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Abstract 

ROSENAO [R] has recently proposed a regularized version of the Chapman- 
Enskog expansion of hydrodynamics. This regularized expansion resembles the 
usual Navier-Stokes viscosity terms at low wave numbers, but unlike the latter, 
it has the advantage of being a bounded macroscopic approximation to the 
linearized collision operator. 

In this paper we study the behavior of the Rosenau regularization of the 
Chapman-Enskog expansion (R-C-E) in the context of scalar conservation 
laws. We show that this R-C-E model retains the essential properties of the 
usual viscosity approximation, e.g., existence of travelling waves, monotonicity, 
upper-Lipschitz continuity, etc., and at the same time, it sharpens the standard 
viscous shock layers. We prove that the regularized R-C-E approximation con- 
verges to the underlying inviscid entropy solution as its mean-free-path e $ 0, 
and we estimate the convergence rate. 

1. Introduction 

ROSENAU [R] has recently proposed the scalar equation 

(1.1) ut + f ( u ) x  = 1 + mZeZk 2 a(k)  = e 1 + m2eZk 2 ~(k) 

as a model for his regularized version of the Chapman-Enskog expansion for 
hydrodynamics. Here the superscript '"^ " denotes the Fourier transform and 
the superscript ""v " denotes the inverse Fourier transform. The operator on 
the right side looks like the usual viscosity term euxx at low wave numbers k, 
while for higher wave numbers it is intended to model a bounded approxima- 
tion of a linearized collision operator, thereby avoiding the artificial in- 
stabilities that occur when the Chapman-Enskog expansion for such an 
operator is truncated after a finite number of terms [R]. 
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In this article we shall compare the behavior of  solutions of  the Rosenau 
regularization for the Chapman-Enskog expansion, abbreviated hereafter as the 
R-C-E equation, (1.1) with those of  the conservation law with viscosity 

(1.2) ut + f ( u ) x  = eUxx, 

towards which (1.1) tends as m ~ O, and with the conservation law with ab- 
sorption 

U 
(1.3) u t + f ( u ) x  --  8rn2 . 

Since the right side of  (t.1) tends to that of (1.3) in the limit of large k, it 
is not surprising that the smoothness properties of solutions of the former 
resemble those of the latter. In particular, the R-C-E equation does not smooth 
out initial discontinuities, but as shown in w 2, it does preserve the smoothness 
of smooth small initial data. On the other hand, the right side of (1.1) also 
resembles that of (1.2) in that both are second derivatives. Consequently, it 
is plausible that the regularized R-C-E equation (1.1), like the ordinary visco- 
sity equation (1.2), should have travelling wave solutions connecting shock 
states of the underlying conservation law 

(1.4) ~ut + f ( U ) x  = O. 

In w 3 we show that when f "  > 0, such solutions exist if and only if m is suffi- 
ciently small. 

At the same time, solutions of the R-C-E equation (1.1) also resemble 
those of the conservation law (1.4) in that both admit unique entropy solutions 
which share similar properties. In w we show that the R-C-E solution 
operator associated with (1.1), like the entropy solution operator of (1.4), is 
L 1-contractive, monotone, and BV-bounded. Furthermore, the R-C-E solution 
of (1.1) tends to the entropy solution of (1.4) as the 'mean-free-path' e $0. 
Finally, if f "  > 0, the R-C-E entropy solution of (1.1) is also upper-Lipschitz 
continuous, in agreement with Oleinik's E-condition, which characterizes the 
entropy solution of (1.4). In w 5 we estimate the convergence rate of the R-C-E 
solution to the entropy solution as e * 0. 

2. Smoothness 

It is well known that solutions of (1.2) are smooth for t > 0; i.e., initial 
discontinuities are smoothed out at positive times. In contrast, by looking at 
piece-wise constant initial data or at the linear case F ( u )  = u,  one sees that 
initial discontinuities of solutions of (1.3) are merely attenuated, not smoothed 
out, at positive times. Since the damping of (1.1) is less than that of (1.3), 
it is clear that (1.1) also does not smooth out initial discontinuities. On the 
other hand, if the (e-independent) initial data for (1.3) is smooth, then the 
solution will remain so provided that m is sufficiently small (see below). The 
next theorem tells us that the same holds for the R-C-E equation (1.1). 
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Theorem 2.1. The solution o f  the R-C-E equation (1.1) remains as smooth as its 
initial data, 

(2.1) u(x ,  O) = Uo(X), 

provided the initial data Uo are sufficiently small so that 

(2.2) 2{mllu0llLoo IIf"(uo)llL~} x/= + m2~llf"(uo)llL~ Ilu611Loo < 1. 

Remark. Since we can ensure that (2.2) is satisfied for any fixed initial data 
by making m sufficiently small, Theorem 2.1 can also be viewed as showing 
how the smoothness properties of the R-C-E equation (1.1) approach those of 
equation (1.2) as m ~ 0. 

Proof. We show formally that (2.2) implies a bound on the L~176 of u 
and Ux. Estimates for higher derivatives then follow in standard fashion; see 
[M]. Furthermore, this fact ensures that the formal estimates can be justified 
either by smoothing the initial data or by applying a further regularization 
with vanishing viscosity. 

The first step towards obtaining the desired bounds is to note that the right 
side of (1.1) can be written as 

l (2.3) 1 + m2e2k2 ft (k) - m;e  u - 1 + m2eak2 a (k) 

- 1  
= lu -- Qme * u}, m2g 

where * denotes convolution, and 

(2.4) Q~(x) =~ 1 e_lxl/e 
2e 

satisfies 

(2.5) II Qe IlL' = 1. 

To obtain a uniform bound on u, multiply (1.1) b y [ u p - a l u  and integrate 
over x; since l up-2lu f (u)  x is an exact derivative, its integral vanishes, while 
the contribution of the right side (2.3) is nonpositive, for by (2.5), 

(2.6) Jup-21 u{u - Qme* u l c l x < - - { I l u l [ P L p  -I[ulI~;~IIQm~,UIILp} 
m2e = m2~ 

--1 
--< - -  II u I I ~ l l  - II am~ IILll = 0 .  m2e 

Dividing the remaining inequality by ( p -  1)II u ll~; -a and integrating over t 
from 0 to T, we obtain 

(2.7) II u(T) IIL~ <= II u0 IIL~, 

and the boundedness of Ilu(T)]]c~ follows by letting p ?  oo. 
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In order to estimate in similar fashion the L = norm of Ux, we differentiate 
(1.1), obtaining 

-1  
(2.8) uxt + f (U)xx - {Ux - Qme * u}, 

m28 

and as before, we multiply (2.8) by l uxlP-aux and integrate over x. In- 
tegrating by parts where necessary in the term containing f ,  noting that by 
(2.4) 

1 
(2.9) n Qm~ HL~ = - - ,  

m8 

and factoring out (p - 1)I1 ux I[rPp, 1 we obtain 

d 1 
(2.10) ~[lUx[lZP + --{lm2 8 - maell f"(u)llL~(t,x) Ilux[IL~<t,x>} IluxllLe 

1 1 
--< II u [IL~ < II u0 IIL~. m382 = 

Next we denote 

(2.11) Y(T) =-- m2~ll f"(u0)l[L~ II Ux(Z)ll~. 
Applying Oronwall's Lemma to (2.10) and letting p ~ 0% we obtain that Y =  
suPT Y(T) does not exceed 

(2.12) 
m - T(I- Y)/mZe} 

Y ( Z )  < Y <- e-T(1-Y) /m2ey(o)  - ' 1 - -  {1 -- e Ilu01lL~ II/"(.0)llL~ 
1 - Y  

m 
=< Y ( 0 ) +  - - I l u 0 I I L ~  [[f"(Uo)llL~, 

1 - Y  
as long as Y< 1. Estimate (2.12) is a quadratic inequality for Y, for which 
the roots of the corresponding equation are 

(2.13) Y=�89 + Y(0) + ~ / ( 1  - Y(O) )2 -4ml luo l l r ,~  Ilf'(uo)llL~}, 

Our assumption (2.2) tells us that the expression under the square root on the 
right is positive. Since Y(0) is bounded by the smaller root in (2.13), it follows 
from (2.12) and from the continuity of Y ( T )  that Y ( T )  remains bounded by 
this root. This in turn confirms that indeed Y< 1, and the uniform bound 
of Ilux(Z)llL~ follows. [] 

Remark. Arguing along the above lines for the conservation law with absorp- 
tion (1.3), one arrives at the inequality Y ( T )  <= e-T(1-r)/m2ey(o),  analogous 
to (2.12). This shows that if Y(0) < 1, then Y ( T )  remains < 1. Consequently, 
if Y(0) < 1, then Y ( T )  and hence I[ux(T)]lL~O satisfy a maximum principle in 
this case. 

3. Shock Profiles 

LAX'S generalized entropy conditions [L] for "legitimate" shock-wave solu- 
tions of the conservation law (1.4) can be interpreted as the requirement that 
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these shocks can be realized as the limit of  travelling wave solutions of  (1.2). 
I f  the flux function f is convex, these conditions reduce to the shock ine- 
qualities [L] 

(3.1) f ' ( u _ )  > s > f ' ( u + ) ,  

where s is the speed of  the shock joining u_ on the left to u+ on the right. 
In this section we show the analogous result for the (convex) R-C-E equation 
(1.1): It  admits travelling wave solutions whose limit as e ~ 0 are shock wave 
solutions of  (1.4), if and only if (3.1) holds and m is sufficiently small. 

Theorem 3.1. Assume f "  > O. Then (3.1) and the Rankine-Hugoniot shock condi- 
tion 

(3.2) H(u+) = O, H ( u )  =-- - s { u  - u_} + {f(u)  - f ( u _ ) }  

are necessary conditions for  the existence o f  a travelling wave solution 

(z s,) u --= , lim u ( z )  = u•  
Z ~ •  

for  (1.1). 
Conversely, i f  (3.1), (3.2) hold, then a sufficient condition on m for  the ex- 

istence o f  such a travelling wave is 

(3.3) 4m 2 sup { - f " ( u )  H(u)} < 1, 
u+<u<u_ 

and a necessary condition is 

(3.4) 4 m Z [ - f " ( u . )  H(u. )}  < 1. 

Here u ,  is defined by 

(3.5) f '  ( u . )  = s. 

x - st d 
Proof.  Define z -  and let ' denote - - .  Using (2.4) we find that a 

e dz 
solution of  (1.1) of  the form u - - u ( z )  satisfies 

(3.6) - s u "  + f ( u ) '  = [Qm * u]",  

where the convolution is now taken with respect to the variable z. The condi- 
tion limz_~_=u ~ u+ implies that also Q m . u - ~  u+ as z ~ • so there exists 
a sequence of  values zff tending to •  on which ( Q m , u ) "  tends to zero. 
Hence,  integrating (3.6) from z 7 to z and letting j ~ c~, we obtain 

(3.7) H ( u )  ~ - s { u  - u_} + {f(u) - / ( u - ) }  = {am * u l ' .  

Now letting z tend to +co along the sequence z +, we find from (3.7) that 
H(u+) = 0, i.e., (3.2) holds. 

Noting that H " = f " > 0 ,  we see that H ( u _ )  = 0 = H ( u + )  implies 
H '  = f '  - s < 0 at the smaller of  u,_, and H '  > 0 at the greater of  the two. 
Hence,  if  u+ < u_, then (3.1) holds, while if this inequality is reversed, then 
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so are those of  (3.1), i.e., we can replace (3.1) by the condition 

(3.8) u_ > u+. 

d 2 
Next, we apply to (3.7) the operator 1 -  m 2 -  (the inverse of  the &2 

operator of  convolution with Qm), to obtain 

(3.9) u '  = 1 - m 2 H ( u )  = H ( u )  - m 2 { H ' ( u )  u" + H " ( u )  (/~,)2}. 

We note that  since all nonzero solutions g of  1 -  m 2 g = 0 are un- 

bounded on R, the solution of  (3.9), with bounded u and u' ,  which we con- 
struct below, also satisfies (3.7). To  construct such a solution we introduce 
the auxiliary variable 

(3.10) v = u ' ,  

which enables us to rewrite (3.9) as the 2 x 2  system 

(3.11) u '  = v, 

(3.12) m2H'  (u)  v '  = H ( u )  - v - mZH"(u)  v 2. 

The convexity of  H ( u )  together with the Rankine-Hugoniot  condition (3.2) 
imply that the only critical points of  system (3.11), (3.12) are (u_, 0) and 
(u+, 0). 

We remark that the linearization of (3.11), (3.12) near the critical points 
(u_, 0) and (u+, 0) shows that they are both  saddles, so that topological 
methods (see, e.g., [S]) cannot be applied; one might even be tempted to con- 
clude that the existence of  a trajectory joining these saddle points is unlikely. 
What  saves the day, however, is that the system is singular on the line u = u . ,  
i.e., that the coefficient H ' ( u )  on the left of  (3.12) vanishes at u . ,  which by 
(3.1) lies between u_ and u+. 

The key to finding a trajectory joining the two critical points is to note 
that  solutions of  (3.11), (3.12) can cross the line u = u.  only at points 
(u . ,  v , )  which make the right side of  (3.12) vanish: Equation (3.11) implies 
that  H ' ( u ( z ) )  is ~ ? ( z - z , )  near the value z .  for which u ( z . )  = u . ,  and 
hence (3.12) shows that  Iv l - - ,  ~ as z - * z , ,  unless the right side of  (3.12) 
tends to zero. Also, since the right side of  (3.12) is quadratic in v, a com- 
parison of  (3.12) with the equations z v ' =  + v  2 shows that in fact Iv I reaches 
infinity before u reaches u , .  

In order to obtain a trajectory joining u_ at z = - c o  to u+ at z = +co, 
it is therefore necessary and sufficient to find trajectories joining (u_, 0) at 
z = - o o  and (u+,0)  at z =  + ~  to ( u . , v . )  at some finite values of  z; we 
can always arrange for the two values of  z to coincide because the system is 
autonomous.  Since trajectories through (u . ,  v . )  are not unique, the existence 
of  our desired trajectories, which when put together join u_ to u+, no longer 
seems so unlikely. 
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Now the right side of  (3.12) is a quadratic experession in v, whose roots are 

(3.13) 
-1  • ~/1 + 4mZH"(u) H(u) 

v• (u) = 2m2H,(u) 

If  the argument under the square root is negative at u = u . ,  then clearly no 
such v. exists; this gives the necessity of  (3.4) for the existence of  travelling 
wave solutions. We now turn to discuss the sufficiency of  condition (3.3): it 
says that v• exist for all u between u_ and u+. We want to show that when 
this happens, then the trajectories mentioned above exist if and only if (3.8) 
holds, i.e., that these trajectories exist if we replace u_ and u+ by 

(3.14) u-  = max{u_, u+} and u + = min{u_, u+}, 

respectively, but not if we replace u_ by u + and u+ by u- .  
The linearization of our system around the two critical points has the form 

(3.15) t 0 (:) 
Since the determinant of the matrix on the right of  (3.15) is negative, both 
critical points are saddles, as asserted. Now, it is not hard to calculate directly 
the asymptotic directions of  the solutions that approach each critical point as 
z tends to • as these are simply the eigenvectors of  the matrix in (3.15), 
but in any case we have to determine from (3.11), (3.12) the signs of  u'  and 
v' in various regions, and this information suffices to determine in which 
regions the various asymptotic directions lie. In this way we obtain the phase- 
plane Diagram 1 for the case when m satisfies (3.3). 

/ 

u%v~)_ 

Diagram 1. Phase-plane for small m. 
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Based on Diagram 1, the existence of  a travelling wave solution is argued 
as follows. There is a trajectory that leaves the critical point (u-,  0) and 
enters region I. If  this trajectory remains in region I until u reaches the value 
u . ,  then by the above analysis it reaches the point (u . ,  v . ) ;  in this case u ' =  v 
as well as u are monotonic on this semi-trajectory. The only way that the tra- 
jectory can leave region I before reaching the line u = u.  is by entering region 
II; but v' > 0 in this region, so "clear ly"  the trajectory still reaches (u . ,  v , ) .  
A similar analysis backwards in the " t ime"  z shows that there is a semi-trajec- 
tory from (u , ,  v , )  to (u +, 0). By checking the other trajectories leaving and 
entering each critical point we see that no trajectory joins u + to u-  or either 
point to itself. 

Although the above argument is sound provided that Diagram 1 is ac- 
curate, we have yet to verify one crucial feature of  that diagram. Specifically, 
the argument assumes that if a trajectory enters region II at the point P and 
travels within this region keeping v ' >  0 and u ' <  0, then it cannot reach 
region III. (Clearly, no problem arises from the possibility of re-entering re- 
gion I.) Thus we have to show that the situation illustrated in Diagram 2 is 
impossible: 

v 

\ 

/ 
Diagram 2. We show that this phase plane diagram cannot occur because no such point 
Q exists. 

Analytically, we must show that 

(3.16) v_(u l )  ~ V+(b/2) for /-g, < /gl '~ U2" 

Defining Hi = - H ( u i )  and A i = - 4 m 2 H " ( u i )  H(u i ) ,  we reduce (3.16) to 

(3.17) -2H1{1 + x / i - -A1} /A  1 <= -2//2{1 - x / i  - A 2 J / A  2. 

Now, the convexity of  f (and hence of H)  together with the fact that H 
vanishes at u• imply that H1 > H2 > 0; these facts together with our assump- 
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tion (3.3) imply that 

(3.18) 1 _ Ai > 0. 

Therefore, a sufficient condition for (3.17) to hold is that 

(3.19) {1 + nil  - A  1 }/A 1 >= {1 - X/r l -A2} /A2  

for all A i satisfying (3.18). A little algebraic manipulation shows that this is 
indeed the case. Consequently, (3.16) holds, i.e., no point such as the point 
Q in Diagram 2 can exist, and so the argument based on Diagram 1 is valid. 

As m increases past the value that makes equality hold in (3.3), we obtain 
the situation of  Diagram 3. Namely, a gap appears in region II, through which 
our trajectory might possibly plunge into the abyss of  region III. Hence we 
cannot say whether a trajectory joining u -  to u + exists or not. Finally, when 
m increases past the value that makes equality hold in (3.4), then the phase- 
plane looks like Diagram 4, and the descent of  our trajectory to -oo  becomes 
a certainty. [] 

v~ 

\ / 

f 
Diagram 3. Phase plane for intermediate m. 

\ 

Diagram 4. Phase plane for large m. 
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We close this section by quantifying ROSENAU'S [R] statement that the 
travelling-wave solutions of  the R-C-E equation (1.1) give narrower shock 
layers than those of  the viscosity equation (1.4). As our measure of shock 
width, we adopt w =  ( u _ -  u+)/lu.] with u.  evaluated at the point u .  at 
which H ' ( u )  = 0. (It should be noted, however, that although this value of  
u~ is always maximum for (1.4), it is maximum for (1.1) only if the trajectory 
does not enter region II of  Diagram 1; this last condition is guaranteed by 
our analysis only when the curve v = v+(u) has its unique local minimum at 
u . . )  Since the relevant value of  u .  for (1.4) is given by u . =  - H ( u . ) ,  while 
the value of  u ,  for (1.1) is v§  the estimate 

i < WChapman--Enskog < 1 (3.20) ~ = = 
Wviscous 

follows from the simple lemma: I f  a quadratic equation has real roots of  the 
same sign, then the root closer to zero lies between r and 2r, where r is the toot 
of  its linear part. 

4. Entropy Solut ions  and the Zero Mean-Free-Path Limit  

The parameter m does not play a role in our analysis in this section, and 
so will be set equal to 1 for convenience. 

Since solutions of  the R-C-E equation (1.1) may contain singularities, weak 
solutions must be admitted. Since the latter need not be unique, we single out 
an "en t ropy"  solution of  the R-C-E equation (1.1) as the one satisfying the 
KRUZHKOv-like [K] inequality 

(4.1) Ot[u~ - c [  + Ox[sgn(u e - c){ f (u~)  - f ( c ) } ]  

1 
=< - - -{ lue  - c] - sgn(u~ - c)Qe* (ue - c)), 

$ 

for all real c's. In particular, by choosing c = +su p lu  e ] or c = - s u p l u  e I, we 
obtain from (4.1) that uc is respectively a supersolution or a subsolution of 
(1.1), and hence (1.1) is satisfied in the sense of  distributions. We turn to show 
that (4.1) admits a unique solution u~, and that this solution converges to the 
unique entropy solution of (1.4) as e goes to zero. 

Theorem 4.1. For any Uo in BV there exists a unique solution ue of  the R-C-E 
equation (4.1), and as e $ 0, ue converges in L 1 to the unique entropy solution of  
the conservation law (1.4). 

Proof .  Add the artifical viscosity term fiuxx to the right side of  (1.1); the 
resulting equation has a unique smooth solution uf. By a straightforward 
adaptation of  KRUZHKOV'S proof  [K, Section 4] for the artificial-viscosity 
method for (1.4), we obtain that the set [uf/~>0 is bounded in BV (uniformly 
in e and 6) and precompact in L 1, and hence that a subsequence con- 
verges as fi ~ 0 to a solution uc of (4.1). Similarly, by the argument on 
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pages 224, 225 of  [K] we obtain from (4.1) the consequence that 
T o o  

(4.2) ~ ~ [ ] u , - v ~ ]  q~t+sgn(u~-v~)[f(u e) -f(v,)]q~x}dxdt 
0 - - c o  

_-> ~ { lug-  vE] - sgn(ue -v~)Q~* (u~ - v~)} q~dxdt 
0 - o o  

where q~ is an arbitrary nonnegative test function. 
Next, we remark that the expression inside the braces on the right of  (4.2) 

need not be positive, but in view of  (2.5), its spatial integral is. Therefore, 
by choosing # ( t ,  x) = # l ( t )  ~02(x) and letting 4 2 tend to the function that 
is identically one, we obtain 

T o o  

(4.3) [ 
0 --o0 

Continuing as in [K], we let ~bl approach the indicator function of  the inter- 
val [0, t] to conclude that 

(4.4) Ilu~(t) - v~(t)llLx ~ Ilu (0) - 

In particular, this shows that the solution of (4.1) is unique. 
U 5 The solutions {ue} of  (4.1) inherit the BV-bound of the { ~ }, and the argu- 

ment of  Section 4 of  [K] shows that this bound implies precompactness in 
L 1. Hence as e--, 0 a subsequence converges to a weak solution u of  (1.4). 
Because the right side of  (4.2) is known to be positive only when q~ has no 
dependence on x, we cannot use the entropies of (1.4) (as in [Ta]) to conclude 
that u is the entropy solution of  (1.4). However, (4.4) implies the corresponding 
estimate for the weak solutions u and v obtained in the limit as e goes to zero, 
and by an argument of LAX [L] this suffices to show that we obtain the en- 
tropy solution: It is not hard to see that when (1.4) has a smooth solution, 
then our scheme must converge to that solution. Hence by the corollary to 
Theorem (3.5) of  [L], any solution u of  (1.4) obtained in the limit e ~ 0 from 
(4.1) has the property that all of  its discontinuities satisfy the generalized Lax 
shock inequalities. By Theorem (3.5) of [L], this implies that u is the unique 
entropy solution of  (1.4). Finally, since any sequence of  e's tending to zero 
has a convergent subsequence, the uniqueness of  the limit shows that con- 
vergence holds without passing to a sequence. [] 

5. The Convergence Rate of the Zero Mean-Free-Path Limit 

Theorem 4.1 shows that the R-C-E equation (1.1) retains several properties 
of  the conservation law with viscosity (1.2). In particular, (4.4) asserts that the 
solution operator is an Ll-contraction, and hence by conservation and 
translation invariance it is monotone [CM, Lemma 3.2], and by translation in- 
variance it is BV-bounded: 

(5.1) [I u (t)[J v __< XI. (0)NBv. 
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Next we show that the nonlinear R-C-E equation (1.1) also satisfies 
Oleinik's E-entropy condition (cf., e.g., [Sm, T]). 

T h e o r e m  5.1. Assume f "  >_ ~ > O. Then the following a priori estimate holds 1 

1 
(5.2) Hue(t)llLiv+ __< t > 0 .  

I l u ~ ( 0 ) l 1 - 1  , = Lip+ --}- ott 

Remark. The inequality (5.2) implies that the positive variation and hence the 
total variation of ue(t) decay in time. Furthermore, this gives us another 
proof of the zero mean-free-path convergence to the entropy solution of (1.4) 
for any initial data u0 in Lloc (cf. Corollary 5.2). 

Proof. We add the artifical viscosity term fiUxx to regularize (1.1), obtaining 

_ _  2 3 (5.3) OtUfi~ + Oxf(U~) = 1 {u~e _ One* u~} + ~OxU ~ . 
m2e 

Differentiation of (5.3) yields for w =--OxU~, 

1 
( 5 . 4 )  Otw +f ' (u~e)  OxW + f " ( u ~ )  w 2 - [w - Qme * w} + O02x w.  

m2c 

Hence, since f "  > o~ > 0, it follows that W(t)  =-- maxx w(t)  is governed by the 
differential inequality 

1 
(5.5) l~(t) + o~W2(t) __< - -  {W(t) - QmE* W} <= 0 

m 2 e  

and (5.2) follows by letting ~ $ 0. [] 

Theorem 5.1 shows that solutions of the R-C-E equation (1.1) are 
Lip+-stable. Moreover, (5.t) implies that the Lip'-size of their truncation is of 
order ~Y(e), for 

(5.6) 

II 0,u~ + 0xf(u~)lltip, = ell Qme * OxUe IlL, ~ ell Qme IlL 1 I1 ue(t)llsv - ell ue(0)llBv. 

Using the result of [T] we conclude that the Lip'-convergence rate of the 
R-C-E solutions to the corresponding entropy solution is also of order G(e).  

C o r o l l a r y  5.2. Let f "  >= ot > 0 and let ue be the unique R-C-E solution of (4.1) 
subject to C 1 initial conditions uc ( 0 ) =  u(O). Then ue converges to the unique 
entropy solution of (1.4), and the following error estimates hold: 

Hu~(t) - u(t)llw-s,p <= Const.  e (sp+l)/2p, 1 <=p < co, s = O, 1. 

~b(x) -- ~b(y) 
1 We let [] ~ [[Lip' 1[ ~ HLip + and 1[ ~b HLip' denote respectively ess SUPx.y - - -  , 

ess suPx.y[4(x)x~_(y)]  , andsup  (cb_q3(0),V) x - y  
- Y _1 + II ~' Ikio 
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Remark. The choice (s, p) = (1, 1) corresponds to a Lip'-convergence rate of 
order G(e).  The choice (s ,p)= (0, 1) corresponds to the usual LLcon- 
vergence rate of order G(e 1/2) for problems with viscosity. 
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