ⊗ u + (v ⊗ u + u ⊗ v) + (v − u)⊗ (v − u), where the corresponding first two
moments of fN add up to u ⊗ (ρu) = ρu ⊗ u, while the third yields the pressure
tensor (1.6),

lim
N→∞

∫
Rd

v ⊗ vfN dv = ρu⊗ u+ P, P = lim
N→∞

∫
Rd

(v − u)⊗ (v − u)fN .

The second term on the right yields

lim
N→∞

∫
Rd

Q1(fN , fN ) dv =

∫
S(t)

φ(x,x′) (ρ′u′ρ− ρuρ′) dx′ = A(ρ,u),

and we recover the momentum equation (1.1a)2,

∂t(ρu) +∇x · (ρu⊗ u+ P) = A(ρ,u).

For p > 1, we assume the existence of the corresponding higher moments (which
are compatible with the mono-kinetic Maxwellian (1.9)),

ρ|v′ − u|2p−2(v′ − u) := lim
N→∞

∫
Rd

|v′ − v|2p−2(v′ − v)fN (t,x,v) dv,

in which case the interaction kernel yields

lim
N→∞

∫
Rd

Qp(fN , fN ) dv =

∫
S(t)

φ(x,x′)|u′ − u|2p−2 (ρ′u′ρ− ρuρ′) dx′ = Ap(ρ,u),

and we recover the momentum equation (2.2a)2,

(A.3b) ∂t(ρu) +∇x · (ρu⊗ u+ P) = Ap(ρ,u).
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In fact, we are not restricted here by the mono-kinetic closure assumption: for any
kinetic closure we have∫

S(t)

∫
Rd

Qp(fN , fN )(t,x,v) dv dx

=

∫∫
S(t)×S(t)

∫∫
Rd×Rd

φ(x,x′)|v′ − v|2p−2(v′ − v)f ′
NfN dv′ dv dx′ dx = 0.

This follows by the antisymmetry of the integrand on the right, and hence the
zero-average condition for p-alignment sought in Remark 2.1 holds,

(A.4)

∫
S(t)

Ap(ρ,u)(t,x) dx = lim
N→∞

∫
S(t)

∫
Rd

Qp(fN , fN )(t,x,v) dvdx = 0.

Observe that system (A.3) is not a purely hydrodynamic description since the
pressure P still requires a closure of the second-order moments of fN . Thus, the
alignment dynamics in (A.3) is left open at the mesoscale, subject to the notion of
entropic pressure in Definition 1.1 for p = 1 and Definition 2.2 for p > 1.

A.2. Entropic pressure in kinetic formulation of p-alignment. We follow
the balance of the internal energy balance as preparation for studying the large-
time behavior of pure hydrodynamic alignment, p = 1, in (1.1) and hydrodynamic
p-alignment, p > 1, in (2.2). The total energy is given by the second moment which
is assumed to exist

ρE(t,x) = lim
N→∞

∫
Rd

1

2
|v|2fN (t,x,v) dv.

It is decomposed into kinetic and internal energy corresponding to the decomposi-

tion
1

2
|v|2 ≡ 1

2
|u|2 + 1

2
|v− u|2 + u · (v− u). Noting that

∫
Rd

(v− u)fN dv = 0, we

find

ρE =
ρ

2
|u|2 + ρe

P
, ρe

P
:= lim

N→∞

1

2

∫
Rd

|v − u|2fN dv.

The balance of internal energy, ρe
P
, is obtained by integrating (A.1) against

|v − u|2
2

, which yields

(A.5) ∂t(ρeP
) +

∫
Rd

|v − u|2
2

v · ∇xfN dv =

∫
Rd

(v − u) ·Qp(fN , fN ) dv.
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The integral on the left can be expressed as a perfect divergence of the cubic

moments qN :=
1

2

∫
|v − u|2(v − u)fN dv (all integrals are taken over Rd),∫ |v − u|2

2
v · ∇xfN dv

= ∇x ·
∫ |v − u|2

2
vfN dv −

∫
v · ∇x

|v − u|2
2

fN dv

= ∇x ·
∫ |v − u|2

2

(
u+ (v − u)

)
fN dv +

∑
i,j

∫
vj(vi − ui)

∂ui

∂xj
fN dv

= ∇x ·
(∫ |v − u|2

2
fN dvu+ qN

)
+
∑
i,j

∫
(vj − uj)(vi − ui)fN dv

∂ui

∂xj
.

Taking the limit, we find the term ∇x · (ρe
P
u+ qh) + trace(P∇u), with heat-flux,

(A.6) qh := lim
N→∞

1

2

∫
Rd

|v − u|2(v − u)fN dv,

and (A.5) yields

(A.7) ∂t(ρeP
) +∇x · (ρe

P
u+ qh) + trace(P∇u) = lim

N→∞

∫
Rd

(v−u) ·Qp(fN , fN ) dv.

It remains to consider the moment of the alignment-based term on the right. We
distinguish between the cases p = 1 and p > 1.

The case p = 1. We split v − v′ ≡ (v− u) + (u− v′),∫
Rd

(v − u) ·Q(fN , fN ) dv

= −
∫

S(t)

φ(x,x′)

∫∫
Rd×Rd

(v − u) · (v − v′)fNf ′
N dv′ dv dx′

= −
∫

S(t)

φ(x,x′)

∫∫
Rd×Rd

|v − u|2fNf ′
N dv′ dv dx′

−
∫

S(t)

φ(x,x′)

∫
Rd

(v − u)fN dv ·
∫
Rd

(u− v′)f ′
N dv′ dx′.

(A.8)

The first integral on the right ends up with −2

∫
S(t)

φ(x,x′)e
P
ρρ′ dx′, and since the

second integral on the right vanishes, (A.7) now reads [HT2008]8

∂t(ρeP
) +∇x · (ρe

P
u+ q) + trace

(
P∇u

)
= −2

∫
S(t)

φ(x,x′)e
P
ρρ′ dx′, q = qh.(A.9)

8This corrects a series of typos in our statement of [HT2008, Lemma 5.1].
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Here we choose to interpret the equality (A.9) as a special case of the entropic
inequality (1.2), giving room to validate the formal passage to the limit in lieu of a
lack of formal closure.

The case p > 1. We split (v−u) · (v−v′) ≡ 1
2 |v′−v|2+

(
1
2 (v

′+v)−u
)
· (v′−v)

to obtain

∫
Rd

(v − u) ·Qp(fN , fN ) dv

= −
∫

S(t)

φ(x,x′)

∫∫
Rd×Rd

|v′ − v|2p−2(v − u) · (v − v′)fNf ′
N dv′ dv dx′

= −1

2

∫
S(t)

φ(x,x′)

∫∫
Rd×Rd

|v′ − v|2pfNf ′
N dv′ dv dx′

−
∫

S(t)

φ(x,x′)

∫∫
Rd×Rd

|v′−v|2p−2
(
1/2(v′+v)− u

)
· (v′−v)fNf ′

N dv′ dv dx′

:= I1 + I2.

(A.10)

The the internal integrand in the first term on the right of (A.10) does not exceed

− 1

2

∫∫
Rd×Rd

|v′ − v|2pfNf ′
N dv′ dv

� −1

2

( ∫∫
Rd×Rd

|v′ − v|2fNf ′
N dv′ dv

)p( ∫∫
Rd×Rd

fNf ′
N dv′ dv

)− p
p′

� −1

2

( ∫∫
Rd×Rd

|v′−u′|2fNf ′
N dv dv′+

∫∫
Rd×Rd

|v−u|2fNf ′
N dv dv′

)p

(ρρ′)
− p

p′

= −1

2
(2ρρ′e

P
+ 2ρρ′e′

P
)p(ρρ′)

− p
p′

� −1

2

(
(2e

P
)p + (2e′

P
)p
)
ρρ′.

The first passage on the right follows from Hölder inequality, the second follows
from the polarization v′ − v ≡ (v′ − u′) + (u′ − u) + (u − v), and the last from
Jensen inequality. Hence

(A.11) I1 � −1

2

∫
S(t)

φ(x,x′)
(
(2e

P
)p + (2e′

P
)p
)
ρρ′.

For the second term on the right of (A.10), we claim that it can be written as a
complete divergence,

(A.12) I2(x) = ∇x · qφ.
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Indeed, by antisymmetry (x,v) ↔ (x′,v′) the term I2(x) has zero mean,∫
S(t)

I2(x) dx =

∫∫
S(t)×S(t)

φ(x,x′)

×
∫∫

Rd×Rd

|v′ − v|2p−2
(
1/2(v′ + v)− u

)
· (v′ − v)fNf ′

N dv′ dv dx dx′ = 0.

Hence, there exists a solution, Δψ = I2(x), x ∈ S(t) subject to the Neumann

boundary condition ∂ψ
∂n |∂S(t)

= 0, and (A.12) follows with qφ = ∇ψ. Combining

(A.7) with (A.11) and (A.12), we arrive at the entrpoic inequality (2.3),

∂t(ρeP
) +∇x · (ρe

P
u+ q) + P∇u

� −1

2

∫
S(t)

φ(x,x′)
(
(2e

P
)p + (2e′

P
)p
)
ρρ′ dx′, q := qh + qφ.(A.13)

Observe that while the entropic inequality (A.9) in the case p = 1 was a matter
of choice, the corresponding inequality (A.13) for p > 1 is a matter of necessity in
order to make a macroscopic interpretation.

Appendix B. Pointwise bounds on velocity fluctuations

B.1. Pointwise fluctuations in mono-kinetic alignment. Arguing along the
lines of [HT2017, §1], we first fix an arbitrary unit vector w ∈ R

d and project (5.2)
onto the space spanned by w to get

(∂t + u · ∇x)〈u(t,x),w〉 =
∫

S(t)

φ(x,x′)(〈u(t,x′),w〉 − 〈u(t,x),w〉)ρ(t,x′) dx′.

Now we assume that 〈u(t,x),w〉 reaches maximum and minimum values at
x+ = x+(t) and, respectively, x− = x−(t),

u+(t) = 〈u(t,x+(t)),w〉 := sup
x∈S(t)

〈u(t,x),w〉

u−(t) = 〈u−(t,x+(t)),w〉 := inf
x∈S(t)

〈u(t,x),w〉.

To simplify notations, we temporarily suppress the w-dependence, u±(t) =

u±(t;w). We abbreviate u(t) :=
1

M

∫
ρ〈u(t,x′),w〉 dx′. Since 〈u(t,x′),w〉 �

〈u(t,x+),w〉 and, by assumption, φ(x+,x
′)) � k(D(t)), we find

d

dt
u+(t) =

∫
S(t)

φ(x+,x
′)
(
〈u(t,x′),w〉 − 〈u(t,x+),w〉

)
ρ(t,x′) dx′

� k(D(t))

∫
S(t)

(
〈u(t,x′),w〉 − u+(t)

)
ρ(t,x′) dx′

= k(D(t))M
(
(u(t)− u+(t)

)
.

(B.1)

Similarly, we bound u−(t) := inf
x∈S

〈u(t,x),w〉 obtaining

d

dt
u−(t) � k(D(t))M

(
u− u−(t)

)
.
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The difference of the last two bounds yields

d

dt

(
u+(t)− u−(t)

)
� −k(D(t))M

(
u+(t)− u−(t)

)
,

and since δu(t) = sup
x,x′∈S(t)

|u(t,x) − u(t,x′)| = sup
|w|=1

(
u+(t;w) − u−(t;w)

)
is the

diameter of velocities projected on arbitrary unit vectors w, we end up with

(B.2)
d

dt
δu(t) � −k(D(t))Mδu(t).

B.2. Pointwise fluctuations in mono-kinetic p-alignment (p � 1). We ex-
tend the pointwise bound (B.2) for the general p-alignment, p � 1. By Galilean
invariance, we may assume m0 = 0, in which case (5.6) is simplified to the uniform
bound

(B.3)
d

dt
u+(t) � −1

2
Mk(D(t))(u+(t))

2p−1, u+(t) = sup
x∈S(t)

|u(t,x)|.

Indeed, if we let u+(t) = u(t,x+(t)) with maximal speed u+(t) = |u+(t)| along
particle path ẋ+(t) = u(t,x+(t)), we then find,9

d

dt
u+(t) =

∫
S(t)

φ(x,x′)|u′ − u|2p−2(u′ − u+)ρ
′ dx′.

By polarization, u+ = 1
2 (u+ − u′) + 1

2 (u+ + u′), we find

1

2

d

dt
|u+(t)|2 = −1

2

∫
S(t)

φ(x,x′)|u′ − u+|2pρ′ dx′

+
1

2

∫
S(t)

φ(x,x′)|u′ − u+|2p−2(|u′|2 − |u+|2)ρ′ dx′

� −1

2

∫
S(t)

φ(x,x′)|u′ − u+|2pρ′ dx′

� −1

2
k(D(t))M

− p
p′
( ∫
S(t)

|u′ − u+|2ρ′ dx′
)p

� −1

2
k(D(t))MpM

− p
p′ |u+(t)|2p,

and (B.3) follows. The first inequality on the right follows from the fact that |u+|
is the maximal speed; the second is from the Hölder inequality, and in the last step

we use

∫
u′ρ′ dx′ = 0.

B.3. Fluctuations in agent-based description. Consider the discrete p-align-
ment model (2.1) and consider the energy fluctuations

δE (t) :=
1

2N2

N∑
i,j=1

|vi(t)− vj(t)|2.

9The precise argument involves the Rademacher lemma, see [Shv2021, Lemma 3.5].
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A straightforward computation yields (5.11a)

d

dt
δE (t) =

1

N2

N∑
i,j=1

φij(t)|vj(t)− vi(t)|2p−2
〈
vj(t)− vi(t),vi(t)

〉
= − 1

2N2

N∑
i,j=1

φij(t)|vj(t)− vi(t)|2p

� −1

2

⎛⎝ 1

N2

N∑
i,j=1

φ
1/p
ij (t)|vj(t)− vi(t)|2

⎞⎠p

� −2p−1k(D(t)) (δE (t))
p
.

The first equality follows since
∑

vi(t) is conserved in time, and the second fol-
lows from summation by parts while taking into account the assumed symmetry,
φij = φji. Next follows the Hölder inequality (for p > 1), and finally we use the
lower bound φ(xi(t),xj(t)) � k(D(t)). Similarly, we consider the uniform fluctua-
tions

δv(t) := max
i

|vi(t)− v|.

We assume without loss of generality that v0 = 0 � v(t) ≡ 0, and it remains
to bound the maximal value v+(t) = argmaxvi

|vi|. Writing v+ = 1
2 (v+ − vj) +

1
2 (v+ + vj), we find

1

2

d

dt
|v+(t)|2 =

1

2N

∑
j

φij |v+ − vj |2p−2〈v+ − vj ,vj − v+

+
1

2N

∑
j

φij |v+ − vj |2p−2
(
|vj |2 − |v+|2

)
� − 1

2N

∑
j

φij |v+ − vj |2p

� − 1

2N
k(D(t))N

− p
p′
(∑

j

|v+ − vj |2
)p

� − 1

2N
k(D(t))N

− p
p′ Np|v+|2p,

and (5.11b) follows.

Appendix C. Flocking with matrix-valued communication kernel

Consider the alignment dynamics

(C.1a) ∂t(ρu) +∇x · (ρu⊗ u) =

∫
Rd

Φ(x,x′)(u(t,x′)− u(t,x))ρ(t,x)ρ(t,x′) dx′,

driven by a bounded symmetricmatrix communication kernel, Φ(x,x′) = Φ(x′,x) ∈
R

d×d, of order β � 0

(C.1b) Ck(1 + |x− x′|)−β
Id×d � Φ(x,x′) � φ+Id×d.

In this case, the coupling of u-components defies a maximum principle of δu(t)
encoded in (5.3). Instead, we will show below the bound δu(t) � (1 + t)1/2. This
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implies D(t) � (1 + t)3/2 and hence flocking holds for heavy-tailed kernels of order
β < 2/3. To this end, we follow our argument in the discrete setup, [ST2021,
Proposition 3.1], starting with the alignment dynamics

∂tu+ u · ∇xu =

∫
Φ(x,x′)(u′ − u)ρ′ dx′,

which implies the local energy balance

(C.2) ∂t
|u|2
2

+ u · ∇x
|u|2
2

=

∫ 〈
u,Φ(x,x′)(u′ − u)

〉
ρ′ dx′.

The integrand on the right is decomposed by polarization (suppressing time depen-
dence)

〈u(x),Φ(x,x′)
(
u(x′)− u(x)

)
〉

≡ −1

2

〈
(u′ − u),Φ(x,x′)(u′ − u)

〉
− 1

2

〈
u,Φ(x,x′)u

〉
+

1

2

〈
u′,Φ(x,x′)u′〉

� −Ck(1 + |x− x′|)−β |u|2
2

+ φ+
|u′|2
2

, Φ(x,x′) � φ+Id×d.

In the last step we used the assumed bound on Φ having a heavy tail of order β
and satisfying a pointwise upper bound φ+. Returning to (C.2) while noting that∫

|u′|2ρ′ dx′ � C2
0 = 2

∫
ρ0E0, it follows that

(C.3) ∂t|u|2 + u · ∇x|u|2 � −Ck(1 +D(t))−βM |u|2 + φ+C
2
0 .

By the maximum principle (we ignore the dissipative term on the right),

|u(t, ·)|2 � max |u0|2 + C ′t, C ′ := φ+C
2
0 ,

and hence (4.6) holds with γ = 3/2, in view of

(C.4)
d

dt
D(t) � 2max |u(t, ·)| � D(t) � D0 +

4

3C ′
(
max |u0|2 + C ′t

)3/2
.

We can now use a bootstrap argument: starting with γ = 3/2, we insert the bound
D(t) � (1 + t)γ of (C.4) into the right side of (C.3), and we have the maximum
bound

|u(t, ·)|2 � max |u0|2 + C ′(1 + t)βγ

� D(t) � D0 +
2

C ′γ′
(
max |u0|2 + C ′(1 + t)

)γ′

, γ′ = 1 + βγ/2.

Iterating, γ �→ γ′, we end up with a fixed point γ = 2
2−β , and with the improved

bounds, still in the range of β < 2/3,

|u(t)| � (1 + t)
β

2−β , D(t) � CD(1 + t)
2

2−β , β < 2/3.

Corollary 4.2 implies the following.

Proposition C.1 (Flocking for matrix-based alignment). Let (ρ,u) be a strong
solution of the hydrodynamic alignment (C.1) with a heavy-tailed matrix commu-
nication kernel Φ of order β < 2/3. There is long-time flocking behavior with the
fractional exponential decay rate

(C.5) δE (t) � CR exp
{
−M1t

2−3β
2−β

}
δE (0).



SWARMING: HYDRODYNAMIC ALIGNMENT WITH PRESSURE 317

Appendix D. From enstrophy bound to Hölder regularity

For completeness, we recall here the arguments which lead to the Gagliardo–
Nirenberg–Morrey–Sobolev inequality, stating that for u ∈ W s,2p(S) with nice
boundary satisfying (H2), we have Hölder continuity of order s− d

2p ,

(D.1) |u(x)− u(x′)| � Cs‖u‖Ẇs,2p(S)
|x− x′|s−

d
2p , x,x′ ∈ S, d

2p
< s < 1.

We follow [DPV2012, Theorem 8.2]. As a first step we note that thanks to hypoth-
esis (H2), u can be extended to ũ defined over R

d with comparable W s,2p-norm,
‖ũ‖W s,2p(Rd) � ‖u‖W s,2p(S) [DPV2012, Theorem 5.4]. We continue with the exten-
sion ũ. Set R = |x − x′|, x,x′ ∈ S, and let 〈ũ〉B2R(z) denote the average over the
ball B2R centered at z,

〈ũ〉B2R(z) :=
1

|B2R(z)|

∫
z′∈B2R(z)

ũ(z′)dz′.

Fix x′′ as an intermediate point in the intersection of the two balls, B2R(x)∩B2R(x
′)

and split

|u(x)− u(x′)| � |ũ(x)− 〈ũ〉B2R(x)|+ |〈ũ〉B2R(x)−ũ(x′′)|
+ |ũ(x′′)−〈ũ〉B2R(x′)|+|〈ũ〉B2R(x′)−ũ(x′)|.

(D.2)

By Hölder inequality, for every w ∈ B2R(z), there holds

|〈ũ〉B2R(z) − ũ(w)| � 1

|B2R(z)|

∫
z′∈B2R(z)

|ũ(w)− ũ(z′)|dz′

� Cd‖ũ‖W s,2p(B2R(z))R
s− d

2p , w ∈ B2R(z),

(D.3)

and (D.1) follows from the proper application of (D.3) to each of the terms on the
right of (D.2).

We close by noting that in the special one-dimensional case, (D.1) is reduced to
the inequalities of Ladyzheskaya [MRR2013] or Agmon [Agm2010, Lemma 13.2],

max
x∈S

|u(t,x)| � ‖u‖1−
1
2s

L2(Ω) × ‖u‖
1
2s
Hs(S),

1/2 < s < 1.

Appendix E. A uniform dispersion bound

Proof of Lemma 6.2 (The range 1 < p < 3/2). We consider the multi-dimensional
p-alignment, p > 1, driven by a heavy-tailed singular kernel of order (s, β). Assume
that we have the dispersion bound

D(t) � CD(1 + t)γ , θ =
d

2p
< s < 1.

By (6.11) this holds with γ = γp =
2p− 1

2p(1 + θ − s)
. We will improve this bound by

a bootstrap argument. To this end we recall that Corollary 4.2 implies the decay
(suffice to consider t � 1),

δE (t) � C1(1 + t)
− 1−βγ

p−1 , t � 1, C1 = 2
p−1
1−βγ CRMp.

Here and below, we use the different constants C1, C2, . . . to trace our calculations.
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For the range of β assumed in (6.12), β < (3/2 − p)d, 1 < p < 3/2, we have10

2p− 1 <
1− βγp
p− 1

. Fix μ such that

2p− 1 < μ <
1− βγp
p− 1

.

The energy fluctuations bound (e.g., (6.6)) yields

d

dt

(
(1 + t)μδE (t)

)
= (1 + t)μ

d

dt
δE (t) + μ(1 + t)μ−1δE (t)

� −
ρ2−
2
(1 + t)μ‖u(t, ·)‖2p

Ẇ s,2p(S(t))
+ C1μ(1 + t)μ

′−1,

μ′ := μ− 1− βγ

p− 1
< 0,

and hence the weighted enstrophy bound

(E.1)

t∫
0

(1 + τ )μ‖u(τ, ·)‖2pW s,2pdτ � 2C2
ρδE (0) + C2, C2 = 2C2

ρC1μ
1

|μ′| .

We now revisit (6.10), integrating
d

dt
D1+θ−s(t) � C ′

s‖u(t, ·)‖Ẇ s,2p(S(t)) with a

weighted Hölder inequality,

D1+θ−s(t) � D1+θ−s
0

+ C ′
s

( t∫
0

(1 + τ )μ‖u(τ, ·)‖2p
Ẇ s,2p(S(τ))

dτ
) 1

2p
( t∫

0

(1 + τ )
− μ

2p (2p)′
) 1

(2p)′
.

Using (E.1) and the fact that
μ

2p− 1
> 1, we end up with the uniform bound

D(t) � D+ =
(
D1+θ−s

0 + C3

) 1
1+θ−s ,

C3 = C ′
s

(
2C2

ρδE (0) + C2

) 1
2p

( 1
μ

2p−1 − 1

) 1
(2p)′

. �

Remark E.1 (The case p = 1). It should be possible to extend the uniform disper-
sion bound of Lemma 6.2 to the limiting case of pure alignment, p = 1. To this
end one should use a proper exponential multiplier, instead of (1 + t)μ used above
for 1 < p < 3/2.

Remark E.2 (The case p > 3/2). When p > 3/2, we are unable to secure a uniform
dispersion bound as in Lemma 6.2, but we can still improve the dispersion rate, γp,

using a more refined bootstrap argument. For this range of p’s we have
1− βγp
p− 1

<

2p − 1. Fix μ such that
1− βγp
p− 1

< μ < 2p − 1. In this case, μ′ = μ − 1− βγp
p− 1

is

10In fact, the precise bound enables a slightly larger range β <
p(3−2p)
2p−1

d < (3/2 − p)d, but we

prefer to keep it simple with the latter.



SWARMING: HYDRODYNAMIC ALIGNMENT WITH PRESSURE 319

positive, and we have the corresponding enstrophy weighted bound,

(E.2)

t∫
0

(1+ τ )μ‖u(τ, ·)‖2pW s,2pdτ � 2C2
ρδE (0) +C2(1 + t)μ

′
, C2 =

2C2
ρC1μ

μ′ > 0.

As before, we revisit (6.10), integrating
d

dt
D1+θ−s(t) � C ′

s‖u(t, ·)‖Ẇ s,2p(S(t)) with

a weighted Hölder inequality to find

D1+θ−s(t)

� D1+θ−s
0 + C ′

s

( t∫
0

(1 + τ )μ‖u(τ, ·)‖2p
Ẇ s,2p(S(τ))

dτ
) 1

2p
( t∫

0

(1 + τ )
− μ

2p (2p)′
) 1

(2p)′

� D1+θ−s
0 + C3(1 + t)

μ′
2p × (1 + t)

(
1− μ

2p−1

)
1

(2p)′

= D1+θ−s
0 + C3(1 + t)

1
2p

(
(2p−1)− 1−βγ

p−1

)
,

C3 = C ′
sC2

(
1− μ

2p− 1

)− 1
(2p)′

> 0.

We conclude with a dispersion bound,

(E.3) D(t) � C ′
D(1 + t)γ

′
, γ′ :=

1

2p(1 + θ − s)

(
(2p− 1)− 1− βγ

p− 1

)
< γp.

Recall that the requirement βγp < 1 led to the β-restriction in (6.17), β <
d

2p− 1
.

Therefore,

β

2p(1 + θ − s)(p− 1)
<

β

d(p− 1)
<

1

(2p− 1)(p− 1)
< 1, p > 3/2,

so that the fixed point iterations in (E.3), γ �→ γ′, contract toward a limiting value
γ = γ∗,

γ∗ =
p(2p− 3)

(p− 1)2p(1 + θ − s)− β
, p > 3/2, β <

d

2p− 1
.

In particular, since 2p(1+θ−s) > d, then after finitely many iterations there holds

(E.4) D(t) � C ′
D(1 + t)γ , γ =

2p
(
p− 3/2

)
(p− 1)d− β

, β <
d

2p− 1
, p > 3/2,

which improves the bound of
2p− 1

d
> γp.
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Engineering and Technology, Birkhäuser/Springer, Cham, 2017. MR3642940

[BCT2022] Nicola Bellomo, José Antonio Carrillo, and Eitan Tadmor (eds.), Active particles.
Vol. 3. Advances in theory, models, and applications, Modeling and Simulation in
Science, Engineering and Technology, Birkhäuser/Springer, Cham, [2022] c©2022,
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