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Abstract. We construct a nonlinear kinetic equation and prove that it is well-
adapted to describe general multidimensional scalar conservation laws. In particular
we prove that it is well-posed uniformly in ε - the microscopic scale. We also show
that the proposed kinetic equation is equipped with a family of kinetic entropy
functions - analogous to Boltzmann's microscopic //-function, such that they
recover Krushkov-type entropy inequality on the macroscopic scale. Finally, we
prove by both - BV compactness arguments in the multidimensional case and by
compensated compactness arguments in the one-dimensional case, that the local
density of kinetic particles admits a "continuum" limit, as it converges strongly
with εJ,0 to the unique entropy solution of the corresponding conservation law.

1. Introduction

Consider the scalar multi-dimensional conservation law

Iί)]+ΣrlMu(x,*))] = 0, (x,t)eR< x R+9 AtfeC1, (1.1)
i l OX

with given initial conditions u(x, t = 0) = uo(x). We are concerned here with a
Boltzmann-like kinetic equation which describes (1.1), as its microscopic scale,
ε > 0, tends to zero. To this end we introduce a scalar function, fε(x, v, t\ which,
can be viewed as a microscopic description for the density of particles located at
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(x,t)eRd

x x Rt

+ with speed veR. Starting with given initial distribution, fε(x9υ9θ),
our kinetic model evolves according to

[3, + a(v)'dx-]fE(x, v,t)=l- [χM ε ( J C» - fe(χ, υ, ί)]. (1.2a)

Equation (1.2a) tells us that the particles are transported along

and that their collisions are governed by the nonlinear kernel on the right. Here,

uε(x9ή = lfε(x,υ9t)dυ9 (1.2b)
V

denotes the local density of particles at a given (x, t) location, and the "equilibrium
function,' χUε(Xtt)(υ\ is the signature of uε(x,t), i.e.,

| if (u-v)v*0,
0, if (u-v)v<0. ( }

The classical example of a kinetic model is of course the Boltzmann equation
[1]. Equation (1.2) is closely related to the B.G.K. model of Boltzmann equation.
Existence theory for Boltzmann equation and its simplified B.G.K. model can be
found in [6,11], respectively. In both cases, however, the question of convergence
of the macroscopic moments to weak solutions of compressible Euler equations is
still an open problem. (Consult [3] regarding an affirmative answer to this
convergence question in the case of strong solutions.) In this paper we restrict our
attention to the simpler scalar case, and we show that the proposed kinetic equation
(1.2) is well adapted to describe strong as well as weak solutions of (1.1) as εJ,O.

The paper is organized as follows. In Sect. 2 we show that the kinetic equation
(1.2) is well-posed in L 0 0 ^^ ;//(#£ x Rv)). Next, we borrow our terminology from
the framework of Boltzmann's kinetic equation. The microscopic scale, ε, in (1.2)
can be viewed as the mean free path. In Sect. 3 we prove that the continuum or
"fluid" limit of the local density of particles, lim uε(x, t) is the unique entropy

εjO

solution of (1.1). A kinetic construction of conservative solutions was carried out
by Giga and Miyakawa [7]. In fact their construction is nothing but a fractional
splitting solution of our kinetic equation (1.2), namely, a kinetic approximation is
constructed by a succession of small time steps, in which we first transport and
then project the particles distribution according to (1.2). Here we improve on [7]
by identifying the underlying kinetic equation which corresponds to (1.1). It is also
shown here that this kinetic equation is equipped with (a family of) kinetic entropy
functions which play an analogous role to Boltzmann's //-function. In particular,
Krushkov entropy inequality [8,9] is recovered in the "fluid" limit εjO.

In Sect. 4 we revisit the question of the "fluid" limit in the case of one-dimensional
kinetic model. Here we show that the compensated compactness theory of
Murat-Tartar [10,13] can be adapted as an alternative approach for providing an
affirmative answer to the question of macroscopic convergence. The compensated
compactness arguments allow us to pass to the continuum limit with minimal
L1 nL™ information about the distribution function, fε9 which may still oscillate
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around the "equilibrium function" χu. Finally, in Sect. 5, we indicate the extension
of our results to the inhomogeneous case, in the presence of a (possibly stiff) source
term.

2. The Kinetic Equation is Well-Posed

Let us rewrite (1.2) in the form

separating between its linear part on the left and its nonlinear kernel on the
right. By DuhammeΓs principle, (2.1) admits the following equivalent integral
representation:

τ =o
(2.2)

The question of existence of a kinetic solution of (1.2) is now transformed into
that of a fixed point solution for the right-hand side of (2.2). Fixing T, T > 0, we
seek such a fixed point solution in L°°([0,T]; L\Rd

x x Rv)). To this end, we
let fε and gε be two different solutions of (1.2a) with corresponding densities
uε(x, t) = J fε(x, v, ήdv and wε(x, t) = J gε(x, v, ήdv. By (2.2), their difference does not

V V

exceed

|| / ε(x, v,t) - gε(x, v91) || Li (Rj xRυ)ύe~t/ε || fe(x9 v9 0) - gB(x9 v9 0) || L I ( R J x Ro)

ε τ=o

Using the properties of the signature function, χ, we therefore conclude

|| fε(x, v91) - gε(x, v, t) || LiiRί xRv)Se~t/ε \\ fε(x9 v9 0) - ge(x9 υ9 0) || Li ( Λ- x Rv)

+ (1 -e~ t / ε ) max ||/e(x,t;,τ) - gε(x9v9τ)||Li(ΛjxΛi;).

(2.3)

The inequality (2.3) shows that the fixed point iterations

f:+1(x,v,t) = e-«%(x-ta(v),v,0) + - \ e^'%T(x_{t_τ)mτ)(v)dτ, (2.4)
£ τ = 0

are contracted (with a contraction factor of 1 — e~t/ε) to a fixed-solution solution
of (2.2). Moreover, by (2.3) this kinetic solution is unique and continuously
dependent on the initial data, for

|| /β(x, υ91) - gε(x, v91) | |Li ( Λ j x Ro) ^ || /e(x, z;, 0) - gB(x9 υ9 0) ||Li(Λj x Rv). (2.5)

We summarize this by stating

Theorem2.1. The kinetic model{1.2) is well-posed inL^iR^ L^Ri x Rv)). Moreover,
its solution operator is nonexpansive in this topology, i.e., (2.5) holds.
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We close this section with several remarks.

1. U°-bound. To see that the solution operator associated with the kinetic model
(1.2) is uniformly bounded, we use (2.2), obtaining

|| fε(-, v9 t)||L.(Λί) ύ e~t/εII/β( , v90)||Lco(Λ

),0)\\Loo{Rdχ)+l-e-
tlε. (2.6)

2. Finite Speed of Propagation. We assume that initially, fε(x, ,0) has a compact
support in Rv. Let us first show that fε(x9 , ί) remains compactly supported. Indeed,
by (2.6), fε(-,v,t) and hence wc( ,ί) are uniformly bounded, and therefore the
contributions of χM(v)(u) on the right-hand side of (2.2) are supported by
ye[-«oo»«J 5

 w h e r e «oo=ll«ε(^OIlL00(ΛίχΛf

+) Consequently, /ε(x, ,0 given in
(2.2) remains compactly supported for all t > 0, with support contained in
suppv/ε(x, , 0 ) u [ — Woo, Woo]. (Note that after an initial kinetic layer of order O(ε),
the contribution of the initial data in (2.2) decays exponentially fast. Thereafter,
fε(x,',ή is in fact "essentially" supported in [ - M ^ J U J ) .

With this in mind we now turn to prove the finite spatial speed of propagation.
We shall need a refined version of estimate (2.6). To this end we first observe that
according to (2.2) - which we rewrite as

/β(x, v9ή = e~ ψf(x - ta{v), v, 0)

t

eiτ~t)/εdτ

fε(x, υ9 t) is given by a convex combination oϊfε(x — ta(υ), v9 0) and χUε(X-{t-τ)a(v),τ)(v)'
By Jensen's inequality, therefore, we have for any convex function, U(f),

U(fε(x,v,ή)Se'"eU(fε(X-ta(v),v,O)) + -
ε

(2.7)

In particular, consider the case U(f) = \f\p. If we let a^ denote the maximal speed
of propagation,

(2.8)ax = < max |αf(t;)|, i esupp, /ε(x, , t) >,

and B\f] = [ - r , r ] d c Λj, is the ball of radius r, then (2.7) implies

II Λ( , ϋ, 0II fro™) ^ ^"ί/ε II /«(% ̂  0) II L-^c^α^)

+ 7 ί ^ - i ) / £ l l ^ c . ) W I I ^ ( B [ r + ( i - , ) f l o o ] )
c τ = 0

Integrating the last inequality with respect to v we find

f II/.(•, v, t)||i , υ,0)||£«.
( B [ r + t β c o ] )

A>

( l - e - " ) mω J «/.(•,«,τ)||L
( B [ r + ( t _ T ) β a ) ] )

ίit;. (2.9)
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If, on the one hand, we take the p-root of both sides and let p | °°> w e obtain

|| fε(x, v, t) ||L»(β[r] x Rv) S max {|| fε(x9 v, 0) ||L ( B [ r + t β β o ] x Rv)91}, (2.10)

in agreement with what we had before, consult (2.6). If on the other hand, we set
p = 1 in (2.9), we find that the function F(τ),

F(τ) = i II/.(•,υ,τ)||L»(β[r+(I_t)ίIco] A Oϊτϊt,
V

satisfies

e~t/ε) max F(τ),

and hence F(ή ^ F(0). Thus, we have a finite speed of propagation ( ^ a^) of the
uniform bound on the moments

f II/.(*,»,0Ilt-(BW)^ ^ J ll/.(*.».0)| |L-M r + l β β ] )d». (2.11)

In particular, the local density is uniformly bounded by the initial data,

II uε(x, t)\\L^χXR;) ^ J || fe(x9 v,0)\\L«iR*χ)dv. (2.12)
V

In summary, we conclude that for initial data fε(x9v,0)GLί(RΌ;Lx>(Ri)) which are
compactly supported in Rv, the corresponding kinetic solution fε(x, v, t) remains
compactly supported in Rv and is uniformly bounded in L 1 ^ ; ! , 0 0 ^ ) ) , due to a
finite speed of propagation ^ α^, given by

3. Monotonicity. The signature function χu(v) is an increasing function of u.
Consequently, the fixed-point iterations (2.4) show that

/β(x,ι?,0)^ft(x,ι?,0)=>/β(x,i;,ί)^Λ(x,ϋ,ίλ for all (x,i?), (2.13)

namely, the solution operator associated with the kinetic equation (1.2) is monotone.
In particular, if we compare a given kinetic solution (compactly supported in
Rd

x x Rv) with the steady state solutions χconst.W? i e > ^ initially we have

χk(Ό)£fB(x9Ό90) or /.(x,!>,0)^Zi(!>), (2.14a)

we obtain

χk(Ό)^f*(x,v9t) or /β(x,t;,ί)^XzW; (2.14b)

in agreement with (2.6). And, since the kinetic solution operator is also conservative,
the Crandall-Tartar lemma [5] implies the L1-contraction stated in (2.5). In fact,
at this point we can state a little more, namely,

4. L1 -Contraction Revisited. Taking into account the finite-speed of propagation,
we can repeat - along the lines of Remark 2, a localized version of estimate (2.3)
which sharpens the L1-contraction estimate (2.5) into

|| fε(x9 v, t) - gε(x, v, t) \\Liim xRv) ^ || fe(x9 v9 0)-ge{x9 v9 0) | |Li ( β [ r + ί f l o o ] xRo). (2.15)

5. The various estimates quoted above indicate that after an initial layer of order
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0{ε), the kinetic solution asymptotes to the "equilibrium function," χuix>t){v),
where - as will be shown in the next section, u(x, t) is the unique entropy solution
of (1.1).

3. Kinetic Entropy Functions

Our analysis of the kinetic model (1.2) hinges on the construction of certain kinetic
entropy functions. A kinetic entropy function in this context is a function, //(/),
such that as in Boltzmann's //-Theorem, any solution of (1.2) obeys the additional
entropy inequality

<0. (3.1)

We shall construct a family of such kinetic entropy functions depending on
extra fixed parameter k, k real. To this end, we integrate (1.2a) against sgn (fε — χk)
over the phase space. Invoking a standard regularization argument of the signum
function we obtain

f [0t + Φ) 3J|/,-χ»l<to= --ίsgn(/.-χ t)(/.-χJdt;. (3.2)
V & V

Noting that the expression on the right is upper-bounded by

- - ί sgn(/ε - χk)(fε - χjdυ = - - J [|/ε - χk\ + sgn(/ε - χk)(χk - χj^dv
c v t» v

we arrive at

Theorem 3.1. For any solution fBelf°(R? L 1 ^ x RΌ)) of the kinetic model (1.2),
the following inequality holds:

1Γ Ί
(3.3)

(3.4)

Now, the right-hand side of (3.3) is clearly nonpositive for

1 1 1

ε v ε v £

Consequently, Theorem 3.1 yields

Corollary 3.2. For any k, k real, the following functions

are kinetic entropy functions, i.e., we have

o. (3.6)

Let us point out that our kinetic entropy functions, Hk(fε), are intimately related
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to the entropy functions used by Krushkov in [8]. Indeed, as ε J,0 we expect (and
later on prove) that fε approaches χu. With this in mind, the inequality (3.6) turns
into Krushkov's entropy inequality [8]

ί\u- k\ + t /-[sgn(M-fe)(^(ii)-^(fc))] S0, for any real k. (3.7)
VI i=ι OXi

To make this last point more precise, we shall need several lemmata. We start
with

Lemma 3.3. LetfεeLco(Rt

+;L1(Rυ;L
co(Rd

x))) be the solution of the kinetic equation
(1.2), subject to given initial data fε(x,v,0) which are compactly supported in Rv.
Assume that ue(x, t) = J/ε(x, v, ήdv satisfies

V

uε(x,0)^uo(x) inL\Rd

x), (3.8)

and
a subsequence of uε(x, t) -• u(x,1) in L£c(Rt

+ L 1 (R*)). (3.9)

Then the sequence uε(x,t) converges strongly in L^c(R^;L1(Rd

x)) to u(x,t), which is
the unique entropy solution of the conservation law (1.1), i.e., (3.7) holds.

Note. If we take k > \\u\\L«>(Rd ί0T]), then the entropy inequality (3.7) yields

i.e., u(x,t) is a supersolution of (1.1); similarly, taking k< — HWIIL^X^Γ]) shows
that tφc, t) is a subsolution of (1.1). Hence, (3.7) implies that tφc, t) solves the
conservation law (1.1).

To prove Lemma 3.3 we first prepare

Lemma 3.4. Let fεeU°(R^\Lι(Rv\Lco(Rd

x))) be the solution of the kinetic equation
(1.2), subject to given initial datafε(x, v9 0) which are compactly supported in Rv. Then
for any k, k real, we have

S\f.-Xk\dv-\u.-k\—+0 in LUR,+ xRί), (3.10)
V ε*υ

and for any b( )eU°(Rv),

JHv)\f.-Xt\dv-sgn(«,-*) Jb(v)(fε-χk)dv —-+ 0 in LUV X K) (3.11)
V V ε J - U

Proof The vanishing limit in (3.10) follows from the inequality (3.3), for

]tt (3.12)
0 x v ε*°

To prove (3.11) we write

ί l/ε - Xk\dυ - \uε - k\ = J s g n ( / ε - χk)(fe- χk)dv - sgn(wε - k) j ( / ε - χk)dv
V V V

(3.13)
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Here, s(v) = s(v; x, t) is the characteristic function given by

s(v) = sgn (fB(x9 υ, t) - χk(υ)) - sgn (uε(x91) - fe).

Now, since s(v) is supported on the set

V = {φgn(/ e - χk) Φ sgn(wε - fe)},
and since

sgn(/ ε -χ k ) φ ) Ξ 2 , for veV,

we can rewrite (3.13) in the following form,

i\L-Xk\dv-\ut-k\= J \fε-χk\Sgn(
v veV

In view of (3.10), the identity (3.14) implies

i\L-Xk\dv-\ut-k\= J \fε-χk\Sgn(fε-χk)s(v)dv = 2 J |/e-χk|di;. (3.14)
v veV veV

in L L ^ x Rd

x). (3.15)

We conclude by noting that for any beU°{Rυ\

ί b(υ)\fB - χk\dυ - sgn(uε - fe) J ft(ϋ)(/β -

= ί«>(»)(/«-Z*)Φ)d» = 2 ί b(v)\fε-χk\dv^2supvb(vY ί l / .-χ* |ώ, (3-16)
v veV veV

and (3.11) follows from (3.16) together with (3.15). •

Equipped with Lemma 3.4 we turn to the

Proof (of Lemma 3.3). By our assumption (3.9), there is a strongly convergent
subsequence (still denoted by) uε(x,t)^m(x,t). Utilizing (3.10) we obtain

— 111 ]/• I — I ij h-1 C% 1 Πί\
— I Mg tx I — \U /VI. ^ J . 1 / J

V

Here the overbar denotes the weak* L00-limit of the indicated quantities after
extraction of appropriate subsequences, if necessary. (We note that the existence
of the weak* L00 limits here and below are justified, since in view of (2.11), /ε(x, v, t)
remains compactly supported in Rv and uniformly bounded with respect to ε in
l}(RΌ;L°(Rd

x)).)
By (1.2) we have

f — γ = — εfd, + a(υ) dS\ fP >0 in 2ι\

and hence by (3.9)

\alv)fEdv = $ai(v)χudυ = Afa) = AJiμ). (3.18)
V V

This together with (3.11) gives

ί Φ)\fε ~Xk\dv = sgn(ue - fe) J ai(υ)(fε - χk)dv

= sgn (u - fe) ( J ai{υ)fεdv - J a
\v v

= sgn(u-k)(Ai(u)-Λi(k)). (3.19)
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Hence, in view of (3.17) and (3.19), the weak limit of (3.6) recovers the entropy
inequality

| > - k \ + t / - [ s g n ( u - k)(A,fμ)-4(fc))] ±Ξ0. (3.20)

The above argument shows that the strong limit of any subsequence of uε satisfies
the entropy inequality (3.20). Since the entropy solution of (1.1) which assumes the
initial data uo(x) is unique, we conclude that lim uε(x, t) = u(x, t) as asserted. •

εjO

We now turn to show that the continuum "fluid" limit of the kinetic equation
(1.2) exists and is governed by the conservation law (1.1). By Lemma 3.3 it remains
to show that uε(x,t) is precompact in L ^ l ί + L1 (#£)). In this context there is (by
now) a standard procedure, e.g., [4], which is based on uniform Bounded Variation
(BV) estimate for each fixed ί, coupled with equicontinuity (typically, Lipschitz
continuity), in time. This brings us to our next lemma which states

Lemma 3.5. Assume that

) = sup

is bounded uniformly in ε. Then the corresponding kinetic solution, fε(x, v, ί), satisfies

II fe{x,v9 t) HBV(Λ-XL\RV)) ^ II fεfav>0)||BV(RίxLi(jg). (3.21)

Moreover, iffε{x,v,ϋ)EL1(Rv\W^{Rd

x)) are compactly supported in Rv, then we also
have for tut2 ^ 0 ,

|| uε(x, t2) - uε(x, ίx) | |Li ( i ? ί ) g Iί2 - ίi I «oo* II fε(x> v>0) ||BV(*iXL1^))- (3 22)

Proof Since the kinetic model (1.2) is translation invariant in spatial variables, we
can apply the L1-contraction (2.5) to /ε(x, v, t) with gε = fε(x + Δx, v, t) and obtain
(3.21).

Integration of the kinetic equation (1.2) over the phase space yields

d d d

- uΛ(x9 ή+Στr
Ot i = i OXi v

and since fe(x9 v, 0)GL1(RV; BV (R*)) a L\RV\ L°°(^)) is compactly supported in Rv,
we may use the finite speed of propagation bound in Sect. 2 to conclude

d
Σ τ-i

1 VX
i = l

dτ

ί2

~τLa°
Also, since fε(x, v9 0)eL1(Rv; BV (Rd

x)) a BV (Rd

x x L^ΛJ), the last inequality together
with (3.21) imply the Lipschitz continuity in time, (3.22), which completes the
proof. •

Remark. In the course of proving Lemma 3.3, consult (3.18), we established only
the weak* L00 convergence of the spatial fluxes. However, equipped with the BV
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setup of Lemma 3.5 we are able to derive strong convergence. Indeed, one may
utilize the integral representation (2.2) to conclude that in this case we have

fe(x, v, t) -> χu(xa)(v) strongly in L1 ([0, T] x Rd

x x Rv).

This together with the finite speed of propagation imply

, v, ή - χu(x,t)(v) | | L i m τ ] x Rd x R v ) —^0,

in contrast to the weak convergence stated in (3.18). We shall omit the details
(consult Theorem 3.7 below), and we turn now to summarize our results by stating
the following.

Theorem 3.6. Supposefε(x,v,0)eL1 (R. L1 nLco(Rd

x)) such that

uε(x,0) = $fε(x,v,0)dv^uo(x) in L'iRi). (3.23)
V

Then the local density of the corresponding kinetic solution, uε = § fε(x,v,t)dv,
converges to the unigue entropy solution of (1.1), i.e., we have v

$fε(x,v,t)dv^u(x,t) i n L ^ C O . T ] ; ! ^ ) ) , (3.24)
V

and the entropy ineguality (3.7) holds.

Proof. We begin by first assuming that fε(x,υ,0) is compactly supported in
Lι(Rv; BΎ(Rd

x)\ uniformly with respect to ε. By Theorem 2.1 (consult (2.12)), uε(x, t)
are uniformly bounded, and by (3.21) they have uniformly bounded spatial
variation, i.e.,

, v, t) HBV^XL1^)) ^ C o n s t

Hence {uε(x, ί),0 g t ^ T) is a bounded set in L1 nBY(Rd

x) and by Helly's theorem
it is therefore precompact in Lloc(Rd

x). By (3.22), || uε(x, ί) | |Li (^ } is Lipschitz continuous
in time, and by Cantor diagonalization process of passing to further subsequence
if necessary, (3.24) follows. By Lemma 3.3 this completes the convergence proof
for compactly supported BV initial data. The general case is justified by standard
cutoff and BV-regularization of arbitrary L1 n U°(Rd

x) initial data, consult [4]. Π

We continue with a couple of remarks.

1. The Kinetic Initial Layer. We observe that Lemma 3.5 supplies us with an
ε-uniform bound on the spatial variation on the microscopic scale, (3.21). The
temporal variation (Lipschitz continuity), however, is uniformly bounded only on
the macroscopic scale, (3.22). In general, one cannot control the temporal variation
in the microscopic scale (uniformly in ε), unless we can prevent the possibility of
a kinetic initial layer in (1.2). To this end we proceed by

2. Prepaίring the Kinetic Initial Data. In order to avoid a kinetic initial layer, we

have to bound —- fε uniformly in ε and time, in particular at t = 0. Taking into

account the uniform bound (in ε and t) of the spatial variation, (3.21), it remains
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to bound the nonlinear "interaction" kernel on the right of (1.2), - ( χ U ε - / ε ) In

particular, we therefore need

II Λ(x, v9 0) - χMx,0)(υ) WL\RURV) — 0.

Since by our assumption (3.23) we already have that

{RίχR,,)= N ε W-w 0 WII L i ( i

(3.25)

the requirement (3.25) boils down to

(3.26)

Thus, given the initial conditions u(x, t = 0) = u0(x), we have to prepare the kinetic
initial data, fE(x, v, 0), such that (3.26) holds. If we prepare the kinetic initial data
in such a manner, then we can derive explicit bounds (uniform in time) on the error
between the kinetic solution and the exact entropy solution, as told by

Theorem 3.7. (Error bound). We consider kinetic initial data, /ε(x,D,0)GL1(.Rt;;BV(^))
which are compactly supported in Rv. Suppose we prepare the kinetic initial data so
that

II fε(x9 υ9 0) - χuo(x)(v) \\L\RURV) ~^-

Then the following error bound holds

\\fε{x,v9t)-χUe(XJ)(Ό)y{1£xRo)

^2εαo o | |/ ε(x,ι;,0)| |Li )

Consequently, we have

2II fB(x9 υ9 0 ) -
εJO

>*«<*>) strongly in x Ro)).

(3.27)

• 0. (3.28)

(3.29)

Note. Preparing the kinetic initial data according to (3.27) is a strengthened version
of our assumption (3.23). In this case, the kinetic distribution converges strongly
and uniformly in time, to the equilibrium state χu9 as expected. Also, all the weak
limits indicated in the proofs of Lemma 3.3 and 3.4 are in fact strong ones; in
particular we now have strong convergence of the corresponding fluxes

J <φ)
V

compared with (3.18).

At(u) in ^(R; L\Rd

x x Rv)\

Proof Since the kinetic model (1.2) is translation invariant in time, we can apply
the L1-construction (2.5) to /ε(x, v, t) with ge = /ε(x, v, t + Δt) and obtain

d_

dt
(3.30)

The kinetic equation (1.2a) enables us to upper bound the right-hand side of (3.30),
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- II Xue(x,t = O) - fε(x> V,t =
o

(3.31)

The first term on the right of (3.31) does not exceed

, υ 9 t = 0)\\L\R*χXRv) ^ αo

the second term is less than

-IIXue(*,ί = o)(t>) -fe(x>v
G

Substituting the last two estimates into (3.31) we end up with

xRv) ύ~II fε(x,v,0) - χuo(v)\\Li{R*xRo).

|| fε(x, υ, 0) \\Li{Rυ.m{Rdχ)) + 21| /ε(x, t;, 0) - χUoix)(v) | | L i ( Λ j X j R o ) . (3.32)

Finally, we use the kinetic equation (1.2a) once more, obtaining

<ε L\Rd

xxR0)

|| fε{x, υ, 0) | |Li (^ ; ( 3 3 3 )
and (3.28) follows.

By Theorem 3.6 we also have that uε — u and consequently that χu — χu

converges strongly and uniformly in time to zero, and by adding this to (3.28) we

obtain (3.29) as asserted. •
We note in passing that the L1-contraction and the related BV estimates stated

in Sect. 2 and Lemma 3.5 are not identical with the usual ^-contraction statements
concerning viscosity regularizations of entropy solutions of (1.1). In fact, at any
fixed time level, we have

dx= | |w e -

By (3.29), however, the two statements coincide in the limit as εJ,O,

\\fe-ge\\L}0C(Rd

xxRv)^ J \Xu~XJdvdx= || U - W \\Ll{Rd)9
x,v

and we recover the ^-contraction (and the corresponding BV estimates) for entropy
solutions of the conservation law (1.1).

We close this section by calling attention to a rather unusual result in the theory
kinetic equations. Namely, if u(x, t) is a smooth solution of the conservation law
(1.1), then the equilibrium function χu(Xtt)(v) is an //-solution of the corresponding
kinetic equation (1.2). That is
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Theorem 3.8 (exact solutions). Ifu(x, t)eCnI}([09 T] x Rd

x) satisfies the conserva-
tion law (ί.l), then χu(Xft)(v) is a kinetic solution (1.2) on Rx x [0, ΊΓ\.

Note. Theorem 3.8 is no longer valid when iφc, t) contains shock discontinuities.
After the formation of shock waves, the corresponding kinetic solution has a
"multivalued" form, e.g., χUί{x,t)(v) + χ[U2(X,t),u3(X,t)](v\ a s i n t h e transport collapse
method of Brenier [2].

Proof. We have to show that fε(x, v, t) = xu{Xit){v) satisfies the kinetic equation (1.2a),
i.e., that for any Cξ test function φ(x, v, t)

M Xuixdv)Vt + a(vydxW(x,v,t)dxdvdt = O. (3.34)

Since the integration in Rv is compactly supported (on [ — M ^ , ^ ] ) , it is enough
to consider successively φ(x, v, t) = φ(x, t)-{l,v9v

2

9...}, in which case (3.34) amounts
to the equivalent conservation laws

Indeed, (3.35) are the usual entropy equalities satisfied by continuous solutions of
(1.1), but violating (for p > 1) the Rankine-Hugoniot conditions after the formation
of shock discontinuities.

4. Microscopic Oscillations and Compensated Compactness

In this section we deal with the one-dimensional scalar conservation law

+ ψ = 0. (4.1)
dt ox

The corresponding underlying kinetic equation reads

\jtdt ' "y"' dx J J ^ V ' *' ε £χM*.ί)W ^ ε ( * ' r ' ί ^ ' α * ' ' Λ^9 ( ' '

and we raise the question of convergence of the local "particles density,"
uε(x, t) = J/g(x, v91) dv, towards the entropy solution, u(x, ί), of (4.1). In this section

V

we give an affirmative answer to this question, which is independent of compactness
arguments, i.e., the BV estimates used in Lemma 3.4. Instead, we appeal to
compensated compactness arguments, specifically, we employ Tartar's div-curl
lemma £13]. In this context, it is instructive to see how oscillations which persist
on the microscopic scale are "compensated" in a manner which enables us to pass
to the limit on the macroscopic scale. We have

Theorem 4.1. Consider the nonlinear conservation law (4.1), and let

be the solution of the corresponding kinetic equation (4.2), with convergent initial
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averages

uε(x,0) = lfε(x,v,0)dv^uo(x) in L\Rd

x).
V

Then uε(x, ί) = J fε(x, v, t)dv converges strongly in Lfoc(Rx x Rt

+), p < GO, ίo ί/ie unique
V

entropy solution of the nonlinear conservation law (4.1\ corresponding to initial
conditions u(x, t = 0) = uo(x).

Remarks.
1. The conservation law (4.1) is nonlinear in the sense that there exists no interval
on which the flux A(u) in linear, i.e., A"(u) φ 0 a.e.
2. Theorem 4.1 indicates that there are two procedures which are responsible for
the cancellation of oscillations: microscopic oscillations in fε(x, v, t) are averaged
out by integration over the phase space, as before; and in addition, macroscopic
oscillations in uε(x91) are annihilated thanks to the nonlinearity of the conservation
law (4.1).

Proof. Integration of (4.2) over the phase space yields

dtuε + dx$a(v)fεdv = 0. (4.3a)
V

The corresponding entropy inequality reads

£O. (4.3b)

Since by (2.11) the left-hand side of (4.3b) lies in WUoo

9 Murat's lemma [10], [13]
implies that the negative measure on the right of (4.3b) lies in a compact set of
H[J(RX x Rt

+). Hence we can apply the div-curl lemma [13] to the left-hand sides
of (4.3a) and (4.3b), which gives

uε$a{v)\fε-χk\dv-Sa(υ)fεdv$\fε-χk\dυ

= ΰε'ίa(v)\fε-χk\dv-ja(v)fεdv\\fε-χk\dv. (4.4)
V V V

We recall that the overbar denotes the weak* L00-limit of the indicated quantities
after extraction of appropriate subsequences, if necessary. Following [12], we can
rewrite (4.4) in the equivalent form

(ut-acylφ)\fB-χk\dυ=S\fe-χk\dυ ( la(υ)ftdυ-$φ)fedv ). (4.5)
V V \V V

Using (3.10) and (3.11), the last equality is further simplified into

lφ)fedv-fφ)f'edv). (4.6)
V V J

We now examine (4.6) at an arbitrary fixed location (x, t); with k = ΰε(x, t) we find
after little rearrangement

uε-ύε\\ \a(v)χkdv-\a{v)fεdv ) = 0. (4.7)
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Of course, by (4.2)

fe~Xu = ~βίdt + a(υ)dχ-]fε-.0 in 9',
εj.0

hence

V V

Also, we recall that with k = wε(x, t) we have

\a(v)χkdv = A(ΰε). (4.9)
V

Inserting (4.8) and (4.9) into (4.7) we find

\uε-ΰε\'(A(ΰE)-A(uε))=0.

This implies that

A(uε)=A(Uε), (4.10)

for otherwise, \uε — wε|(x,ί) = 0, which in turn leads again to (4.10). Taking the
weak limit of (4.2), we obtain with the help of (4.8) and (4.10),

Thus, (a subsequence of) wε(x,1) converges to a weak solution of the conservation
law (4.1). Moreover, in view of the nonlinearity of A(u), equality (4.10) implies that
uε(x, t) converges strongly in Lfoc(Rx x Rt

+), 1 ^ p < oo, consult Tartar [13, Theorem
26]. Using this fact together with Lemma 3.3 we conclude that uε converges strongly
in Lfoc(Rx x Rf), p < oo, to the unique entropy solution of (4.1), as asserted.

5. Conservation Laws with a Source Term

In this section we extend the above results to inhomogeneous scalar conservation
laws

01 i = ι OXi

where S(x, ί, •) is an L°°(^ x R+ C1) source term satisfying S(x, ί,0) = 0.
The corresponding kinetic model equation reads

[δ t + φ)- d J / ε ( x , Ό, t) = -ίχUεix,t)(v) - fε(x, v, ί)] + S'(x, ί, ϋ)/β(x, i?, ί), (5.2)

and is augmented with the constitutive relations (1.2b), (1.2c).
A unique kinetic solution for (5.2) can be constructed, as before, by Banach

fixed point iterations which yield

Theorem 5.1. The kinetic model (5.2), (1.2b-c) is well-posed in L^R + L^Ri x Ro)).
Moreover, if fε and gε are two different inhomogeneous kinetic solutions of (5.1), and
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if we let S'^t) denote

S'Jt)^ {maxS'(x9t9v) vesupp fe(x9υ9t)usuppge(x9v9ή >, (5.3)

then we have

max^ || / ε(x, υ91) - #ε(x, υ91) \\L\RχXRv)

T

J S'Jt)dt]'\\fε(x^O)-g^υfθnL,iRdχXRv) (5.4)

We shall only indicate the proof of the L^tf + L 1 ^ x Rv) stability stated in (5.4).
The difference between the kinetic solutions fε — gε (with corresponding local
densities, wε(x, t) = J /ε(x, υ, ήdv and wε(x, ί) = J#ε(x, v, ήdυ) satisfies

V V

Id, + α(») δ j ( / β - ff.) = - [ ( χ M j c » - χWl(»>t)(tJ)) - (/, - »,)] + 5'(x, t, v)(ft - gt).

Multiplying this by sgn (fε — gε) and integrating over Rv and Λ^ (in this order),
we obtain

— || /ε(x, v91) - gιε(x, v91) \\ι}iR'χXRv) ύ S'ooίί)-1| /e(x, ϋ, ί) - #ε(x, v91) \\L\R<iχXRv),

and (5.4) follows. •

We conclude with several remarks concerning the entropy inequality.
The corresponding inhomogeneous kinetic entropy inequality now reads

(5.5)

Moreover, by arguing along the lines of the stability estimate (5.4) we find that
for BV(i^) source terms we have

rgexpj j S'x(t)dt\\\fε(x,v,O)\\m<xLi(

+ J expi f ^ ( τ ^ τ l maxllS^^^llBv^rfί l l /^^O)! !^^,^. (5.6)
0 ^ JJ

ί = 0

This allows us to keep the convergence statement of Theorem 3.6,

J / e ( x , t ; , ί ) ώ - > φ , ί ) , in L°([09T],L1{Rd

x))9

v ε|0

in the inhomogeneous case (5.2). In view of (5.5), we are also able to recover the
macroscopic "continuum limit" entropy inequality for the above limit u = w(x, t\
which in this case amounts to

^ : l « - f e | + Σ /-Csgn(M-fcX^liίM)-Afίfc))]
Ot i=l CXi

g sgn (u - k) [S(x, ί, u) - S(x, ί, fc)], for any real k.
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