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ABSTRACT

Motivated by the hierarchical multiscale image representation of Tadmor et al.,1 we propose a novel integro-
differential equation (IDE) for a multiscale image representation. To this end, one integrates in inverse scale space
a succession of refined, recursive ‘slices’ of the image, which are balanced by a typical curvature term at the finer
scale. Although the original motivation came from a variational approach, the resulting IDE can be extended
using standard techniques from PDE-based image processing. We use filtering, edge preserving smoothing to
yield a family of modified IDE models with applications to image denoising and image deblurring problems. The
IDE models depend on a user scaling function which is shown to dictate the BV ∗ properties of the residual error.
Numerical experiments demonstrate application of the IDE approach to denoising and deblurring. Finally, we
also propose another novel IDE based on the (BV,L1) decomposition. We present numerical results for this IDE
and its variant and examine its properties.

Keywords: natural images, multiscale representation, total variation, denoising, deblurring, inverse scale, vari-
ational problem, integro-differential equation, energy decomposition.

1. INTRODUCTION

A black and white image can be realized as a graph of a discrete function f : Ω ⊂ R2 → R. The graph of an
image consists of discrete pixels which for mathematical analysis, is postulated as an L2(Ω) function.

Many problems in image processing fall under two broad categories of image segmentation and image restora-
tion. In image segmentation one is interested in identifying constituent parts of a given image, whereas image
restoration aims to denoise and deblur an observed image in order to recover its underlying “clean” image.
Additive noise, denoted by η, is inadvertently added to images due to various reasons, such as limitations of the
image capturing facilities or transmission losses. Besides noise, images could also be blurred due to unfocused
camera lens, relative motion between the camera and the object pictured, etc; such blurring is modeled by a
linear, continuous operator, K : L2(Ω) → L2(Ω), e.g., convolution with a Gaussian kernel. Thus, the observed
image, f , could be written as f = KU + η, where U is the clean image sought without blurring and noise. The
recovery of the clean image from its observed blurred and noisy version f , is the problem of image restoration.
This is an ill-posed problem. We mention in this context variational techniques using Tikhonov-like regulariza-
tion, PDE-based methods, filtering, stochastic modeling and wavelets-based techniques that were developed for
solving these image processing problems.2–15

Image restoration leads to image decomposition. For example, an observed image f with additive noise
and no blurring is naturally decomposed into a denoised part, Uα, and a noisy part, ηα := f − Uα. Here,
α is an algorithm-specific scaling parameter : in the case of Gaussian smoothing, for example, the variance of
the Gaussian kernel may serve as such scaling parameter. Small scale features, categorized as noise, are then
forced into ηα, resulting in a larger scale version, Uα, of the original image f . Thus, denoising of f generates
a multiscale representation, {Uα}α∈A with a varying scaling parameter α ∈ A. Our paper deals primarily with
image restoration using PDE-based methods. Indeed, the novelty of our approach is the use of multiscale image
representation based on integro-differential equations.



1.1 Multiscale representations using PDE-based models
We first discuss PDE-based models which produce multiscale representation {U(·, t)}t≥0 for a given image f .
For convenience we use the time variable t as the scaling parameter. One of the earliest PDE-based methods for
denoising a given image f := U(·, 0) is the heat equation

∂U

∂t
= ∆U, U ≡ U(x, t) : Ω× R+ 7→ R;

∂U

∂n

∣∣∣
∂Ω

= 0. (1)

This yields a family of images, {U(·, t) : Ω → R}t≥0, which can be viewed as smoothed versions of f . In this
linear set up, smoothing is implemented by a convolution with the two-dimensional Gaussian kernel, Gσ(x) =

1
2πσ2 exp

(
− |x|2

2σ2

)
, with standard deviation σ =

√
2t. Hence, details with a scale smaller than

√
2t are smoothed

out. Here, λ(t) :=
√

2t acts as a scaling function. We can say that {U(·, t)}t≥0 is a multiscale representation of
f , as U(·, t) diffuses from the small scales in f into increasingly larger scales.

This isotropic diffusion blurs all edges. This drawback was removed by Perona-Malik (PM) model,13 where
they replace the linear diffusion term ∆U with a non-linear term div(g(|∇U |)∇U). Here, the diffusion controlling
function, g, is a real valued function that vanishes at infinity, so that the amount of diffusion decreases as the
gradient |∇U | increases. Thus, g is responsible for the anisotropic nature of the PM model. The family of PM
models are not well-posed. They also pose a problem for noisy images, since noise produces high gradients which
can be confused with relevant edges. These shortcomings were removed by Catté et al.16 by replacing g(|∇U |)
with g(|Gσ ?∇U |), where Gσ ?∇U denotes convolution of the two-dimensional Gaussian kernel Gσ, subject to
U(·, 0) := f .

1.2 Multiscale representations using variational models
Variational approaches for image processing like Mumford-Shah segmentation,12,17 Rudin-Osher-Fatemi (ROF)
decomposition14 etc., fall under a general category of Tikhonov regularization.15 Here one solves the ill-posed
problem of recovering u from the observed f = Ku + η. We begin by restricting our attention to the pure
denoising problem seeking a faithful, noise free approximation u ∈ X of f = u + η ∈ L2, where X ( L2 is an
appropriate space adapted to measure edges and textures sought in u (a discussion of the deblurring problem is
postponed to section 4.2). This leads to the following minimization problem:

f = uλ + vλ, [uλ, vλ] := arginf
f=u+v

{
‖u‖X + λ ‖v‖2L2

}
.

The term ‖u‖X is a regularizing term and uλ + vλ is a multiscale decomposition of f which varies with the
positive scaling parameter, λ. In the case of the ROF model,14 for example, edges are sought in the space of
bounded variations, X = BV (Ω), e.g.18 This yields the (BV,L2)-decomposition of f with X = BV , where
‖u‖BV :=

∫
Ω
|∇u|. For small values of λ, the minimizer uλ is only a large-scale image, consisting of only main

features and prominent edges in f . On the other hand, if λ is large, then uλ is a small-scale image which contains
many details of f . Therefore, with λ viewed as a varying parameter, the ROF variational decomposition generates
a multiscale representation, {uλ}λ>0, of f , with λ serving as an inverse-scale parameter. The Euler-Lagrange
equation characterizing the minimizer, uλ, for the ROF decomposition reads,

uλ = f +
1
2λ

div
(
∇uλ

|∇uλ|

)
. (2a)

For a fixed λ, the minimizer uλ can be obtained as a steady state solution of the nonlinear parabolic equation

∂u

∂t
= f − u +

1
2λ

div
(
∇u

|∇u|

)
, u ≡ u(x, t) : Ω× R+ 7→ R;

∂u

∂n

∣∣∣
∂Ω

= 0. (2b)

Starting with u(·, 0) := f , the PDE (2b) produces a multiscale representation {u(·, t)}t≥0 which approaches the
ROF minimizer, uλ, as t ↑ ∞. Observe that t in (2b) serves as a forward-scale parameter for the variational
ROF decomposition.

In the next section we propose an integro-differential equation (IDE) based on (BV,L2) decomposition, and
examine some of its properties. In section 4 we examine some of the extensions of the proposed IDE. Furthermore,
we propose another novel IDE based on (BV,L1) in section 5.



2. MOTIVATION FOR THE INTEGRO-DIFFERENTIAL EQUATION (IDE)

Rudin, Osher and Fatemi introduced a BV-based minimization functional for image denoising,14 which in turn
led to the unconstrained (BV,L2) decomposition.19,20 The minimizer of the (BV,L2) decomposition, uλ, is a
coarse representation of the image f , containing smooth parts and prominent edges, whereas the residual vλ

contains texture and finer details, categorized as “noise” of f . The parameter λ is the inverse scale parameter
of uλ, i.e. a small value of λ corresponds to more details in vλ and thus, the image uλ is more coarse and vice
versa.

As a first step, we realize that the intensity of images is quantized. If we let τ denote the small intensity
quanta, then we rescale the coarse representation uλ in τ -units. The corresponding (BV,L2) image decomposition
takes the form

f = τuλ0 + vλ0 , [uλ0 , vλ0 ] := arginf
f=τu+v

{
‖u‖BV +

λ0

τ
‖v‖2L2

}
. (3)

Tadmor, Nezzar and Vese observed1 that for a small value of the scaling parameter λ0, the residual image vλ0

may still contain important details when viewed at a finer scale. Thus, vλ0 can be further decomposed using a
refined scaling parameter λ1 > λ0,

vλ0 = τuλ1 + vλ1 , [uλ1 , vλ1 ] := arginf
vλ0=τu+v

{
‖u‖BV +

λ1

τ
‖v‖2L2

}
.

We continue this process for λ0 < λ1 < λ2 . . .

vλj−1 = τuλj + vλj , [uλj , vλj ] := arginf
vλj−1=τu+v

{
‖u‖BV +

λj

τ
‖v‖2L2

}
. (4)

Repeating this refinement step, we obtain the following hierarchical multiscale representation of f ,1

f = τuλ0 + vλ0

= τuλ0 + τuλ1 + vλ1

= . . . . . .

= τuλ0 + τuλ1 + . . . τuλN
+ vλN

.

Thus, we have
N∑

j=0

uλj
τ = f − vλN

. (5)

The Euler-Lagrange equations characterizing minimizers of (4) are

vλj−1 = τuλj −
1

2λj
div
( ∇uλj

|∇uλj |

)
. (6)

From (6) and (4) we get

vλj = − 1
2λj

div
( ∇uλj

|∇uλj
|

)
,

and inserting this into (5) yields the hierarchical decomposition of f as

N∑
j=0

uλj
τ = f +

1
2λN

div

(
∇uλN

|∇uλN
|

)
. (7)

We consider a multiscale scaling, continuous in time, u(x, t) : Ω × R+ 7→ R such that uλj (x) 7→ u(x, tj := jτ).
Observe that the right hand side of (7) is homogeneous of degree zero. Letting τ → 0, the hierarchical description
(7) motivates a multiscale representation u(x, ·) which is sought as a solution to our IDE,∫ t

0

u(x, s) ds = f(x) +
1

2λ(t)
div
(
∇u(x, t)
|∇u(x, t)|

)
,

∂u

∂n

∣∣∣
∂Ω

= 0. (8)



An an example for the IDE multiscale representation of an image f ,{
U(·, t) :=

∫ t

0

u(·, s) ds

}
t≥0

,

is depicted in figure 1. Here, u(x, t) denotes the speed at which the image U(t) changes with time.

It is instructive to compare our IDE model (8) with the time dependent PDE used in solving the ROF
minimization, (2). In contrast to the forward scale PDE realization of (2b), where the solution evolves from
u(·, 0) = 0 to a bigger scale image uλ, our IDE model (8) is an ‘inverse scale’ model, whose solution evolves from
u(x, 0) = u0(·) to f as λ(t) →∞.

3. SOME PROPERTIES OF THE (BV,L2) IDE

To complete the formulation of the IDE (8), one has to specify a scaling function, λ(t) and the initial conditions
u0(x) ≡ u(x, 0). The function λ(t) serves as an inverse scaling function: as λ(t) → ∞, the image computed in
(8)

U(t) :=
∫ t

0

u(x, s) ds,

extracts consecutively smaller scale slices of the original image f . The residual, V (t) := f−U(t) contains texture
and noisy parts of f . It is argued in21 that the dual norm,

‖w‖∗ := sup
‖ϕ‖BV 6=0

(w,ϕ)L2

‖ϕ‖BV
,

is a proper norm to measure texture. We prove the following useful lemma.

Lemma 3.1. If u ∈ BV then the star-norm of the curvature term κ(u) := div
(
∇u
|∇u|

)
is unity.

Proof. For ϕ ∈ BV (Ω) we have the following

| (κ(u), ϕ)L2 | =
∣∣∣∣ (div

(
∇u

|∇u|

)
, ϕ

)
L2

∣∣∣∣ ≤ ‖ϕ‖BV . (9)

Thus, we have ‖κ(u)‖∗ ≤ 1. Letting ϕ = u, we get

|(κ(u), u)| = ‖u‖BV . (10)

From (9) and (10) we conclude that ‖κ(u)‖∗ = 1.

The critical role of the scaling function λ(t) in the IDE model (8) and its relationship with the star-norm is
outlined in the following theorem, which can be proved using the above lemma.

Theorem 3.2. Consider the IDE model (8)∫ t

0

u(x, s) ds = f(x) +
1

2λ(t)
div
(
∇u(x, t)
|∇u(x, t)|

)
,

and let V (·, t) be the residual
V (·, t) := f − U(·, t).

Then size of the residual is dictated by the scaling function λ(t),

‖V (·, t)‖∗ =
1

2λ(t)
. (11)



t = 1 t = 4

t = 6 t = 10

Figure 1. The images, U(t) =
R t

0
u(·, s) ds, of the IDE (8) at t = 1, 4, 6, 10. Here, λ(t) = 0.002× 2t.

The importance of Theorem 3.2 lies in the fact that it enables us to dictate the star-norm of the residual. For
small values of λ(t), we get a significant amount of texture in the residual and thus, the image U(t) :=

∫ t

0
u(·, s) ds

will contain only features with big scale. On the other hand, as λ(t) increases, more and more details will appear
in U(t). Hence, the function λ(t) can be viewed as an ‘inverse scale function’ for U(t). In particular, if we choose
the scaling function λ(t), such that limt→∞ λ(t) = c with a prescribed constant c, then limt→∞‖V (t)‖∗ = 1

2c .
Thus, Theorem 3.2 enables us to denoise images to any pre-determined level in the BV ∗ sense.

The previous theorem establishes a weak convergence in the G-topology [21, §1.14], U(t) ⇀ f , for all L2-
images. In fact, a stronger L2-convergence holds for slightly more regular images, e.g., f ∈ BV . To this
end Tadmor et al. prove the following energy decomposition,22 interesting in its own sake, along the lines
of [1, theorem 2.2].

Theorem 3.3. Consider the IDE model (8) associated with an L2- image f , and let V (·, t) be the residual,
V (t) = f − U(t). Then the following energy decomposition holds∫ t

s=0

1
λ(s)

‖u(·, s)‖BV ds + ‖V (·, t)‖2L2 = ‖f‖2L2 . (12)

Using this theorem one can prove22 that for the IDE model (8) with f ∈ BV and a rapidly increasing scaling
function λ(t), the function f admits the multiscale representation (where equality is interpreted in L2- sense):

f(x) =
∫ ∞

s=0

u(x, s) ds, (13a)

with energy decomposition

‖f‖2L2 =
∫ ∞

s=0

1
λ(s)

‖u(·, s)‖BV ds. (13b)

4. EXTENSIONS OF THE (BV,L2) IDE MODEL

Our IDE model is motivated by a variational formulation. An important advantage of the IDE model, however,
is that it is no longer limited to a variational formulation and we can therefore extend it using PDE-based
modifications similar to Perona-Malik models. We will discuss such modifications in sections 4.1 below.



t = 1 t = 4

t = 6 t = 10

Figure 2. The images, U(t) =
R t

0
u(·, s) ds, for the modified IDE (14) at t = 1, 4, 6, 10. Here λ(t) = 0.002× 2t.

4.1 IDE with filtered diffusion
Recall that one of the drawbacks in using the heat equation for denoising is that it results in an isotropic diffusion.
The Perona-Malik models removes this drawback by introducing a diffusion controlling function, that controls
the diffusion near prominent edges in a given image. We propose a similar modification to our IDE model,
seeking u(x, t) : Ω× R+ 7→ R such that∫ t

0

u(x, s) ds = f(x) +
g(|Gσ ?∇u(x, t)|)

2λ(t)
div
(
∇u(x, t)
|∇u(x, t)|

)
;

∂u

∂n

∣∣∣
∂Ω

= 0. (14a)

Similar to the Perona Malik models, we can choose the pre-factor function g so that it vanishes at infinity to
control the diffusion at prominent edges in the image. Thus, the function g acts here akin to a high-pass filter
which retains prominent edges in the image

∫ t

0
u(x, s) ds without diffusing them. As choices for such a g-filter,

figure 2 displays the results of the modified IDE (14a) with

g(s) =
1

1 + (s/β)2
, (14b)

Here, the constant β determines the extent to which edges are preserved: for small β’s, relevant edges are
preserved whereas for large β’s, they are diffused. Detailed discussion of the numerical scheme for the filtered
diffusion model (14) is given in section 6. Comparing the results of the filtered IDE (14a) shown in figure 2,
we observe that edges, which are diffused by the basic IDE (8) as depicted in figure 1, are preserved in figure
2. This phenomenon is more apparent for smaller values of t due to the fact that as t increases, U(·, t) in both
models approaches f , and consequently, suffer from less diffusion of the edges. The usefulness of the filtered
diffusion IDE model becomes apparent when certain edges are required in the scale-space for smaller values of t.
For example, in figure 3, the edges are blurred for smaller values of t with the standard IDE (8), but with the
filtered diffusion IDE (14a) we retain relevant edges, as shown in figure 4.

4.2 The IDE model for deblurring
We now extend our IDE model to deblurring of images. Blurring is modeled by a continuous, linear operator
K : L2(Ω) → L2(Ω). Examples of a blurring operator include convolution with a Gaussian kernel, directional



t = 1 t = 4 t = 6 t = 10

Figure 3. The images, U(t) =
R t

0
u(·, s) ds, of the standard IDE (8) at t = 1, 4, 6, 10. Here, λ(t) = 0.002× 2t.

t = 1 t = 4 t = 6 t = 10

Figure 4. The images, U(t) =
R t

0
u(·, s) ds, of the filtered IDE (14a) at t = 1, 4, 6, 10. Here, λ(t) = 0.002× 2t.

averaging etc. Thus, an observed image is expressed as f = KU , where U is the original unblurred image which
we aim to recover. Hierarchical decomposition of blurred images was discussed by Tadmor et al.23 To this
end, one sets a sequence of increasing scaling parameters λ0 < λ1 < λ2 . . . . Starting with v−1 = f , we get the
following iteration

vλj−1 = τKuλj + vλj , arginf
vλj−1=τKu+v

{ ‖u‖BV +
λj

τ
‖v‖2L2}. (15)

This gives us a hierarchical multiscale representation23 of the blurred image f ,

f = τKuλ0 + vλ0

= τKuλ0 + τKuλ1 + vλ1

= . . . . . .

= τKuλ0 + τKuλ1 + . . . τKuλN
+ vλN

.

Thus, after applying the conjugate K∗ to the above equation we obtain,

τ

N∑
j=0

K∗Kuλj = K∗f −K∗vλN
. (16)

Using the Euler-Lagrange characterization of the minimizer in (15),

K∗vλj−1 = τK∗Kuλj −
1

2λj
div
( ∇uλj

|∇uλj
|

)
,

which, in view of K∗vλj−1 = τK∗Kuλj
+ K∗vλj

implies

K∗vλj = − 1
2λj

div
( ∇uλj

|∇uλj |

)
.

Using the above expression we can rewrite (16) as

N∑
j=0

K∗Kuλj τ = K∗f +
1

2λN
div

(
∇uλN

|∇uλN
|

)
. (17)



(a) (b)

Figure 5. Image (a) shows a blurred image of Lenna blurred using a Gaussian kernel with σ = 1. Image (b) shows the
result of the deblurring IDE model (18), as t →∞.

As τ → 0, the expression (17) motivates the following integro-differential equation (IDE) for deblurring, where
u(x, t) : Ω× R+ 7→ R is sought such that∫ t

0

K∗Ku(x, s) ds = K∗f(x) +
1

2λ(t)
div
(
∇u(x, t)
|∇u(x, t)|

)
;

∂u

∂n

∣∣∣
∂Ω

= 0. (18)

In this IDE,
∫ t

0

u(·, s) ds provides a multiscale representation of the unblurred image U(x, t) :=
∫ t

0
u(x, s) ds.

Note that the blurring operator K is in general non-invertible for general L2 images, but it is assumed to be

invertible on the restricted set of multiscale representations
∫ t

0

K∗Ku(x, s) ds. Thus, the deblurring IDE (18)

gives us a recipe to extract the unblurred image U from its blurred version f .

We can see the deblurring result of (18) in figure 5. Furthermore, we can modify the deblurring integro-

differential equation using edge enhancing filtering, where a U(x, t) =
∫ t

0

u(x, s) ds : Ω×R+ 7→ R is sought as a

solution of

K∗KU(x, t) = K∗f(x) +
g(|Gσ ? u(x, t)|)

2λ(t)
div
(
∇u(x, t)
|∇u(x, t)|

)
;

∂u

∂n

∣∣∣
∂Ω

= 0. (19)

5. INTEGRO-DIFFERENTIAL EQUATIONS BASED ON (BV,L1) MINIMIZATION

Chan and Esedoḡlu24 modify the L2-fidelity term in the ROF minimization problem with an L1 fidelity term, to
get the following (BV,L1) minimization problem,

f = uλ + vλ, [uλ, vλ] := arginf
f=u+v

{ ‖u‖BV + λ ‖v‖L1}, (20)

The (BV,L1) minimization has very different properties from the (BV,L2) minimization. The (BV,L1)
minimization is contrast invariant, as opposed to the (BV,L2) minimization. Chan and Esedoḡlu24 also show
that the (BV,L1) minimization is geometric in nature. To this effect they prove that for f ∈ L1(Ω) with
supp(f) ∈ BR(0), then the (BV,L1) decomposition (20) yields a trivial minimizing pair, uλ = 0 and vλ = f , for
all λ which are less than a critical threshold λL ∝ 1

R .

Secondly, if the f is a characteristic function χΣ then there exists a λH such that for all λ > λH , the
minimization (20) yields a unique minimizing pair uλ = f , v = 0.



Recall, in the case of the standard ROF model, a similar critical value of the scale parameter exists, but it
depended on the star-norm of the function f . Chan and Esedoḡlu demonstrate24 that the scale space generated
by λ is essentially different than the scale space generated in case of the standard ROF model.

Using these properties as a basis we propose a hierarchical image decomposition25 as follows. Starting with
a small value of λ0, we can decompose the given image f using the (BV,L1) scheme as follows:

f = τuλ0 + vλ0 , [uλ0 , vλ0 ] := arginf
f=τu+v

{ ‖u‖BV +
λ0

τ
‖f − u‖L1}.

The image vλ0 can further be decomposed into smaller scale with λ1 > λ0,

vλ0 = τuλ1 + vλ1 , [uλ1 , vλ1 ] := arginf
vλ0=τu+v

{ ‖u‖BV +
λ1

τ
‖vλ0 − u‖L1}.

We can continue this process for λ0 < λ1 < λ2 . . .

vλk−1 = τuλk
+ vλk

, [uλk
, vλk

] := arginf
vλk−1=τu+v

{ ‖u‖BV +
λk

τ
‖vλk−1 − u‖L1}. (21)

Repeating this refinement step, we obtain the following hierarchical (BV,L1) decomposition of f :

f = τuλ0 + vλ0

= τuλ1 + τuλ1 + vλ1

= . . . . . .

= τuλ0 + τuλ1 + · · ·+ τuλN
+ vλN

.

This yields a hierarchical (BV,L1) multiscale image decomposition,

f =
N∑

k=0

τuλk
+ vλN

. (22)

The N th step in (BV,L1) scheme τuλk
+ vλk

= vλk−1

[uλN
, vλN

] = arginf
{vλN−1=τu+v}

(∫
Ω

|∇u|+ λN

τ

∫
Ω

|vλN−1 − τu|
)

The Euler-Lagrange differential equation for the above minimization reads

sgn (τuλN
− vλN−1) =

1
λN

div
(
∇uλN

|∇uλN
|

)
(23)

From (22) we have

vλN−1 = f −
N−1∑
k=0

τuλk
.

Using the above expression in (23) we get

sgn

(
N∑

k=0

uλk
τ − f

)
=

1
λN

div
(
∇uλN

|∇uλN
|

)
.



This motivates the following IDE:

sgn
(∫ t

s=0

u(x, s) dx− f(x)
)

=
1

λ(t)
div
(
∇u(x, t)
|∇u(x, t)|

)
, (24)

u : Ω× R+ 7→ R;
∂u

∂n

∣∣∣
∂Ω

= 0.

Using lemma 3.1, we obtain the following theorem regarding the IDE (24).

Theorem 5.1. Consider the IDE model (24)

sgn
(∫ t

0

u(x, s) ds− f(x)
)

=
1

λ(t)
div
(
∇u(x, t)
|∇u(x, t)|

)
,

and let V (·, t) be the residual

V (·, t) := f −
∫ t

0

u(·, s) ds.

Then size of the residual is dictated by the scaling function λ(t),

‖sgn(V (·, t))‖∗ =
1

λ(t)
. (25)

Finally, we propose edge enhancing modification to (24) along the lines of (14b), seeking u(x, t) : Ω × R+ 7→ R
such that

sgn
(∫ t

s=0

u(x, s) dx− f(x)
)

=
g(|Gσ ?∇u(x, t)|)

2λ(t)
div
(
∇u(x, t)
|∇u(x, t)|

)
;

∂u

∂n

∣∣∣
∂Ω

= 0, (26)

The numerical results of (26) are depicted in figure 7.

t = 1 t = 6 t = 7 t = 10

Figure 6. The images, U(t) =
R t

0
u(·, s) ds, of the (BV, L1) IDE (24) at t = 1, 6, 7, 10. Here, λ(t) = 0.01× 2t.

t = 1 t = 6 t = 7 t = 10

Figure 7. The images, U(t) =
R t

0
u(·, s) ds, of the (BV, L1) IDE (26) at t = 1, 6, 7, 10. Here, λ(t) = 0.001× 2t.



6. NUMERICAL DISCRETIZATIONS

In this section we outline numerical implementations for the IDEs proposed in this paper. First let us concentrate
on the basic IDE model (8), rewritten here for convenience:∫ t

0

u(x, s) ds = f(x) +
1

2λ(t)
div
(
∇u(x, t)
|∇u(x, t)|

)
. (27)

As usual, U(t) :=
∫ t

0

u(x, s) ds is the exact solution. Let ∆t be the time step and Un+1 will denote the

corresponding computed solution at tn+1 = (n + 1)∆t:

Un+1 = Un + Wn+1, Wn+1 ≡ Wn+1
i,j := un+1

i,j ∆t,

where un+1
i,j ≡ un+1(ih, jh) is the approximate solution of the IDE at grid point (ih, jh). With this, the IDE (8)

is discretized1,22,23 at t = tn+1. The resulting nonlinear system is solved using Jacobi iterations which leads to
the fixed-point iterations22 to compute Wn+1

i,j .

Next, we consider the filtered IDE (14a), which is rewritten here for convenience as∫ t

0

u(x, s) ds = f(x) +
g(|Gσ ?∇u(x, t)|)

2λ(t)
div
(
∇u(x, t)
|∇u(x, t)|

)
.

The only difference here is the additional diffusion controlling function g(|Gσ ?∇u(x, t)|), where Gσ is the two-
dimensional Gaussian smoothing with standard deviation σ. The function g(s) = 1

1+(s/β)2 with β = 5 is used in
our numerical experiments. We approximate

g(|Gσ ?∇u(x, t)|) ≈ g

(∣∣∣Gσ ?
∇ωn

i,j

∆t

∣∣∣) ,

and we end up with a similar discrete IDE scheme with λ(n) 7→ λ(n)
/
g
(∣∣Gσ ?∇ωn

i,j/∆t
∣∣).

For the deblurring IDE (18) we employ a time marching to compute Wn+1
i,j . For the (BV,L1) induced IDE

(24) we replace λ(t) with λ(t)
2|U(t)−f | in the numerical discretization of (8).
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