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COMMUTATOR METHOD FOR AVERAGING LEMMAS

PIERRE-EMMANUEL JABIN, HSIN-YI LIN AND EITAN TADMOR

We introduce a commutator method with multiplier to prove averaging lemmas, the regularizing effect for
the velocity average of solutions for kinetic equations. Our method requires only elementary techniques
in Fourier analysis and highlights a new range of assumptions that are sufficient for the velocity average
to be in L2.Œ0; T �;H 1=2

x /. Our result provides a direct proof (without interpolation) and improves the
regularizing result for the measure-valued solutions to scalar conservation laws in space dimension 1.

1. Introduction

1.1. Brief overview for averaging lemmas. Our goal in this paper is to introduce a commutator method
for the kinetic transport equations in the form

"@tf C a.v/ � rxf D .��v/
˛
2 g; (1)

where " > 0, ˛ � 0, a W Rnv ! Rn and g W Rt �Rnv �Rnx! R are given functions; " is the macroscopic
scale often introduced when a hydrodynamic limit is considered. The nonlinear coefficient a.v/ in our
setting appears for instance in the relativistic, quantum kinetic models [Escobedo et al. 2003; Golse and
Poupaud 1992] or the kinetic formulation of scalar conservation laws [Lions et al. 1994a].

We shall utilize a commutator method as a new approach to derive averaging lemmas, which state that
the velocity average �� of f in (1), defined by

��.t; x/ WD

Z
f .t; x; v/�.v/ dv; � 2 C1c ;

has a better regularity than f and g in the x-variable.
There is a vast literature of averaging lemmas and we only mention few of them that are relatively closer

to our discussion here. Averaging lemmas are famous for getting the compactness for kinetic models,
such as the Vlasov–Maxwell system [DiPerna and Lions 1989a], the renormalized solutions [DiPerna and
Lions 1989b] and the hydrodynamic limits for the Boltzmann equation [Golse and Saint-Raymond 2005],
and the renormalized solutions to the semiconductor Boltzmann–Poisson system [Masmoudi and Tayeb
2007]. Averaging lemmas also contribute to the regularizing effect of solutions when kinetic formulations
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exist. They were applied for this purpose to, for instance, the isentropic gas dynamics [Lions et al. 1994b],
the Ginzburg–Landau model [Jabin and Perthame 2001], and scalar conservation laws [Lions et al. 1994a].

The classical averaging lemma in the L2 framework was first introduced independently by [Agoshkov
1984] and [Golse et al. 1988]. The derivation in [Golse et al. 1988] involves the decomposition in the Fourier
space according to the order of a.v/�� , and the singular part ja.v/��j<c is controlled by the nondegeneracy
conditions for all c > 0. Combining with interpolation arguments, the averaging lemma was later extended
to general Lp spaces with 1 < p <1 by [Bézard 1994; DiPerna et al. 1991]. The optimal Besov result
was then proved in [DeVore and Petrova 2001] with wavelet decomposition. More recently, the regularity
result for Lp spaces has been further improved in the one-dimensional case, precisely from 1

p
to 1� 1

p

when p>2 by [Arsénio and Masmoudi 2019] with the dispersive property of the kinetic transport operator.
The averaging lemmas under different assumptions on f and g were further investigated. For example,

in [Westdickenberg 2002] the author considered f and g in the same Besov space in x but with possibly
different integrability in v. The results for general mixed norm assumptions were obtained in [Jabin and
Vega 2003; 2004]. Their work inspired the work in [Arsénio and Masmoudi 2014] to consider the case
when f and g have less integrability in x than v. Besides the explorations in the direction of general
conditions, averaging results for a larger class of operators in the form a.v/�rx�r

?
x �b.v/rx were obtained

by [Tadmor and Tao 2007], where several applications of their results were presented. In particular, they
improved the regularity of solutions to scalar conservation laws with general nondegeneracy conditions.

The limiting L1 case for classical averaging lemmas in general is not true and a counterexample
was given in [Golse et al. 1988]. However, the L1 compactness can be shown when assuming the
equi-integrability condition in the v-variable [Golse and Saint-Raymond 2002] and this type of results
has been extended to the transport equations in more general forms in [Arsénio and Saint-Raymond 2011;
Han-Kwan 2010].

1.2. Commutator method with multipliers. We use a commutator method with multipliers to transform
the dispersion of transport operator in Fourier space into a gain of regularity in the x-variable. Let us
introduce the commutator method in a general setting and narrow down to our case shortly. Assume

"@tf CBf D g; (2)

where B is a skew-adjoint operator, " � 1 and g are given. For a time-independent operator Q, we
consider

"@t

Z
f Qf dx dv D

Z
ŒB;Q� f Nf dx dvC

Z
gQf dx dvC

Z
f Qg dx dv:

By the fundamental theorem of calculus, we have

Re
Z T

0

ŒB;Q�f Nf dxdvdt � sup
tD0;T

ˇ̌̌̌Z
f Qf dxdv

ˇ̌̌̌
C

ˇ̌̌̌Z
gQf dxdvdt

ˇ̌̌̌
C

ˇ̌̌̌Z
f Qgdxdvdt

ˇ̌̌̌
: (3)

The idea is to find an operator Q which is bounded in some Lp spaces such that the commutator ŒB;Q�
of B and Q is positive-definite and gains extra derivatives. Hence by applying these conditions on (3),
we get a desired bound on f .
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This method has been utilized, for example, for the local smoothing property of the Schrödinger
equations when B is taken to be of Schrödinger type, when commutators appear naturally from some
Hamilton vector field. Frequently, it involves constructing a proper symbol such that the Poisson bracket
implies a spacetime bound on f by Gårding’s inequality; See for example [Colliander et al. 2006; Doi
1994; Kajitani 1998; Staffilani and Tataru 2002].

The operator B of our interest is the kinetic transport operator and Q is a bounded multiplier operator.
That is, we consider

"@tf C a.v/ � rxf D g; (4)

and
F�;� .Qf / WDm.�; �/F�;� .f /;

where m is a bounded function and F�;� is the Fourier transform in the x- and v-variables, with the
Fourier dual variables � and � respectively. The subscripts indicate the target variables.

Asm is bounded, there is a tempered distributionK.x; v/ such thatQf DK?x;vf , with F�;� .K/Dm.
The commutator then can be written asZ
Œa.v/ � rx; K?x;v� f Nf dx dv D

Z
.a.v/� a.w// � rxK.x�y; v�w/f .y;w/ dy dw f .x; v/ dx dv:

When a.v/D v, it is simply the quadratic form with the multiplier � � r�m. We shall take advantage of
this simple formula and show that the velocity average of f would gain regularity 1

2
in x when a.v/D v

and g is in some Lp space.
The multiplier we select for this purpose is

m0.�; �/D
�

j�j
�

�

.1Cj�j2/
1
2

: (5)

Notice that our multiplier corresponds to the inner product of Riesz transform in x and the convolution
with the gradient of Bessel potential of order 1 in v in physical space. Let us recall that the Riesz transform
in dimension n can be defined weakly as a convolution operator with

R.x/ WD
1

�..nC 1/=2/

x

jxjnC1
; (6)

where � is the gamma function. On the other hand, the Bessel potential Gn
ˇ

of order ˇ in dimension n is
defined as

Gnˇ .x/ WD
1

�.ˇ=2/

Z 1
0

exp
�
�
jxj2

ı
C

ı

4�

�
ı
�nCˇ
2
�1 dı: (7)

With this notation, the corresponding kernel K0 in physical space for m0 is

K0 DR � rvG
n
1 :

From the results in Calderón–Zygmund theory (see for example [Stein 1970]), the convolution operator
with K0 is bounded on Lp spaces for all 1 < p <1. Therefore, the right-hand side of (3) is bounded as
long as f is in L1.Œ0; T �; L2.Rnx �Rnv// and the dual space of g.
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Moreover, by the Plancherel identityZ
Œv � rx; K0?x;v�f Nf dx dv dt D

Z
� � r�m0jF�;� .f /j2 d� d� dt

D

“ �
1

.1Cj�j2/
1
2

�
j.�=j�j/ � �j2

.1Cj�j2/
3
2

�
j�jjF�;� .f /j2 d� d� dt

�

“
j�j

.1Cj�j2/
3
2

jF�;� .f /j2 d� d� dt

D kf k2
L2.Œ0;T �; PH1=2.Rnx ;H�3=2.R

n
v///
:

For convenience, the conjugate index of p is denoted by p0 (where 1
p
C

1
p

0
D 1). From the discussion

above, we have shown:

Theorem 1. Let "� 1. If f 2 L1.Œ0; T �; .L2\Lp/.Rnx �Rnv// solves (4) with a.v/D v for some g 2
L1.Œ0;T �;Lp

0

.Rnx�Rnv//, where 1<p<1, then, for all �2H 3=2.Rnv/, we have ��2L2.Œ0;T �;H 1=2.Rnx//.
Moreover,

1
2
kf k2

L2t
PH
1=2
x H

�3=2
v

� kf k2
L1t L

2
x;v
Ckf k2

L1t L
p
x;v
Ckgk2

L1tL
p0

x;v

:

Remark 2. By the Wigner transform, this result with p D 2 connects to the local smoothing effect for
the Schrödinger equation.

Remark 3. The exchange of regularity between the x- and v-variables is visible through the calculation
of the commutator, which shares its similarity with the hypoellipticity phenomenon. Roughly speaking, it
is a phenomenon that the degenerate directions can be recovered by commutators and was developed
systematically in [Hörmander 1967] for Fokker–Planck-type operators. For the hypoellipticity of kinetic
transport equations, we refer to [Bouchut 2002].

The difference here is that we introduced a homogeneous zero multiplier m0 as a buffer, which takes
on the direct impact from the transport operator. Therefore, the request for extra regularity in v goes to the
test function �, unlike the results in [Bouchut 2002], where an extra regularity in v was required for f .

Our setting is reminiscent of the multiplier method in [Gasser et al. 1999], where the moment and trace
lemmas for kinetic equations were proven. Their results were derived employing the dispersive nature of
solutions acquired by integrating along the characteristics in physical space. Here we utilize a similar
technique in the frequency space, and hence instead of moments, it results in a gain of regularity.

For the rest of this paper, we shall extend this commutator method to (1) with the variable coefficient
a.v/ and the singular source term .��v/

˛=2g, which introduce nontrivial technical issues. The advantage
of this approach is that the integrability of f and g can be of assistance to each other. This feature
distinguishes our results from the others in the previous literature and provides averaging results for a new
type of mixed integrability assumptions, which fits nicely for the conditions that the kinetic formulation
of scalar conservation law naturally attains.

Let us conclude with a brief introduction on our ideas for the extension. To include variable coefficients
in this method, the idea is to make an appropriate change of variables. Different change of variables
gives distinct conditions on a.v/. Our main result will require conditions on the Jacobian matrix of a�1.
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With the same procedure but a different change of variables, we also recover the averaging results for the
nondegeneracy condition when � D 1 (see (12)) in the L2 setting.

On the other hand, we make this approach compatible with the singular term .��v/
˛=2g with a

regularization for (1). Our regularization contains a rescaling in the v-variable and is inspired by the
regularization process utilized in [DiPerna and Lions 1989c], where the scaling is a constant going to zero
in a limiting process. Differently, our scaling depends on the frequency j�j. Because of this dependence,
the order ˛ of singularity contributes to the resulting gain of regularity of the velocity average �� .

This paper is organized as follows: We present our main theorems in Section 2 and an example of appli-
cation to scalar conservation laws in Section 3. Finally, the proofs of theorems are provided in Section 4.

Our focus in this article is on dealing with a broad range of Lp exponents and fluxes a.v/. We will
further elaborate in a coming work by considering nonhomogeneous fluxes a.x; v/ that also depend on
the position. A summary of our results on the commutator method can be found in [Jabin et al. 2020],
announced in the Séminaire Laurent Schwartz in March 2020. Related interesting results, derived by a
different energy method approach, were later announced in [Arsénio and Lerner 2021].

2. Main results

2.1. Notation and functional framework. Our work relates to various topics in classical Fourier theory,
including the Littlewood–Paley decomposition and Besov spaces. This subsection briefly recalls some
definitions that will be used in our later discussion.

The Littlewood–Paley decomposition of f is described as follows: Consider a smooth radial bump
function �.�/ with support on 1

2
< j�j< 2 such that �0.�/C

P
k2N �.2

�k�/� 1 for all � ¤ 0. We denote
by Pk the convolution operator defined by

Pkf D 2
nk‰.2k � / ? f; P0f D‰0 ?f;

where � and �0 are the Fourier transforms of ‰ and ‰0 respectively. Then we have f D
P1
kD0 Pkf .

Note that this is a decomposition in the Fourier space, and each Pk restricts f to the places where its
frequency is of order 2k.

One way to define the Besov spaces is through the above decomposition. The norm of the Besov spaces
Bsp;q of a function f is defined by

kf kBsp;q WD

� 1X
kD0

2ksqkPkf k
q
Lp

�1
q

:

There are many excellent references for these classical materials. We refer to for instance [Klainerman
2011; Stein 1970].

2.2. Our main velocity averaging result. Our results make use of the dispersion of the kinetic transport
operator a.v/ � rx in the Fourier space. In order to have the dispersive property, one needs conditions on
the variable coefficient a.v/. Indeed, there is no gain of regularity if a is only constant for example.

In this section, we assume a.v/ 2 Lip.Rn/ with the conditions

a.v/ is one-to-one, and Ja�1 2 L

 ; (8)
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where Ja�1 D det.Da�1/. The conditions in (8) quantify the nonlinearity of a.v/ with the index 
 and
allow us to control the integrability of functions after the change of variables v 7! w D a.v/. Note that
(8) will be utilized locally due to the compactly supported test functions �.

Our proof involves a regularization of (1) through various embeddings. The interaction between the
embedding and the singular term .��v/

˛=2g will affect the resulting gain of regularity. This process
introduces several exponents and indices in the formulas. To simplify the notation, we denote maxfC; 0g
by CC for all C 2 R. The exponents and indices are collected below:

d1 D n

�
1

p2
C
1

q2
� `

�
C

; d2 D n

�
2

p2
� `

�
C

; with `D

 � 2


 � 1
; (9)

d3 D n

�
1

p1
C
1

q1
� 1

�
C

and d4 D n

�
2

p1
� 1

�
C

: (10)

We denote the ball with center x0 and radius R by B.x0; R/. Our result is as follows:

Theorem 4. Given ˛ � 0, T > 0 and 0 < "� 1. Assume a 2 Lip.Rn/ satisfy (8) with 
 � 2. Let

f 2 L1.Œ0; T �; Lp1.Rnx; L
p2.Rnv///

solve (1) for some
g 2 L1.Œ0; T �; Lq1.Rnx; L

q2.Rnv///;

with 1� p1; p2; q1; q2 �1 and
1� .d3� d4/

˛C 1C .d1� d2/
� 0:

Then for any B.x0; R/� Rnx and � 2 C1c .R
n
v/, one has

��.t; x/ 2 L
2.Œ0; T �;H s.B.x0; R///

for all s < S D 1
2
Œ.1� d2/� � d4�, where

� D

�
min

�
1� .d3� d4/

˛C 1C .d1� d2/
; 1

��
;

and di are defined in (9) and (10) for i D 1; 2; 3; 4. Moreover,

k��k
2
L2.Œ0;T �;H s.B.x0;R///

� C.kf k2L1.Œ0;T �;Lp1 .Rnx ;Lp2 .Rnv///
Ckgk2

L1.Œ0;T �;Lq1 .Rnx ;L
q2 .Rnv///

/;

where C only depends on R, k�k1 kJa�1kL
 , and Lip.a/.

Remark 5. The restriction for 
 can be relaxed to 
 � 1, but the formula of S for 1� 
 < 2 would be
changed to 1

2
fŒ1�n.2=p2C 2=
 � 1/�� � d4g, with

� Dmin
�

1� .d3� d4/

˛C 1Cn.1=q2� 1=p2/
; 1

�
:

Remark 6. The end point s D S can be included, when f 2 L1.Œ0; T �; B0p1;2.R
n
x; L

p2.Rnv///, g 2
L1.Œ0; T �; B0q1;2.R

n
x; L

q2.Rnv/// and 1 < p1; p2; q1; q2 <1.
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Remark 7. Because of the quadratic form in our method, our result bounds the velocity average in L2

and the upper bound always has the same weight on the norms of f and g, independent of p1; p2; q1; q2.

When a.v/D v, one has that 
 D1. In this case, we have a simpler formula for Theorem 4 when f
and g are in the dual space of each other:

Corollary 8. Given ˛�0, T >0 and 0<"�1. If f belongs to the spaceL1.Œ0; T �; Lp1.Rnx; L
p2.Rnv///

and solves (1) with a.v/Dv for some g2L1.Œ0; T �; Lp
0
1.Rnx; L

p02.Rnv///, where 2�p1; p2�1, then, for
any B.x0; R/�Rnx and � 2C1c .R

n
v/, we have �� 2L2.Œ0; T �;H s.B.x0; R/// for all s < 1=.2.˛C1//.

2.3. Comparison with previous literature. There is already a huge literature on averaging lemmas and
in some situations the existing results have been proven optimal. In order to provide the readers an idea
of when our method becomes effective and the potential advantages of our method, a comparison of the
regularity in x shall be presented between our result and the theorems in [Arsénio and Masmoudi 2019;
DiPerna et al. 1991; Westdickenberg 2002].

Because our resulting space has a different integrability from the previous results except for in the L2

case, our method may render a more appropriate tool under certain circumstances. We will point out the
regions where one theorem can imply the other through embedding or interpolation. The interpolation
is applied between the resulting space of �� and the assumption space of f , because �� has the same
integrability in x as f when � 2 C1c .

Notice that some theorems we quote here apply to more general conditions in the original papers, but
for simplicity we will only state the parts that concern our discussion and restrict to the special case
a.v/ D v. We also assume for convenience that f and g are compactly supported in both the x- and
v-variables and � 2 C1c for this entire discussion.

Let us begin with the classical averaging result in [DiPerna et al. 1991], where the case with different
integrabilities for f and g and ˛ > 0 is available.

Theorem 9 [DiPerna et al. 1991]. If f 2 Lp.Rt �Rnx �Rnv/ and g 2 Lq.Rt �Rnx �Rnv/ satisfy (1) with
a.v/D v, then �� 2 Bsr;1.Rt �Rnx/, where

s D
1

Np

�
˛C

1

Np
C
1

q

��1
; Np Dmaxfp; p0g; q Dminfq; q0g;

1

r
D
s

q
C
1� s

p
:

Moreover, if p D q 2 .1;1/, then �� 2 Bsr;t .Rt �Rnx/, where t Dmaxfp; 2g.

Under the assumption of Theorem 9, we start our discussions for the cases when p D q.

� When p D q D 2, both Theorems 4 and 9 reach the same regularity H 1=.2.1C˛//.

� When p D q 2 .1; 2/, Theorem 9 implies Theorem 4: Indeed, Theorem 9 reaches B1=.p
0.1C˛//

p;2 , while
Theorem 4 gives H s for all

s < S D
1

2.1C˛/

�
1�n.2C˛/

�
2

p
� 1

��
:
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By the embedding theorem for Besov spaces, B1=.p
0.1C˛//

p;2 �H Qs , with

Qs D
1

p0.1C˛/
Cn

�
1

2
�
1

p

�
;

which is greater than or equal to S for all n� 1.

� When p D q 2 .2;1/, the result by Theorem 4 has more differentiability but less integrability than
Theorem 9. Furthermore, when n D 1 and ˛ D 0, Theorem 4 implies Theorem 9: Theorem 9 reaches
B
1=.p.1C˛//
p;p , while Theorem 4 has H 1=.2.1C˛//. By embedding H 1=.2.1C˛// � B Qsp;2, where

Qs D
1

2.1C˛/
Cn

�
1

p
�
1

2

�
:

and Qs < 1=.p.1C˛// except when nD 1 and ˛ D 0.

Because of the quadratic form in our method, the more favorable type of conditions for our method is
when p � 2 and 1

p
C
1
q
D 1. We therefore compare Theorems 4 and 9 under this assumption:

� Under the assumption of Theorem 9 with 1
p
C

1
q
D 1 and p 2 .2;1/, the result by Theorem 4 has

more differentiability but less integrability in x. Moreover, Theorem 4 implies Theorem 9 when ˛ D 0 by
interpolation or when 0� ˛ < 1

n
and 2 < p < 2n=.n.1C˛/� 1/ by embedding: Under these conditions,

Theorem 4 results in H 1=.2.1C˛//.Rnx/, while Theorem 9 reaches B1=.p.1C˛//r;1 .Rnx/, where
1

r
D

1

p.1C˛/

�
1�

2

p

�
C
1

p
:

By the interpolation between H 1=.2.1C˛// and Lp, we derive �� 2W 1=.p.1C˛/2/;r. Hence when ˛ D 0,
Theorem 4 implies Theorem 9.

On the other hand, by embedding H 1=.2.1C˛// � B Qsr;2, where

Qs D
1

2.1C˛/
Cn

�
1

r
�
1

2

�
:

Even with the dimension dependence, there are regions that embedding gives a better regularity than
interpolation. For example when nD 1,

Qs �
1

p.1C˛/2
; when p � 2C

2

˛
:

We compare Qs with the regularity obtained by Theorem 9. In general for each fixed n,

Qs �
1

p.1C˛/
; when p �

2n

n.1C˛/� 1
;

which is compatible with p > 2 only when ˛ < 1
n

. Hence Theorem 4 implies Theorem 9 when 0� ˛ < 1
n

and 2 < p < 2n=.n.1C˛/� 1/.

We now compare our result with [Arsénio and Masmoudi 2019] and [Westdickenberg 2002], where
mixed norm conditions in general dimensions were considered for the stationary transport equation

v � rxf D g: (11)

We shall take "D 0, in order to compare our theorem with results for (11).
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Theorem 10 [Westdickenberg 2002]. For 1 < p < n=.n � 1/, if f 2 B0p;q.R
n
x; L

p2.Rnv// and g 2
B0p;q.R

n
x; L

q2.Rnv// satisfy (11), then �� 2 BSP;q.R
n
x/, where

S D�nC 1C
1

p02

�
1C

1

q2
�
1

p2

��1
and P D

�
1

p
�
n� 1

n

��1
:

Theorem 11 [Arsénio and Masmoudi 2019]. When 4
3
� p � 2, if f; g 2 Lp.Rnx; L

2.Rnv// satisfy (11),
then �� 2W s;p.Rn/ for all s < S , where S D 1

2
when nD 1; 2, and

S D
1

2

�
3�

4

p

�
C

n

4.n� 1/

�
4

p
� 2

�
; when n� 3:

For the comparison with Theorem 10, we take q D 2 for an easier discussion with our H s result. And
since Theorem 10 allows general integrabilities in v, let us consider p2 D q02 � 2, which is the most
favorable condition for our method.

� Under the assumption of Theorem 10 with nD 1, q D 2 and p2 D q02 � 2. Both Theorems 4 and 10
reach the same regularity when p D 2. Theorem 10 implies Theorem 4 when p ¤ 2: Here Theorem 10
reaches B1=2p;2 , while Theorem 4 has H 1=p0 when p � 2 and H 1=2 when p > 2, as was mentioned in
Remark 6. When pD 2, the two results are exactly the same. When p < 2, B1=2p;2 �H

1=p0 by embedding
and for p > 2, B1=2p;2 �H

1=2 locally.

Notice, for n� 2, Theorem 10 no longer applies to p > 2. The restriction p < 2 is not ideal for our
method, but the comparison is still interesting under these mixed norm conditions.

� Under the assumption of Theorem 10 with n� 2 .which forces 1 < p < 2/, q D 2 and p2 D q02 � 2, our
result implies Theorem 10: In this case, Theorem 10 reaches B3=2�nP;2 with

P D

�
1

p
�
n� 1

n

��1
and our method reachesH .1=2/Œ1�2n=pCn� as was stated in Remark 6. Our result has more differentiability
but less integrability. Moreover, by the embedding H .1=2/Œ1�2n=pCn� � B

3=2�n
P;2 .

� Under the assumption of Theorem 11, the result by Theorem 4 has more integrability but less differ-
entiability than Theorem 11. Furthermore, Theorem 11 implies Theorem 4 when n D 1 and 2, but the
implication does not hold for n� 3: Under this assumption, we again have H s with

s <
1

2

�
1�

2n

p
Cn

�
:

For both n D 1 and 2, W 1=2;p
x � H

.1=2/Œ1�2n=pCn�
x by Sobolev embedding. As for n � 3, we have

W
s;p
x �H Qsx , where

s D
1

2

�
3�

4

p

�
C

n

4.n� 1/

�
4

p
� 2

�
;

Qs D
1

2

�
3�

4

p

�
C

n

4.n� 1/

�
4

p
� 2

�
Cn

�
1

2
�
1

p

�
:

Hence Theorem 11 cannot imply Theorem 4 in this case.
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In addition to the new regularity results, our method also renders the following properties:

� Our velocity-averaging result is independent of small ". This could have applications to the compactness
of solutions for rescaled kinetic equations, which frequently appear in the discussions of hydrodynamic
limits. We refer to for example [Golse 2014; Saint-Raymond 2009] for more details in this direction.

� Our argument does not perform the Fourier transform in time variable. Therefore, this method has
possible extensions to time-discretized and stochastic kinetic equations.

2.4. On the nondegeneracy conditions. The assumption (8) we imposed on a.v/ is different from the
classical conditions in the previous literature, which are called the nondegeneracy conditions:

Definition 12. We say a 2 Lip.Rn;Rm/ satisfies the nondegeneracy condition of order � 2 .0; 1� if there
exists c0 > 0 such that for every compact set D � Rn, � 2 Sm�1 and � 2 R we have

Ln.fv 2D W ja.v/ � � � � j � ˛=2g/� c0˛� ; (12)

where Ln is the Lebesgue measure in Rn.

Our assumption (8) is stronger than (12) with � D 1 � 1



. Indeed, when n D m, the assumption
Ja�1 2L



v implies (12) with � D 1� 1



, but the other direction holds only when nD � D 1. When n > 1,

(12) only gives restrictions on the preimages of bands and when � < 1, one can construct a Lipschitz
function a� on R satisfying (12) and a sequence of measurable sets Oi such that

ja�1� .Oi /j
jOi j�

!1 as i !1;

which shows Ja�1 62 L

. An example of such a construction can be found in the Appendix.

The dimension of interests is n�m for applications, especially when nD 1 for scalar conservation
laws. In an attempt to weaken our assumption to the nondegeneracy conditions with general n�m cases,
a different change of variables v 7! � D a.v/ � �=j�j is performed, and the traditional result in the L2

setting for � D 1 is recovered with our method.

Theorem 13. Given n � m, ˛ � 0, T > 0 and 0 < " � 1. Assume a 2 Lip.Rn;Rm/ satisfies the
nondegeneracy condition (12) with � D 1. Let f 2 L1.Œ0; T �; L2.Rmx �Rnv// solve (1) for some g 2
L1.Œ0; T �; L2.Rmx �Rnv//. Then, for any � 2C1c .R

n
v/, one has ��.t; x/ 2L2.Œ0; T �;H 1=.2.˛C1//.Rmx //

and

k��k
2
L2.Œ0;T �;H1=.2.˛C1//.Rmx //

� C.kf k2
L1.Œ0;T �;L2.Rmx �Rnv//

Ckgk2
L1.Œ0;T �;L2.Rmx �Rnv//

/;

where C only depends on c0, k�k1 and Lip.a/.

This L2 theorem recovers the same regularity H 1=.2.˛C1// in x as in [DiPerna and Lions 1989a;
DiPerna et al. 1991]. Even though this regularity result is not new, we provide a different approach for
proving this theorem. As we mentioned in the discussion after Corollary 8, some interesting features
which are also inherited by Theorem 9 include:

� Due to the independence of ", our results have potential applications to the hydrodynamic limit type
of problems.
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� The absence of the Fourier transform in the time variable enables potential extensions of our method
to time-discretized or stochastic kinetic equations.

Remark 14. We were unable to obtain an Lp statement as we did in Theorem 4, because our natural
choice of multiplier for the alternate proof is not a Calderón–Zygmund operator and we lose the bounds
in general Lp spaces. In fact when a.v/D v, due to the change of variables � 7! v � �=j�j, our natural
multiplier would be in the form of S.� � �=j�j/, where S is a smooth function and � is the Fourier dual
variable of v. Its inverse Fourier transform in dimension 2 is in the form of .v � x=jxj3/ zS.v � x?=jxj/,
which is not bounded on Lpx;v.

Remark 15. Our proof is not directly applicable when � < 1. The nondegeneracy condition in our proof
is employed as a constraint on the determinant of Jacobian matrices. We were not able to derive this
connection for � < 1 and so the same proof was not extended immediately.

3. An example of future perspective: regularizing effects for measure-valued solutions to scalar
conservation law

Among several potential applications of the new method for averaging lemmas presented here, this section
focuses on the regularity of so-called measure-valued solutions to conservation laws and in particular
scalar conservation laws.

Scalar conservation laws can be viewed as a simplified model of hyperbolic systems which still captures
some of the basic singular structure. They read�

@tuC
Pn
iD1 @xiAi .u/D 0;

u.t D 0; x/D u0.x/;
(13)

where u.t; x/ W RC �Rn! R is the scalar unknown and A W R! Rn is a given flux.
The concept of measure-valued solutions to hyperbolic systems such as (13) was introduced in [DiPerna

1985]. It has recently seen a significant revival of interest as measure-valued solutions offer a more
statistical description of the dynamics; see in particular [Fjordholm et al. 2016; 2017].

It is convenient to define a measure-valued solution through the kinetic formulation of (13), which
also allows for a straightforward application of our results. A scalar function u.t; x/ 2L1.RC; L1.Rn//
corresponds to a measure-valued solution if there exists f .t; x; v/2L1.RC�Rn�R/ with the constraint

u.t; x/D

Z
R

f .t; x; v/ dv; �1� f � 1; (14)

and if f solves the kinetic equation
@tf C a.v/ � rxf D @vm (15)

for a.v/DA0.v/ and any finite Radon measure m. If u is obtained as a weak-limit of a sequence un then
f includes some information on the oscillations of un since it can directly be obtained from the Young
measure � of the sequence

f .t; x; v/D

Z v

0

�.t; x; dz/:
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The system (14)–(15) is hence immediately connected to the notion of kinetic formulation for scalar
conservation laws introduced in the seminal article [Lions et al. 1994a] and extended to isentropic gas
dynamics in [Lions et al. 1994b]. If u is an entropy solution to (13), then one may define

f .t; x; v/D

8<:
1 if 0� v � u.t; x/;
�1 if u.t; x/� v < 0;
0 otherwise;

(16)

and f solves the kinetic equation (15) with the additional constraint that m� 0, which corresponds to
the entropy inequality.

We refer for example to [Perthame 2002] for a thorough discussion of kinetic formulations and their
usefulness, such as recovering the uniqueness of the entropy solution first obtained in [Kruzhkov 1970].

The use of kinetic formulations has proved effective in particular in obtaining regularizing effects for
scalar conservation laws. In one dimension and for strictly convex flux, early on it was proven in [Oleinik
1957] that entropy solutions are regularized in BV. In more than one dimension and for more complex
flux that are still nonlinear in the sense of (12) with � D 1, a first regularizing effect was obtained in
[Lions et al. 1994a], yielding u 2W s;p for all s < 1

3
and some p > 1.

Such regularizing effects actually do not use the sign of m and for this reason hold for any weak
solution to (13) with bounded entropy production. Among that wider class a counterexample constructed
in [De Lellis and Westdickenberg 2003] proves that solutions cannot in general be expected to have
more than 1

3
derivative. The optimal space .B1=33;1/x;loc was eventually derived in [Golse and Perthame

2013]. Whether a higher regularity actually holds for entropy solutions (instead of only bounded entropy
production) remains a major open problem though.

It was observed in [Jabin and Perthame 2002] that the regularizing effect for the kinetic formulation
relies in part on the regularity of the function f defined by (16): for example such an f belongs to
L1.RC �Rn;BV.R//. Unfortunately such additional regularity is lost for measure-valued solutions
since we only have f 2 L1\L1 by (14).

A priori, one may hence only apply the standard averaging result from [DiPerna et al. 1991] directly
on (15). Assuming nondegeneracy of the flux, i.e., (12) with � D 1, we may apply Theorem 9 for any
˛ > 1, g 2 L1 and f 2 L2 (the optimal space for this theorem). One then deduces that if u corresponds
to a measure-valued solution with f compactly supported in v then u 2 Bs

5=3;1
for any s < 1

5
.

However we are then making no use of the additional integrability of f . Instead one may also apply
our new result Theorem 4 to (15):

Theorem 16. Let f satisfy (14) and solve (15) for some finite Radon measure m and some a W Rn! Rn

with (8) for 
 D1. Assume moreover that f 2L1.Œ0; T �; L1.Rn�Rn// and is compactly supported in
velocity. Then for any B.x0; R/� Rn, we have u 2 L2.Œ0; T �;H s.B.x0; R/// for any s < 1

4
.

In dimension 1, Theorem 16 directly applies to measure-valued solutions and improve the regularity
from almost B1=5

5=3;1
in x to almost H 1=4. In higher dimensions, as we observed, we cannot directly

replace (8) with (12). Therefore a better understanding of the regularity of measure-valued solutions is
directly connected to further investigations of what should replace (8) if a W Rm! Rn with m< n.
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4. Proofs

4.1. Proof of Theorem 4.

4.1.1. Main proof. The Fourier transform of f in x will be denoted by Of for simplification in this proof
as it appears quit often.

The proof contains mainly three steps as follows:

Step 1: Preparations — localization, regularization and change of variables. Without loss of generality,
assume supp.f /� B.0; 1/ in x and fix � 2 C1c with supp.�/� B.0; 1/ in v.

Take another smooth function ˆ.v/ with supp.ˆ/� B.0; 1/. Consider

F� D . Of �/ ?v ˆrescale;

where

ˆrescale.v/D

�
2nk�ˆ.v2k� / when 2k�1 � j�j< 2kC1 for all k 2 N;

ˆ.v/ when j�j< 1;
(17)

and � � 0 will be decided later.
Notice that

supp.F� /� supp.�/C supp.ˆrescale/� B.0; 2/

for all � and F� satisfies

"@tF� C ia.v/ � �F� D ..��v/
˛
2 Og�/ ?v ˆrescaleCCom; (18)

where

Com.v/D i
Z
.a.v/� a.w// � � Of .w/�.w/ˆrescale.v�w/ dw:

By the change of variables v 7! w D a.v/, (18) can be rewritten as

"@thC iw � �hD k
1
C k2 (19)

in the sense of distribution, where h; k1 and k2 are defined asZ
h.w/ .w/ dw D

Z
F� .v/ .a.v// dv:Z

k1.w/ .w/ dw D

Z
Œ..��v/

˛=2
Og�/ ?v ˆrescale�.v/ .a.v// dv;Z

k2.w/ .w/ dw D

Z
Com.v/ .a.v// dv:

Step 2: Commutator method with m0. Consider a smooth radial bump function �.�/ with support on
1
2
< j�j< 2 such that

P
k2Z �.2

�k�/� 1 for all � ¤ 0. Define

�0.�/D
X
k2ZnN

�.2�k�/ and �k.�/D �.2
�k�/ for all k 2 N:
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For each k 2 N [ f0g, we apply the commutator method with the multiplier m0 defined in (5) to
h.w/�k.�/. With the same structure as the proof of Theorem 1,“ T

0

Z
jF�.h/j2.�/

2k

.1Cj�j2/3=2
d�dt �k.�/d�

.
Z T

0

“
� �r�m0.�;�/jF�.h/j2�k.�/d� d�dt

D

“
Nh.w/

�
1

i

�

j�j
�rGn1?wh

�
dw�k.�/d�

ˇ̌̌̌tDT
tD0

CRe
Z T

0

“
Nh.w/

�

j�j
�rGn1?w.k

1
Ck2/dw�k.�/d� dt

WDAk : (20)

Recall that Gn1 is the Bessel potential of order 1 defined in (7). Ak is estimated as follows:

Lemma 17. Let 1� p1; p2; q1; q2 �1. For each fixed k 2 N[f0g and any small ı > 0,

jAkj. 2k.d4C�d2/kf k2Lp1x L
p2
v

j
tDT
tD0

C2k.d3C�d1C˛�Cı/
Z T

0

kf k
L
p1
x L

p2
v
kgk

L
q1
x L

q2
v
dtC2k.d4C�d2C1��/

Z T

0

kf k2
L
p1
x L

p2
v

dt; (21)

where

d1 D n

�
1

p2
C
1

q2
�

�̀
C

; d2 D n

�
2

p2
�

�̀
C

; with `D

 � 2


 � 1
:

d3 D n

�
1

p1
C
1

q1
� 1

�
C

; d4 D n

�
2

p1
� 1

�
C

;

To minimize the highest order of � in (21), we choose

� Dmin
�

1� .d3� d4/

˛C 1C .d1� d2/
; 1

�
and the highest order becomes 1�S , where S D �.1� d2/� d4.

Dividing the whole inequality (20) by 2k.1�SC2ı/, we attain“ T

0

Z
jF�.h/j2

j�j.S�ı/

.1Cj�j2/
3
2

d� dt �k.�/d�

. 2�kı
�
kf k2

L
p1
x L

p2
v

j
tDT
tD0 C

Z T

0

kf k
L
p1
x L

p2
v
kgk

L
q1
x L

q2
v
dt C

Z T

0

kf k2
L
p1
x L

p2
v

dt

�
(22)

for all k 2 N[f0g.
Notice that the additional 2ı is added in case either of the pairs .p1; q1/ or .p2; p2/ equals .1;1/

or .1; 1/ and the additional logarithm growth appears from the weak boundedness of Calderón–Zygmund
operators.
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Summing (22) over all k 2 N[f0g, we obtainZ T

0

•
j�js Nh.v/Gn3 .v�w/h.w/ dw dv d� dt . kf k

2

L1.Œ0;T �;L
p1
x L

p2
v /
Ckgk2

L1.Œ0;T �;L
q1
x L

q2
v /
;

with

s < S D .1� d2/min
�

1� .d3� d4/

˛C 1C .d1� d2/
; 1

�
� d4:

Step 3: Derive result back to f . The last step is to translate the quadratic form of h back to a norm of
velocity average of f .

By the change of variables again,Z T

0

Z ˇ̌̌̌Z
F� .v/ .a.v// dv

ˇ̌̌̌2
j�js d� dt D

Z T

0

Z ˇ̌̌̌Z
h.w/ .w/ dw

ˇ̌̌̌2
j�js d� dt;

.
Z T

0

•
j�js Nh.v/Gn3 .v�w/h.w/ dw dv d� dt

. kf k2
L1.Œ0;T �;L

p1
x L

p2
v /
Ckgk2

L1.Œ0;T �;L
q1
x L

q2
v /

(23)

for all  2H 3=2 and s < S .
By the assumption that � and ˆ are compactly supported in v, we show that:

Lemma 18. There exists  2H 3=2 such thatZ T

0

Z ˇ̌̌̌Z
Of � dv

ˇ̌̌̌2
j�js d� dt .

Z T

0

Z ˇ̌̌̌Z
F� .v/ .a.v// dv

ˇ̌̌̌2
j�js d� dt: (24)

With (23), (24) and the Poincaré inequality, we attain

k��k
2

L2.Œ0;T �;H
s=2
x .B.0;1///

. kf k2
L1.Œ0;T �;L

p1
x L

p2
v /
Ckgk2

L1.Œ0;T �;L
q1
x L

q2
v /

for all s < S , which concludes our proof. �

Remark 19. Note that m.�; �/ being homogeneous zero in � is essential for the commutator to be
positive-definite after interacting with the transport operator. In fact, if we consider

m.�; �/D
�

j�j
�

�

.1Cj�j2/
ˇ
2

;

with ˇ > 1,

� � r�mD
j�jŒ.1Cj�j2/�ˇj.�=j�j/ � �j2�

.1Cj�j2/
ˇ
2
C1

:

When � is parallel to � and j�j is large, � � r�m becomes negative and our argument does not work.

Remark 20. Our regularization recollects the regularization process in [DiPerna and Lions 1989c]. Here
the interaction between ˆj�j�� and .��v/˛=2g shows explicitly the exchange of regularity between x
and v.
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4.1.2. Proof of Lemma 17. Our estimation of Ak will use the following proposition:

Lemma 21. Let a 2 Lip.Rn/. If Ja�1 2 L

, the change of variables is bounded from Lp to L.p

0
 0/0.
Precisely, if

R
`.w/ .w/ dw D

R
L.v/ .a.v// dv,

k`kL.p0
0/0 . kLkLp :

Proof of Lemma 21. By Hölder’s inequality,Z
j .a.v//jp

0

dv D

Z
j .w/jp

0

Ja�1.w/ dw � kJa�1kL


�Z
j .w/jp

0
 0 dw

� 1

0

:

Hence

k`kL.p0
0/0 D sup
k k

Lp
0
0D1

ˇ̌̌̌Z
`.w/ .w/ dw

ˇ̌̌̌
D sup
k k

Lp
0
0D1

ˇ̌̌̌Z
L.v/ .a.v// dv

ˇ̌̌̌
� sup
k k

Lp
0
0D1

kLkLpk .a.v//kLp0 � kJa�1kL
kLkLp : �

We shall estimate Ak term by term for the case when pi � qi , 
 � 2 and dj � 0 for all i D 1; 2 and
j D 1; 2; 3; 4. All the results for the other cases can be derived by the same calculations and hence are
omitted here.

� For the first term: By the Cauchy–Schwarz inequality and since R � rvGn1 is a Calderón–Zygmund
operator: “

Nh

�
�

j�j
� rGn1 ?w h

�
dw �k.�/d�

ˇ̌̌̌tDT
tD0

� kF �1x .h�k.�//k
2
L2xw
j
tDT
tD0 : (25)

Denote by S the inverse Fourier transform F �1x .�/ in � of �. For notation simplification, we further
write the rescaled functions Sk WD 2nkS.x2k/ and ˆk;� WD 2nk�ˆ.v2k� /. By Lemma 21,

kF �1x .h�k.�//kL2xw . kSk ?x f ?v ˆk;�kL2xL2.
�1/=.
�2/v
. 2kn.

1
p1
� 1
2
/Ck�. 1

p2
�

�2
2
�2

/
kf k

L
p1
x L

p2
v
:

Hence“
Nh

�
�

j�j
� rGn1 ?w h

�
dw �k.�/d�j

tDT
tD0 . 2

kn. 2
p1
�1/Ck�. 2

p2
�

�2

�1

/
kf k2

L
p1
x L

p2
v

j
tDT
tD0 :

� For the second term:Z T

0

“
Nh

�
�

j�j
� rGn1 ?w k

1

�
dw �k.�/ d� dt

. jlog 2kjjlog 2k� j
Z T

0

kSk ?x f ?v ˆk;�k
L
q0
1
x L

q0
2
.
�1/=.
�q0

2
/

v

�k2k˛�Sk ?x g ?v ..��v/
˛=2ˆ/k;�kLq1x L

q2.
�1/=.
�q2/
v

dt;

. 2kn.
1
p1
C 1
q1
�1/Ck�n. 1

p2
C 1
q2
�

�2

�1

/Ck˛�Ckı
Z T

0

kf k
L
p1
x L

p2
v
kgk

L
q1
x L

q2
v
dt

for any ı >0. It is only necessary to have jlog 2kj when q1D1 and jlog 2k� j when q2.
�1/=.
 � q2/D1,
due to the weak boundedness of R and rGn1 respectively.
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� For the last term:Z T

0

“
Nh

�
�

j�j
� rGn1 ?w k

2

�
dw �k.�/ d� dt

.
Z T

0

kSk ?x f ?v ˆk;�kL2xL
2.
�1/=.
�2/
v

kSk ?x Com?v ˆk;�kL2xL
2.
�1/=.
�2/
v

dt:

Because ˆ is compactly supported, ˆk;� .v�w/ forces jv�wj . 2�k�. As a is Lipschitz, we have
ja.v/� a.w/j. 2�k�. So

kSk ?x Com?v ˆk;�kL2xL
2.
�1/=.
�2/
v

D





Z 2k.a.v/� a.w// � .f ?x .rxS/k/.w/�.w/ˆk;� .v�w/ dw






L2xL

2.
�1/=.
�2/
v

. 2k�k�kjf ?x .rxS/kj?v jˆk;� jkL2xL2.
�1/=.
�2/v

. 2kn�.
1
p2
�


�2
2.
�1/

/Ckn. 1
p1
� 1
2
/Ck.1��/

kf k
L
p1
x L

p2
v
:

Therefore,Z T

0

“
Nh

�
�

j�j
� rGn1 ?w k

2

�
dw �k.�/ d� dt . 2

kn. 2
p1
�1/Ck�n. 2

p2
�

�2

�1

/Ck.1��/
Z T

0

kf k2
L
p1
x L

p2
v

dt:

Combining all estimates,

jAkj. 2
kn. 2

p1
�1/Ck�n. 2

p2
�

�2

�1

/
kf k2

L
p1
x L

p2
v

j
tDT
tD0

C 2
kn. 1

p1
C 1
q1
�1/Ck�n. 1

p2
C 1
q2
�

�2

�1

/Ck˛�Ckı
Z T

0

kf k
L
p1
x L

p2
v
kgk

L
q1
x L

q2
v
dt

C 2
kn. 2

p1
�1/Ck�n. 2

p2
�

�2

�1

/Ck.1��/
Z T

0

kf k2
L
p1
x L

p2
v

dt: �

4.1.3. Proof of Lemma 18. Choose two smooth functions  and Q such that  .a.v//� 1 and Q .v/� 1
on v 2 B.0; 3/. The function Q serves as an auxiliary function and can replace  .a.v// since both their
values are 1 on the support of �. Recall that � is the compact function used for localization in v. ThenZ T

0

Z ˇ̌̌̌Z
F� .v/ .a.v// dv

ˇ̌̌̌2
j�js d� dt D

Z T

0

Z ˇ̌̌̌Z
F� .v/ Q .v/ dv

ˇ̌̌̌2
j�js d� dt

D

Z T

0

Z ˇ̌̌̌Z
F� . Of �/.�/F� .ˆrescale/.�/F� . Q /.�/ d�

ˇ̌̌̌2
j�js d� dt

D

Z T

0

Z ˇ̌̌̌Z
. Of �/.ˆrescale ?v Q / dv

ˇ̌̌̌2
j�js d� dt:

Since Q � 1 on B.0; 3/ and supp.ˆ/� B.0; 1/,

.ˆrescale?v Q /.v/D

Z
2nk�ˆ.w2k� / Q .v�w/dwD

Z
2nk�ˆ.w2k� /dwDkˆkL1 for all � and jvj � 1.
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Therefore, Z T

0

Z ˇ̌̌̌Z
F� .v/ .a.v// dv

ˇ̌̌̌2
j�js d� dt D kˆk2

L1

Z T

0

Z ˇ̌̌̌Z
Of � dv

ˇ̌̌̌2
j�js d� dt: �

4.2. Proof of Theorem 13. This proof is essentially the same as Theorem 4, but with a different change
of variable. After Step 1, instead of v 7! w D a.v/, we make v 7! �D a.v/ � .�=j�j/ for each fixed �.
Parallel to (19), we have

"@thC i�j�jhD k
1
C k2 (26)

in the sense of distribution, where h; k1 and k2 are defined asZ
F� .v/ 

�
a.v/ �

�

j�j

�
dv D

Z
h.�/ .�/ d�:Z

k1.�/ .�/ d�D

Z
Œ..��v/

˛
2 Og�/ ?v ˆrescale�.v/ 

�
a.v/ �

�

j�j

�
dv;Z

k2.�/ .�/ d�D

Z
Com.v/ 

�
a.v/ �

�

j�j

�
dv:

Owning to the nondegeneracy condition with � D 1, this change of variables preserves Lp norms:

Proposition 22. Let a be Lipschitz and satisfy (12) with � D 1 and  W R! R. Then for all � 2 Sm�1

and 1� p �1,

k .a.v/ � �/kLpv � c
1
p

0 k kLp�
;

and hence if
R
L.v/ .a.v/ � �/ dv D

R
`� .�/ .�/ d�,

k`�kLp
�
. kLkLpv :

Proof of Proposition 22. When p D1, the result is straightforward. For 1 � p <1, (12) with � D 1
implies that for any interval I,

m.fv 2 B.0; 1/ W a.v/ � � 2 I g/� c0m.I/:

By the standard approximation from intervals to measurable sets, we have that, for any measurable
set A,

m.fv 2 B.0; 1/ W a.v/ � � 2 Ag/� c0m.A/:

Therefore,
d .a.v/��/.s/Dm.fv 2 B W a.v/ � � 2 f� W j .�/j> sgg/

� c0m.f� W j .�/j> sg/D c0d .s/

and hence

k .a.v/ � �/kLpv D p
1
p

�Z 1
0

Œd .a.v/��/.s/
1
p s�p

ds

s

�1
p

� p
1
p

�Z 1
0

Œc
1
p

0 d .s/
1
p s�p

ds

s

�1
p

D c
1
p

0 k kLp�
: (27)
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By the duality of Lp spaces,

k`�kLp
�
D sup
k k

L
p0

�

D1

ˇ̌̌̌Z
`� d�

ˇ̌̌̌
D sup
k k

L
p0

�

D1

ˇ̌̌̌Z
L.v/ .a.v/ � �/ dv

ˇ̌̌̌

� sup
k k

L
p0

�

D1

kLkLpv k .a.v/ � �/kLp
0

v
� c

1
p

0 sup
k k

L
p0

�

D1

kLkLpv k kLp
0

�

D c
1
p

0 kLkLpv ;

where the first inequality is by Hölder’s inequality and the second by (27). This concludes our proof of
Proposition 22. �

Let us come back to the proof of Theorem 13 by considering“
Nh.�/

1

i
.@�G

1
1/.��˛/h.˛/ d˛ d�:

Procedures similar to those in Step 2 lead us toZ T

0

•
j�j1=.˛C1/ Nh.�/G13.��˛/h.˛/ d˛ d�d� dt <1:

We can then conclude the proof of Theorem 13 from here by following the computation in Step 3. �

Appendix: Example for the nondegeneracy condition

We say a.v/ 2 Lip.R/ satisfies (12) with � 2 .0; 1� on intervals if

jfv W a.v/ 2 I gj � C jI j� for all intervals I, (28)

and a.v/ satisfies the nondegeneracy condition on open sets with � 2 .0; 1�,

jfv W a.v/ 2Ogj � C jOj� for all open set O. (29)

Here we give an example to show (28) cannot imply (29) with the same � when � D 1
2

. In fact the
construction can be adapted to produce examples for all � < 1. Notice (28) and (29) are equivalent when
� D 1.

Define a W
�
0;
P1
iD0 1=3

i
�
!
�
0;
P1
iD0 1=3

2i
�
� R as

a.v/D a1.v/D 1� .1� v/
2 on Œ0; 1�DD1,

a.v/D a2.v/D 1C
1

32
a1..v� 1/3/ on

�
1; 1C 1

3

�
DD2,

:::

The general formula is

a.v/D an.v/D

n�2X
iD0

1

32i
C

1

32.n�1/
a1

��
v�

n�2X
iD0

1

3i

�
3n�1

�
on
�n�2X
iD0

1

3i
;

n�1X
iD0

1

3i

�
DDn:
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…… 
1C1

9
C

1
81

1C1
9

1

a.v/

1 1C1
3
1C1

3
C
1
9

v

Figure 1. Graph of a.v/.

We shall prove that a satisfies condition (28) with � D 1
2

, but it fails (29) with the same �.

Proposition 23. There exists C > 0 such that, for any interval I,

ja�1.I /j D jfv W a.v/ 2 I gj � C jI j
1
2 : (30)

Proof. Consider an interval

I D

�n�1X
iD0

1

32i
�p2;

n�1X
iD0

1

32i
�p1

�
D Œc; d �

inside some a.Dn/, where 0� p1 < p2 � 1=3n�1. So jI j D p2�p1. Denote the preimages of c and d
by v2 and v1 respectively. Then we have, for each k D 1; 2,

an.vk/D

n�2X
iD0

1

32i
C

1

32.n�1/
a1

��
vk �

n�2X
iD0

1

3i

�
3n�1

�
D

n�1X
iD0

1

32i
�pk :

So

a�1n

�n�1X
iD0

1

32i
�p1

�
D vk D

n�1X
iD0

1

3i
�
p
pk :

We therefore have
ja�1.I /j D

p
p2�

p
p1 �

p
p2�p1 D jI j

1
2 :

If I D Œc; d �� a
�Sm2

iDm1
Di
�
, separate I into three subintervals: I D I1[ I2[ I3, where

I1 D

�
c;

m1�1X
iD0

1

32i

�
; I2 D

�m1�1X
iD0

1

32i
;

m2�2X
iD0

1

32i

�
; I3 D

�m2�2X
iD0

1

32i
; d

�
:

The above case applies to I1 and I3, so ja�1.I1/j � jI1j1=2 and ja�1.I3/j � jI3j1=2.
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For I2, we have

jI2j D

m2�2X
m1

1

32i
D
9

8

1

32m1

�
1�

�
1

9

�m2�m1�1�
:

and

ja�1.I2/j
2
D

�m2�2X
m1

1

3i

�2
D
9

4

1

32m1

�
1�

�
1

3

�m2�m1�1�2
�
9

4

1

32m1

�
1� 2

�
1

9

�m2�m1�1
C

�
1

9

�m2�m1�1�
D 2jI2j:

So
ja�1.I2/j � 2

1
2 jI2j

1
2 :

Notice that this inequality is still true when m2 goes to infinity, so there are no issues near the right
end point.

Combining the three inequalities we get

ja�1.I /j D

3X
iD1

ja�1.Ii /j � 2
1
2

3X
iD1

jIi j
1
2 � 6

1
2

� 3X
iD1

jIi j

� 1
2

D 6
1
2 jI j

1
2 : �

Proposition 24. There exists a sequence of set Om such that

ja�1.Om/j

jOmj
1
2

!1 as m!1.

Proof. Let

Om D
m[
nD1

In;

where

In D

�n�1X
iD0

1

32i
�

1

32.m�1/
;

n�1X
iD0

1

32i

�
for all 1� n�m.

So

jInj D
1

32.m�1/
for all 1� n�m,

and

ja�1.In/j D jInj
1
2 D

1

3m�1
for all 1� n�m.

Therefore,
ja�1.Om/j

jOmj
1
2

D
m=3m�1

.m=32.m�1//
1
2

D
p
m!1 as m!1. �
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