
SIAM J. ScI. STAT. COMPUT.
Vol. 11, No. 1, pp. 161-173, January 1990

(C) 1990 Society for Industrial and Applied Mathematics
010

AN O(N2) METHOD FOR COMPUTING THE EIGENSYSTEM
OF N N SYMMETRIC TRIDIAGONAL MATRICES
BY THE DIVIDE AND CONQUER APPROACH*

DORON GILL AND EITAN TADMOR$

To Eugene Isaacson on his 70th birthday

Abstract. An efficient method to solve the eigenproblem of N x N symmetric tridiagonal matrices is
proposed. Unlike the standard eigensolvers that necessitate O(N3) operations to compute the eigenvectors
of such matrices, the proposed method computes both the eigenvalues and eigenvectors with only O(N2)
operations. The method is based on serial implementation of the recently introduced Divide and Conquer
algorithm [3], [1], [4]. It exploits the fact that by O(N2) Divide and Conquer operations one can compute
the eigenvalues of an N x N symmetric tridiagonal matrix and a small number of pairs of successive rows
of its eigenvector matrix. The rest of the eigenvectors (either all together or one at a time) are computed
by linear three-term recurrence relations. The paper is concluded with numerical examples that demonstrate
the superiority of the proposed method for a special class of symmetric tridiagonal matrices, by saving an
order of magnitude in execution time at the expense of sacrificing a few orders of accuracy, although for
symmetric tridiagonal matrices in general, the method appears to be unstable.
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1. Introduction. The QR algorithm computes the eigenvalues of an N N Sym-
metric Tridiagonal (ST) matrix with O(N2) operations, while the corresponding eigen-
vector matrix is accumulated during the algorithm at the expense of O(N3) operations.
The additional order of magnitude required to compute the eigenvectors is typical of
serial algorithms. A complete O(N2) eigensolver can be obtained by appending such
serial algorithms with the Inverse Iteration (INVIT) method. Indeed, O(N) operations
of only one INVIT will suffice to accurately compute each eigenvector corresponding
to an isolated eigenvalue [8, Chap. 4]. In case of clustered eigenvalues, however, the
INVIT requires a more carefully chosen initialization, to avoid the loss of mutual
orthogonality between the corresponding, closely "related" eigenvectors.

Recently, a parallel Divide and Conquer (DC) algorithm was introduced for
computing the spectral decomposition of ST matrices [3], 1 ], [4]. A serial implementa-
tion ofthis algorithm, described in 2, requires the same number ofoperations. Namely,
the eigenvalues, which coincide with the roots of the so-called secular equation [6],
are computed at the expense of no more than O(N2) sequential operations, while the
associated eigenvectors necessitate O(N3) sequential operations. As before, the INVIT,
taken with the necessary precautions, is available here as an O(N2) method to compute
these eigenvectors. In 3-4, we propose an alternative efficient method, derived from
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(and therefore better suited to) the DC algorithm, which computes the eigensystem of
N x N ST matrices with only O(N2) sequential operations. The method employs linear
three-term recurrence relations that successively compute the rows of the eigenvector
matrix (or the components of each of the desired eigenvectors). The coefficients of
these relations depend on the already computed eigenvalues, and the method hinges
on the fact that the initial first two rows (or components) for the recurrence relations
emerge naturally from the DC computation of these eigenvalues. Thus, the input data
for the recurrence relations depends solely on the O(N2) operations for the DC
calculation of the eigenvalues. Together with the additional O(N2) operations required
to carry out these relations, we end up with an efficient O(N2) method to compute
the whole eigensystem of ST matrices. It should be emphasized that the advantages
of the DC algorithm are retained in our case. That is, we have a method which on the
one hand is well suited to exploit parallelism; on the other h/nd, even when run in
serial mode on large problems, the method is faster than the previously best sequential
algorithms, e.g., [3], [4].

The main limitation of the proposed method lies in the possible instability of the
three term recurrence relations mentioned above. In 4, we identify a useful class of
ST matrices for which the corresponding recurrence relations are stable. In such stable
cases, the numerical results of our method are almost as accurate as the standard DC
algorithm. In the general case, however, the accuracy of our method may deteriorate
for large N, N> 100, due to the instability of the corresponding recurrence relations.
To overcome the unstable error accumulation in such cases, one may restart the
recurrence relations at any stage of the recursive iterations with two new successive
rows of the eigenvector matrix. In 4, we show how to obtain two such successive
rows for restarting, at the expense of O(N2) DC operations.

Due to the sensitivity of the three-term recurrence relations, their input data should
be provided with high accuracy. To achieve this, we employ in 5 an improved root
finderminteresting for its own sakenin order to solve the secular equation mentioned
above. Numerical examples that demonstrate the efficiency as well as the limitations
of the proposed method are presented in 6.

2. The Divide and Conquer algorithm--An overview. Let DN be an N x N diagonal
matrix and let DN + trznzt be a Rank One Modification (ROM) of this matrix by a
unit N-vector ZN. The spectral decomposition of such ROM matrices is the heart of
the Divide and Conquer (DC) algorithm. Here we note that the problem of finding
the spectral decomposition of an N-dimensional ROM matrix, the so-called updating
problem, can be solved at the expense of no more than Const. N2 operations [1], [3],
[4]. Details of this solution are discussed in 4.

With this in mind we now turn to consider the eigenproblem of general N x N
Symmetric Tridiagonal (ST) matrices

tl t12
t21 I22

tmm tmm+l

tm+ l,m tm+l,m+
tN_I,N

tN,N-1 tNN

o tji.

Throughout the paper, vectors and matrices will be used with a subscript index denoting their
dimension.
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We can assume without restriction that N is even, N 2m, and that TN is already
given in its unreduced form, i.e., ti, i+l 0, 1 _-< i_-< N- 1; otherwise, Tv is decoupled
into smaller unreduced ST matrices. Then, we can split TN into the sum of

tl t2
t22

tmm fl 0

0 t,,,+,m+ fl

tN,N.

,-,-,(1),
(2 1) TN N/2 +flbNb bN=eNm)+e(m+)N, N

where the blocks T2 and T are N/2 x N/2 ST matrices and t,m+l 0 is the
coupling term of these two blocks

The DC algorithm [3], [1], [4] is based on the fact that in order to solve the
eigenproblem of N-dimensional ST matrices, it is sucient to solve this problem for
(N/2)-dimensional ST matrices. Specifically, if

(1), D(1) A(1) O(1) P(,),D(1)t IN
(2.2)

/ --N/2ZXN/E’N/2,

N/2 N/2XN/2N/2 N/2N/2

are the spectral decompositions of the N/2 x N/2 ST matrices -s/2 and T2,
respectively, then we can compute the spectral decomposition of the N x N ST matrix
TN by the following procedure"

I. First, we evaluate the unit N-vector

1 --N/2(2.3a) ZN= P(2

so that by (2.1), (2.2), and (2.3a), TN is unitarily similar to the ROM matrix

Try [p2Al)o)tN/21N/2

P/2AN2<2)’-N/Ea +bsbN

N/ A/ -/, +2flzszP}2 A/
P/2

,-,2)... (DN
’N/z

DN (

--(1).,. ]

II. Second, we solve the updating problem by finding the spectral decomposition
of the ROM matrix

(2.3b) DN+trZNZN=QNANQ, QNQ’N =IN, o’=2/3.
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III. Finally, we compute the unitary matrix

(2.3c) p= [P%2 ] QP()/2
and obtain, by (2.3b) and (2.3c), the spectral decomposition of TN as

P()/2
QANO P%2

(N2 19(2) PNANPtT p
/

PP I.

This process can be applied recursively: the N-dimensional eigenproblem of TN is
solved in terms of two independent (N/2)-dimensional eigenproblems of T%2 and

N/2, which in turn are solved in terms of four independent (N/4)-dimensional
eigenproblems of T(4, ,-.-,(2),. T(3) (4)

1N/, --N/n, TN/4, etc. Thus, the DC algorithm for an
N 2"-dimensional ST matrix TN is organized as follows. After n- 1 splitting steps
we are left with 2 "-2 pairs of 2 x 2 ST matrices. In the first iteration they are used to
construct, with the help of (2.3a)-(2.3c), the eigensystem of 2 "-3 pairs of 4 x 4 ST
matrices; in the second iteration, one constructs the eigensystem of 2 "-4 pairs of 8 x 8
ST matrices, etc.; after n-2 such iterations we end up with the eigensystems of the
pair T(NI2 T(2)

N/2, and the last n 1 iteration solves the eigenproblem of TN. A sequential
implementation of a typical kth iteration consists of 2 n-k-1 times, evaluating the
2k+l-dimensional unit vectors z in the first stage (2.3a), solving 2k+l-dimensional ROM
eigenproblems in the second stage (2.3b), and computing 2k+l-dimensional products
of unitary matrices in the third stage (2.3c).

The total amount of work spent on the first two stages, (2.3a) and (2.3b), of all
iterations, does not exceed 2 Const. N2; the total work required for computing the

.--1 n-k-1 Thus, the total operations cost ofeigenvectors in (2.3c) is Yk=I 2 4(2k) N
the DC algorithm for finding the eigensystem (both the eigenvalues and eigenvectors)
of an N x N ST matrix is N3+ 2 Const. N2.

If only the eigenvalues are required, then we can do better by saving the O(N3)
operations required to compute the eigenvectors in the third stage (2.3c). Instead, the
first stage of a typical kth iteration, which requires 2 n-k-1 different evaluations of
2k/l-dimensional unit vectors of the form

b2k+Z2+l p22)

can be efficiently implemented as follows: According to (2.3c), P) is represented by
a successive product of

2J
"o. .(2k-J) j k, k- 1," ", 1,

2

where Q) were found by spectral decompositions of ROM matrices in previous
-(;iterations; similarly, P is represented by a successive product of

(2k-j+l)

(2-+) j=k,k-1,’",l.

(k)Hence, we can evaluate each of the 2 "-k- different vectors, z2*, as z2* z2* where

.. 2+
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at the expense of k= 2k_j+l 22J <4k+ operations The total work spent on the first
n--1 2n-k-1 k+lstages in all iterations is therefore k--1 4 < 2N2. This is complemented with

the solution of 2 n-k-1 different updating problems (see (2.3b))

(2.4b) D2k+’ + CrZ2k+’Zk+’ Q2k+’A2k+’Q2TM

The total work spent on the second stage in all iterations amounts to 2 Const. N2.
Consequently, the total operations cost of the DC algorithm, (2.4a), (2.4b), for finding
the eigenvalues of an N x N ST matrix is (2 Const. + 2)N2.

3. An O(N2) method for the eigensystem of N x N ST matrix. Given an N x N
ST matrix TN, we can compute its eigenvalues by the DC algorithm (2.4a), (2.4b) at
the expense of no more than O(N2) operations.2 Thus, it remains to compute efficiently,
i.e., with O(N2) operations, the eigenvectors of this matrix. To this end we may proceed
as follows.

We seek the unitary matrix PN, PNPt- IN, which diagonalizes TN,

(3 1) TN PNANPN
Let pi)__ p) denote the ith row vector of PN. Equating the ith rows of

TP PAu

we obtain, in view of the reduced tridiagonal structure of

p%+l) p%)A ti, i+ # O.(3.2) t, i_,p-l) + ti,iP%) + ti i+1 N,

Equation (3.2) is a linear three-term recurrence relation between the rows, p), of PN,
whose coefficients are determined by the entries of TN. The input data required to
solve these relations uniquely consists of

(1) The eigenvalues AN =diag (A), A2), AN)) of TN, which determine the
terms p%)AN =- (A()pi, A<2)p2, , A<N)pN) on the right of (3.2). The eigenvalues are
computed by the DC algorithm (2.4a), (2.4b) with (2 Const.+2)N operations.

(2) Two successive rows of PN that will serve as initial data for the recursive
three-term relations (3.2). The proposed method hinges on the observation that two
such rows emerge naturally from that part of the DC algorithm (2.4a), (2.4b) which
computes the eigenvalues of TN. Indeed, from the last n- 1 iteration of (2.4a) we have
at our disposal the unit N-vector zN, which according to (2.3a) satisfies

0

../... .] 1 N/2l(3.3) Z(N2}2J ."--19(2)N/2..I| 1 ’*(2)N/2.1|-%/"
,0

Hence Z(NI2 and (2) o()t
N/2 are in fact the last and first column vectors of -N/2 and

respectively. Put differently, (2()/2 ON and (ON/2 2 ,
N/2 are row numbers m N/2

and m + 1 of

In fact, as observed by Cuppen [3], this number of operations can be substantially reduced by up to
O(N log N) operations, in practical cases which employ sufficiently many deflations.
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Consequently, equating the m and m/ 1 rows of (2.3c), we obtain the two initial
successive rows as

p(m)= (Z2, Os/2)tQN,
(3.4)

P(Nm+l) (ON/E, Z(2)N/E)tQN;"
the remaining rows of Ps are computed recursively by (3.2)

(3.5a) p(+,) 1__ p()(As t,.ils)- t,,i_,p(-l)], i= m + 1, , N- 1,
ti, i+l

,(i-1) 1
(3.5b) vs =[P((As-tiIs)-ti.i+lP(;v+’], i=m,m-1,. ,2.

ti, i-1

The operation cost of (3.4)-(3.5) does not exceed 3N2. Thus (2.4a), (2.4b) together
with (3.4), (3.5) provide us with an O(N2) method for computing the whole eigensystem
of N x N ST matrices.

The error analysis of the proposed method depends on two ingredients:
(1) The accuracy of the input data for (3.5a), (3.5b), namely, the errors

accumulated in computing the eigenvalues As =diag (,(1), A(2), ", A(N)) and the two
successive rows pm), p,+l) of Ps. The size of these errors is determined by the stability
properties of the DC algorithm (2.4a), (2.4b). In this context, we recall that stable
behavior of the DC algorithm hinges on an accurate solution of the ROM problem
(2.4b) (see [1], [3], [4]). In 5, we borrow from [1], [3], and [4], discussing a root
finder for an accurate computation of the eigenvalues A2k+l which are obtained as the
roots of the characteristic equation associated with the ROM matrix in (2.4b).

(2) The second source of error is due to accumulation of rounding errors in the
recurrence relations (3.5a), (3.5b). In order to examine this error accumulation, we
rewrite (3.5) as a one-step iteration

(3.6a) [p(+’>, p()]- [p(), p(-’)][ I/ ,,.,+,[As -’,,,Is] Is ] i= m + 1,""", N-1,
-(t,.,_,/ti.,+i)Is Os

(3.6b) [p-’,p)]=[p),p+l)][ 1/ti’i-’[As-ti’ils] IN] i=m,m-1,...,2.
--( ti,i+l/ ti, i-1)IN ON

An indication of the stability properties of (3.6a), (3.6b) is provided by the eigenvalues
K=K 0 of the two 2N2N matrices on the right-hand sides, i.e., for i=
re+l, m/2, , N-1 we have

2(3.7a) t,.i+l(Kij) -(Aj-ti.,)ui+ti.i-l=O, j=l,2,...,N

and for i= m, m-1,..., 2 we have

2(3.7b) ti, i_l K ij -(hj- ti, i) K ij / ti,i+l- 0, j 1, 2," ", N.

Hence the error in the ith iteration of (3.5) is amplified by a factor of at least

g<i)=_ max
Ij<N

Thus, the method is expected to be stable if

N--1 N-1

(3.8) H g(i)= max (I K+
i=2 i= l<--J<=N

ijl, ]K i1) -< Const.
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As a canonical example for such stable behavior, let us consider ST matrices
whose entries are "slowly varying" along their diagonals, i.e., tij ti+l.j+. Now, if the
superdiagonal entries are properly scaled so that also t.+- t.-l, then by Gershgorin
estimate we have for any 1 <-j <= N,

Ix t,.,[ < (I t,.,-l + t.,+[)= 41t,.,_[" Iti.i+ll,
and hence the product of the characteristic roots r is of order unity, for

2
ti,il2 (A- t,,i)4(A- ti,i)2-4ti,i+lti,i_

1.I,1
2 ti,i ti,i

If, on the other hand, (3.8) fails, we have an unstable error growth at the amount- g( >> 1 as confirmed by the numerical examples demonstrated in 6. Typically,i=2

such an instability shows up by the loss of ohogonality between the computed rows
p of P. Hence, one approach to solve the stability problem would be to use
reohogonalization, once the instability was detected by the loss of ohogonality;
consult [3, 3]. An alternative approach to overcome the instability problem, which
better suits the proposed method, is to restart the recurrence relations (3.5) at the
current iteration with two new successive rows of P. How should we obtain two such
successive rows for restaing? Consider, for example, the N 4m-dimensional prob-
lem. The iteration before the last of (2.4a) provides us with two (N/2)-dimensional
unit vectors, say z/ and w/, where

0

1N/41 Z41(3.9a) Lz4J NI4J’(2) I Zul,

0

(3.9b)
WNI4I i.l.. .1 w
= L P4J /w/.
N/4 N/4

As before, we obtain the m and m + 1 rows of N/z as
t()

/4 N/2
(3.10a)

p) (zg) Ou/4)
(2)

u/ Ou/4, u/a) u/:

and the m and m+l rows of N/z as

N/4 N/4] N/2
(3.0b)

P) (w()
pv+ (0/4 w4)’(N/2"

Consequently, we can compute with O(N2) operations row numbers m, m+ 1, 3m,
and 3m + 1 of Pu, for by (2.3c) we have

%=(pv,
.(1.+) Ou/:)Qup%+l=(e/

(3.) p o/,p7’O
(2,m+))pm+)=(Ou/:,pu/:

In a similar manner, one can resta the recurrence relations (3.5) at any desired
iteration.
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4. The eigenvectors of TN---One at a time. In the previous section we discussed
an O(N2) method for computing the.whole eigensystem--eigenvalues and eigenvectors
of an N x N ST matrix. In several applications one is interested in only a few of the
eigenvectors of TN. We now present a variant of this method that enables us to compute
each one of the desired eigenvectors with O(N) operations.

As before, we first prepare, with the help of the DC algorithm (2.4a), (2.4b), (3.4),
the eigenvalues {A(J)}fv_- and the two middle successive rows, pN") and p(Nre+l) of P.
This can be done at the expense of O(N2) operations, and in many practical cases
with even less. Equipped with this we can compute the eigenvector xN=
(x(1), x(2), x()) corresponding to the eigenvalue, say, h

(4.1) TNXN A(J)XN

Equation (4.1) gives us the linear three-term recurrence relations between the
components of x

X
(i-1) q. ti, X(i) X

(i+1) A(J)x(i)(4.2) ti, i_ -- ti, i+

Since x coincides with the jth column of P, we have its two middle entries x") and
x<"+ from the jth entries of p") and ps"+1). The rest of the entries are computed
recursively with 3N operations by

(4.3a) x(i+l)=1 [(Aj t,,,)x<- ti, i_ x(i-1)], i= m + 1,. ., N- 1,
ti, i+l

(4.3b) xi_l 1__ [(Aj ti,i)x<i)- ti, i+l x<i+], i= m, m 1,. ., 2.
ti, i-1

The computation is stable or unstable depending on whether

N-1

(4.4) I-I max (l-[
i=2

is bounded or >>1.

5. Solution of the updating problem. In this section we follow [1] and [3] in a
discussion of the promised O(N) method for solving the updating problem (2.3b),
i.e., computing the eigensystem of DN +zz. Without loss of generality we may
assume that cr > 0 and that the problem has been deflated, so that the components of
zN=(z<1)... z<N)) t, as well as the difference between any two diagonal entries of
D =diag (dll < d22 <" <s dNN), are different from zero (in practice we take a neigh-
bourhood of zero with a preassigned tolerance, say e); consult [1], [3], and [4, 4].
In this case, it follows that the eigenvalues of the updating problem A <i), 1, 2, , N,
strictly interlace with those of Dv [1, Thm. 1], [3, Thin. 2.1]

(5.1) dl < A (1) < d: < A < < A<N <d+ cr =- dN+,N+I

With this in mind we now turn to compute the required eigenvalues A A<i
the roots of the so-called secular equation [6]

(5.2) f(A -= + crjZ,-: d./- A
O.

as

The function f(A) is the rational representation of the characteristic polynomial
associated with DN + crzuzt, and the interlacing property ensures thatf has N simple
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roots h (i) lying in the open intervals (d., d+l,+l), i= 1,2,..., N. We shall mention
two zero-finders that have been advocated to find these roots:

(1) The zero-finder proposed by Bunch et al. [1], which is based on rational
interpolation, employs the values off(A) and its first derivative, f’(h). The advantage
of this zero-finder (which will be referred to as "zeroinder") is that it produces a
monotonic sequence of approximations in (d., d+l,+l) that converges quadratically to
h (). However, it is very sensitive near the ends of the intervals (d,, di+l,+l), where the
derivative involved, f’(h), becomes singular.

(2) Cuppen [3] advocated the "zeroinrat" zero-finder of Bus and Dekker [2],
which is based on rational interpolation of three f-values in the interval (d,, d+l,+).
This algorithm is more robust than the "zeroinder," for it does not involve f’(h);
consequently, it avoids the previous diculty of singular derivatives near d. and,
moreover, it saves half the operations per iteration. Yet, the current "zeroinrat"
algorithm lacks the monotonicity propey we had before, and, therefore, it requires
safeguarding to ensure that we remain within the desired interval (this decreases the
convergence rate to 1.839).

Assuming that either one of these zero-finders requires no more than a constant
number of iterations to compute (with some preassigned tolerable accuracy) each root
of (5.2), then the required eigenvalues h (), i= 1,2,..., N, are obtained by O(N2)
operations. Equipped with these eigenvalues, we now may use the Sherman-Morrison
formula to compute the associated normalized eigenvectors, q), which form the
column vectors of QN in (2.3b), as [1, 4).

(5.3) q%= (Du-A(’)Iu)-’ZN
i[(Du_h(,)iu)_iz, i= 1,’’’, N,

and the total operations cost does not exceed O(N), as asseed.
To enhance the stability propeies of the whole DC algorithm, the updating

problem should be solved with maximum accuracy. To achieve this, we now present
an efficient implementation for the solution of this problem, based on the ingredients
described above.

As a first step we reformulate (5.2) in a manner suggested in 1 ]. By the interlacing
propey (5.1) we have

N

(5.4) h (i) dii + (i), 0 < () < 1, () 1.
i=1

For 1, 2,..., N we make the change of variables, h d, +, so that instead of
ff(h), we now obtain N different rational functions, (),

(z()
(5.5) ()= 1 + 4 d,

i= 1, 2,... N,

each of which has a simple root () in the open interval (6ii O, 6+,). Computing
the root of () in this intervalrather than the root off(h) in the (d,, d+,+)
intervalhas the advantage that W() is uniformly bounded from below (by 1) rather
than having f’(h)l/g, as in [3, Thm. 3.1]. The computation of the desired root
proceeds by carefully monitoring a mixture of the two zero-finders mentioned above.
Namely, the "zeroinder" algorithm will be used when we are well inside the interval
of interest, (0, 6+,), while we switch to the "zeroinrat" algorithm when we approach
either end of this inteal. To decide upon the switching policy, we first quote the
following.
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LEMMA 5.1 [4, Lem. 4.6]. Assume that the deflation test Iz(i)l > e is satisfied. Then
either we have

2

(5.6a) o’(2 + 8i+,.,)
a’+l"--</x {’) _-<

or alternatively

1
(5,+1., < /x

{ < 1 o.2(2_7_},+,,,)(5.6b)
2

The bounds on the left- and right-hand sides of (5.6) yield a closed subinterval
[L{, H{i], which encloses/x{. (Experiments have shown that these bounds actually
may be achieved.)

A more practical indication to the location of {} is obtained from the following
considerations. The rational function

(z(’+’)) (z))
(5.7a) ()=Const,+(z(’))2+ Const, E g,-- i+l,i- j#i,i+l 1,i

has a simple root, 1(), in the interval (0, +,). Since () dominates () in that
interval and they are both monotonically increasing, we can use this root (that is found
by solving a simple quadratic equation) as a lower bound for (). Similarly, the function

(5.7b) U()=Const+
(z())2 (z(+))2+ Const

z)2

has a simple root h () in the interval (0, 6+,), which may serve as an upper bound
for ().

Returning to our problem of finding the roots of () in (5.5), we use the
"zeroinder" algorithm when inside the (0, +1,) interval. This requires us to compute
W(), and Lemma 5.1 indicates that as we approach either end of the interval, the
computation of W’() involves factors of e -4 that will lead to an underflow problem.
To avoid this situation, we use a switching policy, which in each step tests if either
one of the following inequalities is satisfied"

(5.8) (i) L( h( > H( h( <

as an indication that we are in the neighborhood of the singular ends, in which case
we use the "zeroinrat" algorithm instead. This "switching" policy enabled us to achieve,
with the usual 64-bit arithmetic, more than satisfactory results that otherwise would
have required the less attractive extended precision arithmetic.

Concerning the computation of the eigenvectors in (5.3), we note that it is possible
to have severe round-off when h () is close to d, or d+,+ [3, } 2]. The reformulation
ofthe eigenvalue problem in (5.5) enables one to avoid half ofthese round-off problems,
namely, when h () is close to d,. Indeed, the normalized eigenvectors, q%), are now
given by

(5.9) q%= [D%)]-zu D%)=diag (6 au.)-()I.

Usin (.9) instead o (5.3) aoids cancellation that arises when A () is too dose to
i.e., when () is too close to zero, or 8.0 in this case. We are still left with the
other half of the cancellation problem when X () is too dose to +,+. 1thi is indeed
the cse (s we can oresee by computing the practical bounds for () rom
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(5.7b)), then we propose to perform yet another reformulation of our eigenvalue
problem, using

(5.10) A (i) di+l,i+ o"rl
(i)

instead of (5.4). In this case the role of the rational functions W() in (5.5) is played
by

(5.11) /(/) 1 +J=IZ j-/; 2", tji+’--, djj-di+l,i+lo. i= 1, 2, n,

each ofwhich has a simple root (i) in the open interval (0, --ti,i+l). The correspond-
ing normalized eigenvectors are given by

(5.12) q%)= /)%)=diag(61,+l’"

and cancellation that arises when Ai) is too close to di+l,i+l, i.e., when t
) is too close

to zero is avoided for 6+1,+1 -= O.

6. Numerical experiments. The main object of our experiments was a comparison
between the standard O(N3) DC algorithm for computing the eigensystems of N x N
ST matrices (2.3a)-(2.3c), and the proposed O(N2) method in (2.4a), (2.4b), and (3.4),
which makes use of the three-term recurrence relations (3.5a), (3.5b). The input data
for these relations, the eigenvalues A ti) and the two initial successive row vectors p%"),
pN’+1) were supplied with maximum accuracy, with the help of the updating solver
described in 5 that avoids extended precision. Indeed all our calculations, including
the pathologically ill-conditioned W+N- Wilkinson’s matrices, were carried out with
a 64-bit arithmetic.

The first set of results includes "well-behaved" matrices taken from [7, (7.4)-(7.9)].
The entries along the diagonals of these matrices are "slowly varying" and their
eigenvalues are equally distributed. The stability analysis in 3 indicates bounded
amplification factors in these cases, and the numerical results confirmed the expected
stable behavior of our method. Table 1 summarizes the results for the prototype ST
matrix of this group where T

Since the rows of P were constructed by equating to zero rows 2, 3, , N- 1 of
TP-PA, the quantities on the left columns, TP-PAII stand for

p(2)_ (1)Amax (llt,xp()+ t,2 P [[tN,N- 4-tN,N p ).

They may serve us as a quantitive indication of the accumulation of rounding errors
in the three-term recursion relations (3.5), which is responsible for the loss of (no more
than) two orders of magnitude relative to the standard algorithm. The advantage of
the proposed method lies upon the fact that the results on the right columns are

TABLE
Results for T[ 1, 2, matrix of order N.

Standard DC algorithm The proposed method

N TP PA ptp III TP PA PiP 111
101 2.5E- 15 6.2E- 16 9.5E- 15 7.2E- 15
201 2.6E- 15 2.5E- 15 2.2E- 14 1.5E- 14
301 3.0E- 15 2.8E- 15 2.9E- 14 8.8E- 14
401 4.0E- 15 6.9E- 15 2.5E- 13 1.2E- 13
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obtained by saving order of magnitude in execution time relative to the results on the
left columns.

Next, we turn to the second group of matrices that consists of Wilkinson’s matrices,
W+v. The superdiagonals of these matrices are properly scaled to begin withmthey
all equal one; the entries along the main diagonal, however, diag((N-1)/2, (N-
3)/2,..., 1, 0, 1,..., (N-1)/2) are far from being "slowly varying." This leads to
amplification factors of the recurrence relations (3.5) of order ---(N-1)/2!, which
indicates loss of all (64-bit precision) significant figures in computing the eigenproblem
of W+ of order N > 40. Moreover, the largest eigenvalues of Wv are clustered in
pairs, which may be inseparable up to the 14th decimal digit. This then leads to
additional inaccuracies in the updating solution (while seeking two extremely close
roots of the secular equation) as well as in the deflation process. As a result, the initial
input data for the recurrence relation will also suffer from loss of accuracy. These
arguments are well reflected in Table 2.

In order to be competitive with the standard algorithm that gave excellent results
for W+v up to order N 201, an attempt was made to improve the results of our
method. To this end we have appended our method with the restarting procedure
described in 3. Thus, by computing the row vectors (here rn (N+ 1)/4) p"), p(Nm+l),
p(3Nm) and p+) as additional input data to restart the three-term recurrence relations,
we were able to get decent results for the W+s-matrices up to order N-- 200. Repeating
such restarting procedures would enable us to deal with even larger W+c-matrices,
still within the O(N) operations limit.

Finally, the last group of matrices that were tested consists of randomly generated
entries in [-1, 1]. The results obtained are summarized in Table 3.

We observe that excellent results are obtained by our method for such randomly
generated matrices of order up to N---100. If additional restarting procedures were
employed every 100-200 iterations, it would enable us to achieve highly accurate results
for matrices of almost any practical size.

TABLE 2
Results for the W+rv matrices.

Standard DC algorithm The proposed method

N TP- PAII IIP’P- Ill TP- PAII P’P-
21 4.5E- 16 2.5E- 16 1.2E- 12 9.8E- 10
41 1.3E- 15 9.4E- 16 3.7E- 8 7.4E- 7
47 2.0E- 15 9.1E- 16 5.3E- 3 1.0E- 3
49 2.0E- 15 9.8E- 16 0.12 0.23

TABLE 3
Results for random matrices of order N.

Standard DC algorithm The proposed method

100 8.4E- 15 9.8E- 16 9.5E- 15 7.6E- 15
200 5.9E- 15 3.4E- 15 6.2E-9 9.8E- 8
300 6.3E- 15 5.6E- 15 4.2E- 4 3.1E-2
400 7.2E- 15 6.8E- 15 O(1) O(1)
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In summary, we conclude that the proposed method for solving the eigenproblem
of ST matrices provides a competitive alternative to the standard eigensolvers for a
certain class of such matrices; by sacrificing a few orders of accuracy, the method
enables one to save order of magnitude in the total execution time. This conclusion
was confirmed by further extensive numerical experiments reported in [5].

Acknowledgment. We thank Professor Beresford Parlett for an enlightening dis-
cussion on the Inverse Iteration method.
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