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Abstract

We study the stability of Runge-Kutta methods for the time integration of semidis-
crete systems associated with time dependent PDEs. These semidiscrete systems
amount to large systems of ODEs with the possibility that the matrices involved are
far from being normal. The stability question of their Runge-Kutta methods, there-
fore, cannot be addressed by the familiar scalar arguments of eigenvalues lying in the
corresponding region of absolute stability. Instead, we replace this scalar spectral
analysis by the energy method, where stability of the fully discrete Runge-Kutta
methods takes into account the full eigenstructure of the problem at hand.

We discuss two energy method approaches that guarantee the stability of fully-
discrete Runge-Kutta methods for sufficiently small CFL condition, ∆t ≤ ∆t0. In
the first approach, Runge-Kutta methods are shown to preserve stability for the
subclass of coercive semidiscrete problems. A second approach treats the more
general class of semibounded problems. It is shown that their time integration by
third-order Runge-Kutta method is stable under a slightly more restrictive CFL
condition.

We conclude by utilizing these two approaches to examine the stability of
Runge-Kutta discretizations of semidiscrete advection-diffusion problems. Our study
includes a detailed stability analysis for prototype examples of one-sided and cen-
tered finite differencing and pseudospectral Fourier and Jacobi-based methods.

∗Department of Mathematics, UCLA, Los-Angeles CA 90095, USA. email: tad-
mor@math.ucla.edu. Research was supported in part by NSF grants DMS01-07428, DMS01-07917
and ONR grant N00014-91-J-1076.
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1 Introduction. The semidiscrete method of lines

We are concerned with the stability of Runge-Kutta (RK) methods for the approx-
imate solution of time-dependent problems

∂tu = L(x, t, ∂x)u. (1)

For simplicity of the presentation our discussion ignores the explicit time depen-
dence, assuming L(x, t, ∂x) = L(x, ∂x), and we note in passing that our results
apply, mutatis mutandis, to the case of time-dependent coefficients. Consult for
example, our discussion in §5.2 below.

As a first step in the discretization of (1), the linear differential operator L
is replaced by an appropriate spatial discretization. In a typical scenario, such
L’s are replaced by finite dimensional approximations of the form LN = PNLPN ,
where PN is a projection to an N -dimensional computational space involving a small
spatial scale, e.g., a small grid size of order ∆x ∼ 1/N . The resulting semidiscrete
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approximation of (1), called the method of lines, amounts to an N × N system of
ODEs of the form

duN

dt
= LNuN , (2)

and we are interested to know whether the numerical solution of (2) by Runge-Kutta
(RK) methods preserves the stability of such approximants, independently of their
increasing size with N .

The differential operator L = L(x, ∂x) is local1. The discrete LN ’s, however,
need not have any special local structure. Boundary conditions and other side
constraints may destroy the local property of finite difference stencils and pseu-
dospectral Fourier and Jacobi-based methods naturally lead to global stencils. In
general, the LN ’s need not be uniformly diagonalizable, with the possibility of ill-
conditioning due to increasingly large condition numbers as N increases. These
difficulties are outlined in our earlier companion paper [LevTad98, §2.3.2], and are
demonstrated in the examples revisited in §5. The RK stability question for such
LN ’s, therefore, cannot be addressed by the familiar scalar arguments, based on
the requirement that the eigenvalues of LN lie inside the absolute stability region
of the corresponding scalar RK method. In this paper, we replace this potentially
misleading spectral analysis by the energy method, where stability is examined by
taking into account the full eigenstructure of LN .

The paper is organized as follows. In §2 we discuss different notions of stability
for the semidiscrete method of lines (2). Specifically, we indicate the equivalence,
upon proper re-norming, between the notions of stability, (3), and strong stability,
(5). We assume that the latter holds by requiring that LN is semibounded i.e., that
there exists a symmterizer – a positive definite matrix H = HN > 0 such that for
all uN ’s,

〈LNuN , HNuN〉 + 〈uN , HNLNuN〉 ≤ 2γ〈uN , HNuN〉.
The existence of such a symmetrizer is usually a part of the stability question,
and in many physically relevant problems, it is induced by a well-posed underlying
differential problem. The central issue in this paper is whether the strong stability
of such semidiscrete systems is preserved by its RK time discretizations. That is,
whether the H-weighted semiboundedness of LN implies that for sufficiently small
time-step ∆t, the fully-discrete RK method remains (strongly) stable. The time-
step restriction in this context amounts to the celebrated Courant-Friedrichs-Levy
(CFL) condition, [RicMor67],[GusKreOli].

The stability question of the fully discrete RK schemes is treated in §3 and
§4. In §3, we treat the important subclass of coercive LN ’s, for which there exists
a fixed η > 0 such that for all uN ’s,

〈LNuN , HNuN 〉 + 〈uN , HNLNuN〉 ≤ −η〈LNuN , HNLNuN 〉.

The relevance of coercivity in this context was first pointed out in [LevTad98]. It
guarantees the strong stability of the first-order accurate forward Euler time dis-

1L(x, ∂x) is local in the sense that the support of Lu(·) is contained in {supp u(·)}, so that in
particular, the value of L(x, ∂x)u(x, t) is dictated by the infinitesimal neighborhood (x, t).



“RKstrong-stabilit
2015/7/2
page 4

i

i

i

i

i

i

i

i

4

cretization, uN(t+∆t) = uN(t)+∆tLN uN(t), under the CFL time-step restriction
∆t ≤ η. In §3 we recall the systematic study in [GotShuTad99] where we convert
this first-order stability result to higher, third- and forth-order RK discretizations of
coercive (and possibly nonlinear) semidiscrete systems. The main coercivity result
of this section is summarized in Proposition 1. In §4, we return to general semi-
bounded problems, beyond the subclass of coercive LN ’s. Theorem 2 summarizes
the strong stability result of [Lev98] for the third-order RK method, under a (pos-
sibly smaller) CFL restriction, ∆t ≤ 1/‖LN‖. The corresponding stability question
for fourth-order RK discretizations of general semibounded problems remains open.
We should note in passing a different approach to this question of preserving stabil-
ity by RK methods, [KreWu93], which is based on the closely related (yet weaker)
notion of resolvent stability outlined in the Appendix.

Equipped with these two stability criteria, Proposition 1 and Theorem 2, we
conclude in §5, with a series of four examples. In §5.1, we consider one-sided differ-
encing of scalar advection equation as a favorite prototype model for non-normal
systems, whose stability study based on naive spectral analysis could be mislead-
ing. The so-called energy method approach outlined in sections 3 and 4 yields
a sharp CFL time-step restriction by taking into account the full eigenstructure
of the semidiscrete LN ’s in question. In §5.2, we revisit the example of Cauchy
problems governed by linear advection-diffusion systems, with spatial discretiza-
tion using general finite difference centered stencils, [LevTad98, §4]. It is here that
Theorem 2 offers an advantage over the coercivity argument summarized in Propo-
sition 1. We prove stability under a CFL condition which is valid uniformly with
respect to (w.r.t) the amount of diffusion and in particular, we recover a sharp CFL
stability condition for the limiting case of pure advection. In §5.3, we turn to con-
sider advection equations based on Fourier differencing. Fourier differencing lacks
the local character of finite difference stencils, which in turns implies that spatial
discretization based on Fourier differencing is not semibounded, [Tad87]. Instead,
the open stability question of the corresponding semidiscrete Fourier method was
answered in [GooHouTad94] using an intricate construction of a symmetrizer HN .
We use Theorem 2 to extend this H-weighted stability result to the fully-discrete
third-order RK method. In §5.4, we discuss the stability question for pseudospec-
tral Jacobi-based methods for mixed initial-boundary advection problems. Again,
the derivation of a CFL stability condition depends on a nontrivial construction of
an appropriate symmetrizer, carried out in [GotTad91]. We revisit the coercivity
stability argument [LevTad98, §4.2], which is compared with the strong stability
argument of Theorem 2.

2 Weighted L
2 stability and semiboundedness

We assume that the semidiscrete method (2) is stable in the sense that there exists
a constant K (independent of t) such that for arbitrary initial data uN(0), the
corresponding semidiscrete solution uN (t) has bounded growth relative to its initial
size, i.e.,

|uN(t)| ≤ K|uN(0)|, ∀uN (0). (3)
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Stability can be equivalently expressed in terms of the solution operator, uN (t) =
eLN tuN (0), as

‖eLNt‖ := sup
uN (0)

|eLNtuN(0)|
|uN(0)| ≤ K. (4)

We note that in general situations, the discrete solution might grow exponentially
in time, uN (t) ∼ KeγtuN(0), and that in this case (3) applies to the renormalized
solution ũN(t) = e−γtuN(t), i.e., replacing LN with LN − γIN . Such exponential
growth should be admitted in order to entertain the presence of low-order terms.
For example, if LN is stable then it can be shown that e(LN+BN )t is upperbounded
by K exp(γt) with γ = K‖BN‖. Thus, by allowing exponential growth in time, the
notion of stability remains invariant under the addition of bounded perturbations,
which is an essential property of any useful stability definition. This point was
emphasized early on by the instructive counterexamples of H.-O. Kreiss, [RicMor67,
§5.2]. The essence of the stability definition (3), therefore, is not the growth in time
but the uniform bound w.r.t. N — the discrete solution should remain bounded as
we refine the small spatial scale.

But this notion of stability is not sharp since eLN t ∼ IN + O(‖LN‖t), and we
therefore should expect a stability constant K ∼ 1, at least for t ∼ 0. This brings
us to the notion of strong stability, requiring (3) to hold with K = 1,

|||uN(t)||| ≤ |||uN(0)|||, ∀uN (0), (5)

where ||| · ||| is a possibly new norm. So far, we have not specified a particular norm
to be used in connection with these notions of stability. Indeed, the choice of the
specific vector norms, | · | or ||| · ||| is an essential part of the stability problem itself.

It follows that a semidiscrete system which is stable w.r.t. a given norm | · |,
is necessarily strongly stable w.r.t. another norm — the norm given by

|||w||| := sup
s>0

|eLNsw|
|w| .

Indeed, if our method is stable so that (3) holds, then the sup on the right defines a
proper new vector norm ||| · ||| such that |||eLNtuN(0)||| ≤ |||uN(0)|||; i.e., by re-norming, our
semidiscrete method becomes strongly stable. This is a constructive procedure to
convert a stable method into a strongly stable method by identifying an appropriate
norm that induces the sharper strong stability estimate (5). Unfortunately, this
procedure is too difficult to work with, since it lacks any geometrical structure,
and instead we seek strong stability that is induced by the following property of
semiboundedness.

The system (2) is semibounded if there exists a symmetric, positive-definite
H = HN such that2

L>
NHN + HNLN ≤ 0. (6)

2Here and below, {·}> denote the transpose relative to the Euclidian inner product 〈·, ·〉, and
we employ the usual order between hermitian matrices, namely, H ≤ J iff 〈w, Hw〉 ≤ 〈w, Jw〉 for
all w’s.
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The symmetrizer HN is assumed to be uniformly bounded, i.e., there exists a con-
stant c > 0, independent of N such that

0 <
1

c
≤ HN ≤ c (7)

The symmetrizer H = HN induces the H-weighted norm |w|2H := 〈w, Hw〉. It
follows that the semibounded method (6)-(7) is strongly stable with respect to the
weighted norm | · |H ,

d

dt
|uN |2H = 〈 d

dt
uN , uN〉H + 〈uN ,

d

dt
uN〉H = 〈LNuN , HNuN〉 + 〈uN , HNLNuN〉 =

= 〈uN ,
[
L>

NHN + HNLN

]
uN〉 ≤ 0.

Moreover, the uniform bound (7) implies the weighted, possibly N -dependent norm,
|w|HN

, is in fact equivalent to the usual L2 Euclidean norm,via

0 <
1

c
|w|L2 ≤ |w|HN

≤ c|w|L2,

which in turn yields the L2 stability estimate (3), |uN(t)|L2 ≤ K|uN(0)|L2 , with
K = c2.

It turns out that most stable systems encountered in applications — including
many physically-relevant problems governed by hyperbolic and parabolic systems
of PDEs, are in fact semibounded w.r.t an appropriate H-weighted norm3 The
existence of a symmetrizer H = HN in the context of semidiscrete approximations
is usually inferred from the well-posedness of the underlying PDE, and granted
such (uniform) semiboundedness, (6)-(7), then strong stability follows. Moreover,
the inverse implication, namely, strong stability =⇒ semiboundedness, holds for the
important class of families of finite-dimensional matrices, {M}M∈F ,

LN =
∑

M∈F
⊕M, dim(M) ≤ Const. (8)

This is the content of the H-condition in the celebrated Kreiss Matrix Theorem
[RicMor67, §4.9].

It is therefore this notion of stability, namely, H-weighted semiboundedness,
that will be used throughout this paper as the starting point for our study of stability
preservation by the fully discrete Runge-Kutta methods.

We close by noting that weighted H-stability amounts to LN being negative-
definite with respect to the H-weighted product 〈·, H ·〉, namely,<eHLN := L>

NHN+
HNLN ≤ 0, and in particular, the spectrum of LN lies in the left side of the plane,
<eλ(LN ) ≤ 0. In case of time growth, |uN(t)|H ≤ eγt|uN(0)|H , then LN is replaced
by LN − γIN , and the semiboundedness requirement (6) then reads

2<eHLN := L>
NHN + LNHN ≤ 2γHN , (9)

with the corresponding spectrum, <eλ(LN ) ≤ γ.

3In many such systems, the existence of a symmetrizer is intimately linked to the existence of
an entropy function associated with the underlying nonlinear system.



“RKstrong-stabilit
2015/7/2
page 7

i

i

i

i

i

i

i

i

7

3 Strong stability of coercive methods

To discretize (1) in time, we introduce a time-step ∆t. Runge-Kutta (RK) approx-
imations of the semidiscrete method (2) are based on the polynomial expansion

eLN t ∼
[
I + ∆tLN +

1

2
(∆tLN)2 +

1

6
(∆tLN)3 + . . .

] t
∆t

.

The corresponding k-stage fully-discrete RK method then reads

uN(tn + ∆t) =
[
p0 + p1∆tLN +

p2

2
(∆tLN)2 + . . . +

pk

k!
(∆tLN)k

]
uN(tn), (10)

and it is s-order accurate if its first s + 1 coefficients, p0 = p1 = . . . = ps = 1. We
inquire whether the semidiscrete problem (1) carries over to its fully discrete RK
approximation (10). The answer is negative already for the first-order RK method,
the so-called forward Euler method,

u(tn+1) = (I + ∆tLN )u(tn). (11)

The stability of (11) fails for arbitrary semibounded L’s as shown, for example, by
considering the purely imaginary spectrum associated with skew-symmetric differ-
encing, consult (35) or (36) below.

To guarantee the strong stability of (11), measured by an appropriate H-
weighted norm, it is necessary and sufficient for LN to be (uniformly) coercive, in
the sense that there exists a constant η > 0, independent of N , such that

L>
NHN + HNLN ≤ −ηL>

NHLN . (12)

The geometric interpretation of the coercivity condition (12) requires in a generic
case — say, for normal LN ’s, that the eigenvalues of such LN are contained in the
left-plane circle, |λ + 1

η | ≤ 1
η .

Restricting attention to coercive LN ’s, the first-order forward Euler method
(11) is strongly stable, ‖I + ∆tLN‖H ≤ 1, for sufficiently small time-step ∆t ≤ η.
The issue then is preserving this strong stability for higher order RK methods.
The main result of [LevTad98] proves strong stability of third- and fourth-order
RK discretizations of linear coercive problems. A systematic study of preserving
stability from the first order Euler to higher order RK discretizations of linear (as
well as nonlinear) problems, is presented in [GotShuTad99] which is also surveyed
in another paper of this volume, [Shu02].

We conclude this section with two prototype examples of strong stability for
the third- and fourth-order RK methods of coercive problems, [GotShuTad99, §3].
For the third-order three-stage case (k=s=3 in (10)), we write

P3(∆tLN) := I + ∆tLN +
1

2
(∆tLN )2 +

1

6
(∆tLN )3 (13)

≡ 1

3
+

1

2
(I + ∆tLN) +

1

6
(I + ∆tLN )3



“RKstrong-stabilit
2015/7/2
page 8

i

i

i

i

i

i

i

i

8

Coercivity implies the strong stability of the first-order Euler method, ‖I +
∆tLN‖ ≤ 1, and we conclude that under the same time-step restriction, ∆t ≤ η,
this stability is preserved in the third-order case, ‖P3(∆tLN)‖H ≤ 1

3
+ 1

2
+ 1

6
= 1.

A similar argument applies to the fourth-order four-stage case (k=s=4), where
we use the factorization,

P4(∆tLN) := I + ∆tLN +
1

2
(∆tLN )2 +

1

6
(∆tLN )3 +

1

24
(∆tLN)4 (14)

≡ 3

8
+

1

3
(I + ∆tLN) +

1

4
(I + ∆tLN )2 +

1

24
(I + ∆tLN)4

Coercivity implies ‖I + ∆tLN‖H ≤ 1 for sufficiently small time-step, ∆t ≤ η,
and we conclude that stability is preserved in the forth-order case, ‖P4(∆tLN )‖H ≤
3
8 + 1

3 + 1
4 + 1

24 = 1. We summarize by stating

Proposition 1. Consider the general coercive methods of lines (2),(12), with coer-
civity constant η. Their third- and fourth-order RK time discretizations are strongly
stable, |uN(t)|H ≤ |uN(0)|H, for sufficiently small time-step, ∆t ≤ η.

The strong stability preserving s-stage, s-order accurate RK methods for gen-
eral nonlinear problems, up to s=8, are listed in [GotShuTad99, Table3.1]. The
general s-order linear case was communicated to us by H. Liu.

4 Beyond coercivity – strong stability of RK methods

It is well known that high-order RK methods are more ‘faithful’ approximations of
the ODE system (2) than the first-order forward Euler method, and in this context
we seek to remove the restriction of coercivity, (12), that is tied to the first-order
RK method. Thus, we seek strong stability for higher-order RK approximations
of semidiscrete problems governed by general semibounded LN ’s. The next result,
communicated in [Lev98], shows that (weighted) strong stability is preserved for
the third-order RK scheme, thus removing the previous restriction to the subclass
of coercive problems.

Theorem 2. [Levermore] Consider the semidiscrete H-stable ODE system (2),(6).
Its third order accurate RK approximation,

uN(tn+1) = P3(∆tLN)uN(tn), P3(∆tLN ) := I +∆tLN +
1

2
(∆tLN)2 +

1

6
(∆tLN )3,

is strongly stable, |uN(tn)|H ≤ |uN(0)|H, under CFL time-step restriction

∆t‖LN‖H ≤ 1. (15)

Proof. We seek strong stability under the H-weighted norm

‖P3(∆t)‖2
H = sup

u 6=0

〈P>
3 (∆tLN )HP3(∆tLN )u, u〉

〈u, Hu〉 ≤ 1, (16)
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yielding |uN(tn+1)|H ≤ |uN(tn)|H ≤ · · · |uN(0)|H , which in view of (7) implies the
L2-stability statement, |uN(tn)|L2 ≤ c2|uN(0)|L2.

We begin by setting P3 ≡ P3(∆tLN ) = I + LR(L) with R = R(L) := I +
L/2 + L2/6 expressed in terms of L = LN := ∆tLN . We compute

P>
3 HP3 − H = (I + R>L>)H(I + LR) − H = R>L>HLR + R>L>H + HLR.

Inserting I = R − L/2− L2/6 into the right and left of the last two terms, we find

P>
3 HP3 − H = (

1

2
+

1

2
)R>L>HLR

+ R>L>H(R − 1

2
L − 1

6
L2) + (R − 1

2
L − 1

6
L2)>HLR

= R>(L>H + HL)R

+ R>L>H

(
1

2
LR − 1

2
L − 1

6
L2

)
+

(
1

2
LR− 1

2
L − 1

6
L2

)>
HLR.

The first term on the right is H-negative, as is L by assumption, and hence

P>
3 HP3 − H ≤ R>L>H

(
1

2
LR − 1

2
L − 1

6
L2

)
+

(
1

2
LR− 1

2
L− 1

6
L2

)>
HLR.(17)

Next, we treat the two expressions on the right of (17). First, note that

1

2
LR − 1

2
L − 1

6
L2 =

1

12
(L2 + L3) =

1

12
L2(I + L).

Second, we decompose the term LR into

LR = L + L2 − 1

2
(I − L/3)L2.

With this, the RHS of (17) amounts to

P>
3 HP3 − H ≤ 1

12
(L + L2)>H(L2 + L3) +

1

12
(L2 + L3)>H(L + L2)

− 1

24
(I −L/3)>(L2)>HL2(I + L) − 1

24
(I + L)>(L2)>HL2(I −L/3).

Again, the sum of the first two terms is H-negative, as is L by assumption, and

1

12
(L + L2)>H(L2 + L3) +

1

12
(L2 + L3)>H(L + L2)

=
1

12
(L + L2)>(L>H + HL)(L + L2) ≤ 0.

Hence, we are left with

P>
3 HP3 − H ≤ − 1

12
<e(I −L/3)>H(I + L), (18)
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where H := (L2)>HL2 > 0. One checks that the last upperbound is nonpositive,

−<e〈(I − L/3)u, (I + L)u〉H = −|u|2H − 2

3
<e〈Lu, u〉H +

1

3
|Lu|2H

≡ 1

3
|(I − L)u|2H − 4

3
|u|2H ≤ 0,

provided
‖I − L‖H ≤ 2. (19)

This leads to the sufficient CFL stability condition, ‖L‖H ≤ 1, which in turn is
guaranteed by the CFL restriction (15)

‖L‖H = sup
u 6=0

|Lu|H
|u|H

= sup
u 6=0

|L3u|H
|L2u|H

≤ ∆t · ‖LN‖H < 1.

Remarks.
1. On the time-step restriction. I. How does the stability restriction stated

in Theorem 2 compare with the previous stability criterion for coercive problems?
According to Proposition 1, the stability of the third-order RK method is guaranteed
for coercive LN ’s under the time-step restriction

∆t ≤ η := 2 inf
u 6=0

|<e〈LNu, u〉H|
|LNu|2H

(20)

An upper bound of the expression on right-hand-side leads to twice the time-step
restriction (15) of Theorem 2,

∆t ≤ 2 inf
u 6=0

|<e〈LNu, u〉H|
|LNu|2H

≤

≤ 2 inf
u 6=0

|LNu|H |u|H
|LNu|2H

= 2
1

supu 6=0(|LNu|H/|u|H)
= 2

1

‖LN‖ .

This shows that the strong stability statement of Theorem 2 may require a more
restrictive – up to half the time-step restriction based on the coercivity argued in
Proposition 1. In the generic case of normal LN ’s, the last theorem requires the
eigenvalues of such LN to lie in the strip ∆t · <eλ ∈ [−1, 0], which is only half the
width of the circle |∆t·λ+1| ≤ 1 we met earlier, in the context of coercive problems.
Nevertheless, the gain of Theorem 2 is due to its applicability to a larger class of
semibounded problems (in agreement with the fact of having an infinite strip of
strong stability along the imaginary x-axis). The examples in §5 will demonstrate
these points.

2. On the time-step restriction. II. Theorem 2 raises the question whether its
time-step restriction (15) is sharp. An optimal time-step restriction for the third
order RK approximation of general normal operators can be derived by the usual
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scalar stability argument, requiring that the eigenvalues of P3(∆tL) be contained
in the region of absolute stability, so that ‖P3(∆tλ(LN ))‖ ≤ 1. For skew-symmetric
LN ’s, for example, this yields the time-step restriction ∆t ≤

√
3/‖LN‖. Indeed,

Theorem 2 is sharp enough to include these optimal cases. For normal LN ’s, for
example, one arrives at the stability condition (19) which now reads

‖I − L‖H = max
λ

|1 − ∆tλ(LN )| ≤ 2,

yielding
∆t× max

λ=λ(LN)

√
|λ|2 − 2<eλ ≤

√
3, LN normal. (21)

In particular, for skew-symmetric LN ’s we have, <eλ(LN ) = 0, max λ(LN ) = ‖LN‖,
and (21) recovers the sharp CFL condition, ∆t ≤

√
3/‖LN‖. We conjecture that

(15) is optimal for general semibounded, non-diagonalizable systems. We note in
passing that the even additional factor of

√
3 does not fully compensate for the

twice larger time-step restriction in the coercive case.
3. On preserving (strong) stability by the fourth-order RK method. The ab-

solute stability regions of the generic first- and second-order RK methods do not
contain any interval along the imaginary x-axis, and hence they cannot preserve
stability of arbitrary semibounded problems. Their stability fails, for example, for
skew-symmetric LN ’s with increasing spectrum along the x-axis. As argued in
[LevTad98], one therefore needs to restrict attention to the subclass of coercive
LN ’s for preserving the stability of these first- and second-order RK methods. The-
orem 2 addresses the issue of preserving strong stability for general semibounded
LN ’s, starting with the third-order three-stage RK method, and the same question
is being raised for the ubiquitous fourth-order four-stage RK method. Namely, we
ask whether for sufficiently small time-step, ∆t‖LN‖H ≤ ∆t0, there holds

‖P4(∆tLN)‖H ≤ 1, P4(∆tLN ) :=

4∑

j=0

1

j!
(∆tLN )j . (22)

Our preliminary studies indicate the following saturation result. Namely, that pre-
serving semidiscrete stability by the fourth-order RK methods requires more than
the four stages encoded in P4(∆tLN). Instead, we conjecture that one can preserve
the semidiscrete H-weighted stability (6), by allowing additional stages with higher
order terms, so that (22) is replaced by

‖
4∑

j=0

1

j!
(∆tLN)j + p5(∆tLN )5 + . . . ‖H ≤ 1. (23)

4. On the generalized resolvent stability of the fully discrete RK methods. We
conclude this section by recalling the closely related stability result of Kreiss & Wu,
[KreWu93]. They consider class of locally stable4 RK methods, including the generic

4Local stability of an RK method is understood in the sense that its region of absolute stability
contains a semi-circle centered at the origin (and in particular, therefore, it contains an interval
along the imaginary x-axis), consult [KreSch92].
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k-stage s-order methods, k=s=3, 4. The stability result [KreWu93, Theorem 3.2]
states that such RK methods preserve the generalized stability of semidiscrete prob-
lems. Here, generalized stability is interpreted in the sense of appropriate resolvent
estimates that replace the closely related notions of semidiscrete semiboundedness
(6), and fully-discrete power-boundedness. Details are provided in the Appendix.

5 Examples

5.1 One sided differencing of advection equations

Our first example deals with the advection equation

ut(x, t) = aux(x, t), −1 ≤ x ≤ 1, a = Const > 0 (24)

augmented with zero boundary condition u(x, t)|x=1 = 0. We introduce a spatial
equidistant gridpoints, xj = −1+j∆x, ∆x := 2/N , and we use one-sided differences
for spatial differencing to obtain (here and below we let u(·, t) denote both the
exact solution and its semidiscrete approximation, which can be distinguished by
the context)

d

dt
u(xj, t) = a

u(xj+1, t) − u(xj, t)

∆x
, j = 0, 1, . . . , N − 1 (25)

augmented with zero boundary conditions u(xN , t) = 0. Thus, with
uN(t) := (u(x0, t), u(x1, t), . . . , u(xN−1, t))

> the method of lines (25) amounts to
the N × N semidiscrete system

d

dt
uN = LNuN , LN =

a

∆x




−1 1
−1 1

. . .

. . . 1
−1




, (26)

and we turn to consider the stability of the third-order RK time discretization

uN(tn+1) =
[
I + ∆tLN +

(∆tLN )2

2
+

(∆tLN )3

6

]
uN(tn). (27)

System (26) serves as a favorite prototype example demonstrating that a scalar
stability argument based on naive eigenvalues analysis of non-normal matrices can
be misleading; among a host of references we mention one of the firsts due to
Godunov and Ryabenkii, [GodRya63], and more recent ones in [GusKreOli], [Tre96],
and the detailed discussion in [Ise96, §14.1],... Indeed, verifying that the eigenvalues
of ∆tLN , lie in the absolute stability region of the (scalar) third-order RK method,
|P3(−a ∆t

∆x )| ≤ 1, leads to the wrong CFL condition ∆t
∆x |a| ≤ 2.5. This scalar

argument fails to guarantee stability since it does not capture the power-growth
of the increasingly larger Jordan blocks of the type encountered in (26), consult
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[LevTad98, §2.3.2]. Instead, stability of this initial-boundary value problem can
be verified by the normal mode analysis of [GusKreSun72], and to this end we
proceed as follows. Expressed in terms of the one-sided divided difference operator,
D+w := (w(·+∆x)−w(·))/∆x, the RK method (27) consists of an interior difference
scheme

u(xj, t
n+1) =

[
I+a∆tD+ +

(a∆t)2

2
D2

++
(a∆t)3

6
D3

+

]
u(xj, t

n), j = 0, 1, . . . , N−3,

(28)
augmented by the prescribed boundary data,

u(xj, t
n+1) = 0, j = N − 2, N − 1, N. (29)

A necessary von Neumann stability condition for the interior scheme (28) requires

sup
ξ

|P3

(
a

∆t

∆x
(eiξ∆x − 1)

)
| ≤ 1, (30)

which leads to the CFL time-step limitation ∆t
∆x

|a| < 1.25. The stability of this
interior scheme combined with the translatory boundary conditions (29) follows
from the general stability results for translatory boundary conditions of [GolTad81],
based on the normal mode analysis of [GusKreSun72].

We now turn to examine the same stability question of (27) using the two
general approaches outlined in Proposition 1 and Theorem 2. We start by noting
that LN is negative if and only if a > 0,

2<eLN := L>
N + LN =

a

∆x




−2 1
1 −2 1

. . .

. . . 1
1 −2



≤ 0, a > 0.

To check the coercivity of LN we compute

L>
NLN =

a2

(∆x)2




2 1
−1 2 −1

−1 2 −1
. . .

. . .

2 −1
−1 2




.

It follows that the coercivity condition (12) with H = I holds so that L>
N + LN ≤

−ηL>
NLN , provided ηa2/(∆x)2 ≤ a/∆x, i.e., with coercivity constant η = ∆x/a.

We conclude
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Corollary 3. Consider the advection equation (24) which is integrated by one-
sided spatial differencing (25) and the third-order RK time discretization (27). The
resulting fully-discrete scheme is strongly stable, |uN(t)| ≤ |uN(0)|, under the CFL
condition

∆t

∆x
|a| ≤ 1. (31)

Remarks.
1. The CFL stability condition offered in the last corollary is more restrictive

than the von Neumann condition of ∆t
∆x

|a| ≤ 1.25, associated with the normal mode
stability analysis of (27). We note, however, that normal mode analysis leads to
stability in the sense of satisfying the resolvent stability estimate (65), which is
somewhat weaker than the strong stability asserted in Corollary 3.

2. As indicated earlier, the coercivity argument allows for a CFL stability
condition (31) that is twice as large as the one stated in Theorem 2, ∆t ≤ 1/‖LN‖ =
∆x/2a. The advantage of the latter, however, in treating the larger class of arbitrary
semibounded problems is demonstrated in our next example.

5.2 Local centered differencing of advection-diffusion equations

We consider the one-dimensional system of advection-diffusion equation with vari-
able coefficients,

ut = A(x, t)ux + (Q(x, t)ux)x, −1 ≤ x ≤ 1, (32)

subject to given initial conditions, u(x, 0) = u0(x) and periodic boundary condi-
tions, u(−1, t) = u(1, t). Here, the advective part is driven by a symmetric A(·, t) ∈
C1 and diffusion is governed by positive definite viscosity, 0 < q0 ≤ Q(x, t) ≤ Q0,
and we note the possibility of time dependent coefficients in this case.

Discretization in space employs centered divided differences, expressed in
terms of the translation operator Tw := w(·+ ∆x),

D+ =
1

∆x

∑

k≥0

αkT k, D− := −D>
+ =

−1

∆x

∑

k≥0

αkT−k, D0 :=
1

2
(D+ +D−). (33)

The difference operators are assumed to be local in the sense of having a bounded
stencil, consult [Tad87, §2], |α|1 :=

∑
k>0 k|αk| ≤ Const., so that in particular,

|D±u| ≤ |α| |u|
∆x

, |α| :=
∑

k>0

|αk| ≤
∑

k>0

k|αk| ≤ Const. (34)

There is a variety of such local spatial discretizations and we mention be-
low three prototype examples. A second order centered finite-difference stencil,
corresponding to α±1 = ±1 and augmented with periodic boundary conditions, is
represented by the N ×N circulant differentiation matrix of the form, D2 = {Djk =
1

∆x
α(j−k)[modN]},
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D2 =
1

2∆x




0 1 · · · 0 −1
−1 0 0

...
. . .

...
0 0 1
1 0 · · · −1 0




. (35)

A fourth order periodic stencil, corresponding to (α±1, α±2) = (±4/3,∓1/6) reads

D4 =
1

12∆x




0 8 −1 · · · −8 1
−8 0 8 −1 . . . −8

1 −8 0 8 −1 · · ·
...

. . .
...

8 1 −8 0 8
−1 8 · · · 1 −8 0




. (36)

Local stencils need not be finite in order to satisfy the locality property (34).
For example, the fourth order finite element discretization of ∂x can be realized by
the local N × N circulant matrix

Dfem =




4 1 · · · 1 1
1 4 1
...

. . .
...

1 4 1
1 1 · · · 1 4




−1

· 3

∆x




0 1 · · · 0 −1
−1 0 0

...
. . .

...
0 0 1
1 0 · · · −1 0




.

Augmented with periodic boundary conditions, the corresponding centered
semidiscrete method of lines for uN(t) := (u(x1, t), . . . , u(xN , t)) reads, ∂tuN =
LNuN , where L = LN(t) is the N × N matrix associated with the centered differ-
encing

(Lu(t))j = A(xj, t)(D0u)j + D−(Q(xj, t)D+u)j, (37)

and we turn to study the stability of its RK time discretization.
We begin with the constant coefficient case, A(x, t) ≡ A. In this case, the

centered differencing AD0 is skew-symmetric,

(AD0)
> + AD0 = 0, (38)

and summation by parts then yields, 〈(L> + L)u, u〉 ≤ −2q0|D+u|2. Together with
the straightforward upper bound

|LNu| ≤ ‖A‖ · |D+u|+ Q0
|α|
∆x

|D+u|, (39)

it follows that the corresponding difference operator, LN , is coercive with coercivity
constant η given by,

L>
N + LN ≤ −ηL>

NLN , η =
2q0

(‖A‖ + Q0|α|/∆x)2
, (40)
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consult [LevTad98, §4]. By Proposition 1, coercivity implies the strong stability of
the third- and fourth-order RK time discretizations of (37), ‖Ps(∆tL)‖ ≤ 1, s =
3, 4, under the time-step restriction

∆t ≤ 2q0

(‖A‖ + |α|Q0/∆x)2
. (41)

We observe that the presence of numerical dissipation, q0 > 0, is necessary in
order for this coercivity argument to hold. This should be compared with the strong
stability statement in Theorem 2. The upper bounds in (34),(39) yield ‖LN‖ ≤
|α|(‖A‖+ Q0|α|/∆x)/∆x, which implies strong stability under the improved time-
step restriction

∆t ≤ ∆x

|α|(‖A‖+ Q0|α|/∆x)
. (42)

Indeed, comparing with the time-step restriction in (41) we arrive at

2q0

(‖A‖ + |α|Q0/∆x)2

/ ∆x

|α|(‖A‖+ Q0|α|/∆x)
≤ 2q0

Q0
< 2.

Thus, as before, we find that coercivity offers a time-step that may be up to twice
larger than the one offered by strong stability stated in Theorem 2. The main
advantage of (42), however, is its independence of the viscosity amplitude, q0. In
the particular limiting case of pure advection, Q ≡ 0, and we end up with the usual
advection stability restriction

∆t

∆x
‖A‖ · |α| ≤ 1. (43)

A constant coefficient von Neumann stability analysis leads to the similar time-step
restriction (though with a smaller |α| = supξ |

∑
αkeikξ|) — an enjoyable sharpness.

The above approach is based on direct energy bounds, which enable us to ex-
tend this stability result to the variable coefficients case, A = A(x, t). The extension
can be worked out along the lines of [Tad87]. In this case, A(·, t)D0 is no longer
skew-symmetric. Instead, since the difference operators D± are assumed to be lo-
cal (34), the skew-symmetry (38) is replaced by the following commutator bound,
consult [Tad87, condition L, §2]

∣∣∣
(
A(·, t)D0)

>+A(·, t)D0u
)

j
= D0(A(xj , t)u)−A(xj, t)D0u

∣∣∣ ≤ γ∆x, γ ∼ |α|1·|A(·, t)|C1,

and a straightforward perturbation argument yields ‖P3(∆tLN (tk))‖ ≤ 1 + γ∆x,
with a constant γ independent of N and time. Stability follows by successive appli-
cation of P3(∆tLN) under the hyperbolic time-step restriction, ∆t ∼= ∆x,

|uN(t = tn)| ≤ Πn
k=0‖P3(∆tL(tk)‖ · |uN(0)| ≤ (1 + γ∆x)tn/∆t ≤ exp(γtn) · |uN(0)|.

In the purely diffusive case, A ≡ 0, we are led to the usual parabolic time step
restriction ∆t ∼= (∆x)2, which preserves strong stability. We summarize by stating
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Corollary 4. Consider the discrete approximation of the advection-diffusion sys-
tem of equations (32), based on a spatial centered differencing (37) using a gen-
eral local stencil (33), (34). Its third-order RK time discretization, uN(tn+1) =
P3(∆tLN )uN(tn) is strongly stable, |uN(t)| ≤ exp(γt)|uN (0)|, under the time-step
restriction

∆t

∆x
|α| ≤ 1

supx ‖A(·, t)‖+ Q0|α|/∆x
.

We conclude by pointing out that our stability arguments apply in the current
example of time-dependent coefficients since the symmetrizer in this case is the
identity matrix, HN = I. Similar arguments apply as long as the symmetrizer,
HN = HN(t), remains smoothly dependent on t.

5.3 Global differencing — Fourier method for advection

equations

We now consider the pseudospectral Fourier method as an example for global spatial
differencing, whose stability necessitates the use of proper symmetrizer HN . Fourier
differencing starts with a given N -vector of gridvalues (w1, . . . , wN) prescribed at
the N equidistant gridpoints xj = −π + j∆x, j =, 1, . . . , N, ∆x = 2π/N . Let
ΨN (x) = INw denote the trigonometric interpolant that is uniquely determined5

by the prescribed data ΨN (xj) = wj, j = 1, 2, . . . , N . The vector of discrete deriva-

tives, w
′

j is then computed by exact differentiation of this trigonometric interpolant

w
′

j :=
d

dx
(INw)(x)|x=xj

.

We are interested in the RK integration of the semidiscrete Fourier method for the
2π-periodic scalar advection equation (which, for simplicity of the presentation, is
taken here in its conservative form),

d

dt
u(xj , t) = (a(xj)u(xj, t))

′

(44)

The linear transformation of Fourier differencing, (w1, . . . , wN)> 7→ (w
′

1, . . . , w
′

N)>

for odd N ’s N = 2n+1, is realized by global, skew-symmetric N ×N differentiation
matrix w

′

N = DF wN , given by

(DF )jk =
1

∆x
α(j−k)[modN], αj =

(−1)j∆x

2 sin( j∆x
2 )

.

The differencing stencil in this case is not local, |α|1 =
∑

k|αk| ∼ N , which in turns
implies that the corresponding spatial operator

LN = DF




a(x1)
. . .

a(xN)


 ,

5We note that ΨN is in fact a 2π periodic trigonometric polynomial of degree n = [N/2].
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is not L2-semibounded, ‖L>
N +LN ‖ ∼ N , [Tad87]. Instead, the stability of (44) was

derived in [GooHouTad94] by construction of a nontrivial symmetrizer, H = HN

such that (9) holds,
L>

NHN + HNLN ≤ HN . (45)

To study the stability of the fully discrete RK method, we therefore recall this
construction of HN for the special prototype case, a(x) = sin x, [GooHouTad94,
§2],

d

dt
uN(t) = DF ANuN(t), AN =




sin(x1)
. . .

sin(xN)


 . (46)

To this end, we decompose the DFT of uN := (u(x1, t), . . . , u(xN , t))> into its real
and imaginary parts,

ûN =: r̂N + îjN , ûN = FNuN , FN = {(F )jk} =
1

N
e−ikj∆x

The key observation in [GooHouTad94] is that the differences, ρ−k := r̂k − r̂k+1 and

the sums ρ+
k := ĵk + ĵk+1 are governed by well-behaved skew-symmetric systems

d

dt
ρ±(t) =

1

2
(±I + SN )ρ±(t), (47)

SN = −S>
N :=




0 N−1 0 . . .

1−N 0
. . . 0

0
. . .

. . . 1
... 0 −1 0



⊕




0 −1 0 . . .

1 0
. . . 0

0
. . .

. . . 1−N
... 0 N−1 0




,

with a unitary solution operator U(t) := eSN t. Expressed in terms of the n × n

Jordan blocks, J± =




1 ±1 . . . 0

0 1
. . .

...
...

. . . ±1
0 . . . 0 1


, the solution of (47)+ reads

ρ+(t) = et/2U(t)ρ+(0), ρ+ :=
[
J+ ⊕ 1 ⊕ J >

+

]
ĵ,

with a similar expression for ρ− :=
[
J− ⊕ 1 	J >

−
]
r̂. Returning to the original

variables, we conclude

|ũN(t)|H ≤ et/2|ũN |H , ũN := <eûN ⊕ =mûN

with a symmetrizer HN = H−
N ⊕ H+

N given by

H
±

N
:= J

>

± J± ⊕ 1 ⊕J±J
>

± = (48)
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=




1 ±1
±1 2 ±1

. . .
. . .

. . .

. . .
. . . ±1
±1 2

1
2 ±1
±1 2 ±1

. . .
. . .

. . .

. . .
. . . ±1
±1 1




.

This can be interpreted in the usual language of semiboundedness (45), where the

real and imaginary decomposition of L̂N := FNLNF ∗
N , satisfy

R>
NH−

N+H−
NRN = −HN , J>

NH+
N+H+

NJN = HN FNLNF ∗
N =: RN +iJN . (49)

We should point out that the symmetrizer HN does not satisfy the uniform
L2 equivalence bound (7), rather, N−2 ≤ HN ≤ 4, yielding the weaker L2 stability
estimate

|uN(t)|L2 ≤ Const.N |uN(0)|L2.

The notion of such a weak algebraic stability for general finite difference methods is
rejected, due to potentially unacceptable exponential growth by low order perturba-
tions6, consult [RicMor67, §5.2]. Nevertheless, it is a truly remarkable phenomena
that no such exponential loss can occur in the present context of Fourier method,
since this algebraic stability estimate improves with the increased resolution of ini-
tial data with higher Sobolev-regularity, [GooHouTad94, Corollary 3.2]

|uN(t)|L2 ≤ Const.N (1−s)+ |uN(0)|Ws , |uN |Ws :=
(∑

k

(1 + |k|)2s|ûk|2
)1/2

.

We now turn to consider the stability of RK time discretization for the semidis-
crete Fourier problem (46). The linear growth of H−1

N together with the precise

semibounded statement (49) imply that L̂N , and hence LN , is not coercive, and we
therefore appeal to the strong stability Theorem 2. To this end, we summarize the
reformulation of (46) in the dual Fourier space as

d

dt

[
r̂

ĵ

]
= L̃N

[
r̂

ĵ

]
, L̃N =

[
RN −JN

JN RN

]
.

A straightforward computation based on (47) then yields

‖L̃N‖HN
= sup

|ρ−(t) ⊕ ρ+(t)|L2

|ρ−(0) ⊕ ρ+(0)|L2

≤ 1 + ‖S‖
2

,

6Exponential growth with N , not just with time!.
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and with ‖SN‖ ≤ 2N − 1, we arrive at

Corollary 5. Consider the fully-discrete Fourier approximation of the 2π-periodic
advection equation ut = (sin xu)x, using third-order RK time discretization,

uN(tn + ∆t) = P3

(
∆tDF AN

)
uN(tn), AN =




sin(x1)
. . .

sin(xN)


 . (50)

The fully discrete scheme (50) is stable,

|uN(tn)|L2 ≤ Const.N (1−s)+|uN(0)|Ws , |uN |Ws :=
( ∑

k

(1 + |k|)2s|ûk|2
)1/2

,

under the CFL condition

∆t <
1

N
. (51)

5.4 CFL condition for pseudospectral Jacobi-based methods

In this example, we analyze the stability of the high-order RK Chebyshev pseu-
dospectral approximations of initial-boundary advection problem (24) with variable
coefficients,

ut = a(x)ux, 0 < a(x) < a∞, −1 ≤ x ≤ 1, u(x = 1, t) = 0. (52)

We focus our attention on the pseudospectral Chebyshev (semi-)discretization
of (52), as a prototype for the general family of pseudospectral Jacobi-based meth-
ods discussed in [GotTad91]. To this end, we let uN(t) := (u(x1, t), . . . , u(xN , t))
denote the vector of computed values at the N Chebyshev collocation points xj :=
cos( jπ

N+1
), j = N, N − 1, . . . , 1. If uN(x, t) denotes the corresponding N -degree

Chebyshev interpolant, based on these N interior points and augmented by the pre-
scribed boundary condition uN(x = 1, t) = 0, we then set u

′

j(t) = ∂xuN (x, t)|x=xj
.

Being linear, this results in an N × N matrix representation, u
′

N = DT uN , with
DT denoting the so-called Chebyshev differentiation matrix. The corresponding
semidiscrete Chebyshev method of lines for (52) then reads

duN

dt
= LNuN , LN := ANDT , AN :=




a(x1)
. . .

a(xN)


 . (53)

The pseudospectral Chebyshev approximation (53) is a primary example for the
intricate stability issue associated with its fully discrete Runge-Kutta scheme. The
Chebyshev differencing is based on a global stencil that leads to ill-conditioned
differentiation matrix DT .
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To address the stability question, the computed discrete solution, uN(t) is first
realized by its N -degree interpolant uN (x, t), which is governed by

∂uN

∂t
(x, t)− a

∂uN

∂x
(x, t) = τ (t)T ′

N+1(x). (54)

Here, Tk is the k-degree Chebyshev polynomial, and τ (t) is a free Lagrange multi-
plier which is dictated by the prescribed boundary conditions, uN(1, t) = 0.

The coercivity of (54) was verified in [GotTad91] using two essential inequal-
ities that are inspired by the proper weighted stability of the advection equation
(52). To motivate our choice of a weighted norm, we observe that (52) is well-posed

w.r.t. the H-weighted norm, ‖u‖2
H :=

∫ 1

−1

√
1+x
1−xu2(x) dx

a(x) ,

d

dt
‖u(·, t)‖2

H ≤ −
∫ 1

−1

u2(x, t)

(1 + x)1/2(1 − x)3/2
dx ≤ 0. (55)

We note in passing that the initial-boundary problem (52) is not well-posed w.r.t.
the usual Chebyshev weight, ω(x) := (1−x2)−1/2, but (55) reveals that the problem
is well-posed with the closely related H(x) := (1 + x)ω(x)/a(x). Consequently, we
consider the discrete norm utilizing the corresponding Chebyshev-Lobatto weights
ωj, ωj = π

N(1−x2
j
)
,

〈uN , vN〉H :=
∑

j

(1+xj)ωjuN(xj)vN (xj), HN =




(1 + x1)
ω1

a(x1)

. . .

(1 + xN) ωN

a(xN)




Equipped with these notations, we recall [GotTad91, Lemma 3.5 with α = β =
−1/2]

#1. <e〈uN , LNuN〉H ≤ −1

2
.
∥∥∥
uN (x, t)

1 − x

∥∥∥
2

(1−x)ω(x)
,

#2. |LNuN |2H ≤ 2 max |a|2(N + 1)2
∥∥∥

uN (x, t)

1 − x

∥∥∥
2

(1−x)ω(x)
.

The two inequalities for the constant coefficients case, a(·) ≡ a > 0, can be found
in [GotTad91, eq. (3.37) and eq. (3.39)]. Similar estimates hold with variable
coefficients, a(·) > 0, consult [GotTad91, eq. (6.18)] and respectively [GotTad91,
eq. (6.19)].

Combining these two inequalities, we find that L is coercive with coercivity
constant η ' N−2, and Proposition 1 implies the stability of the fully discrete
third- and forth-order RK methods under the CFL condition, consult [GotTad91,
Theorem 4.2],

∆t ≤ Const.
1

N2a∞
. (56)

We shall now revisit the same stability question using Theorem 2. The spatial
Chebyshev differencing of (52), LN , is uniquely determined by setting (LNuN )j =
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a(xj)u
′
N(xj) augmented with zero boundary condition, (LNuN)0 = uN(x0) = 0

at x0 = 1. Since the N -degree polynomial interpolant uN(x, t) must vanish at
x = 1, it admits the factorization, uN (x, t) = (1 − x)pN(x), and a straightforward
computation then yields,

|LNuN |2H =

N∑

j=1

(1 + xj)ωja(xj)(u
′
N(xj, t))

2 ≤

≤ 2a∞
∑

j

(1 + xj)ωj(1 − xj)
2(p′N(xj))

2

+2
∑

j

(1 + xj)ωja(xj)p
2
N(xj) =: I1 + I2. (57)

Application of the inverse inequality [GotTad91, Lemma 2.1], ‖p′N‖(1−x2)w(x) ≤
N2‖pN‖w(x), with w(x) = (1 − x)ω(x), implies that the first term on the right is
bounded from above by

I1 ≤ 2N2a∞
∑

j

(1 − xj)ωjp
2
N(xj) ≤ 2N2a∞ max

j

a(xj)

1 − x2
j

|uN |2H .

The second term on the right of (57) does not exceed

I2 ≤ 2
∑

j

(1 + xj)ωja(xj)
u2

N(xj)

(1 − xj)2
≤ 2a∞ max

j

a(xj)

(1 − xj)2
|uN |2H ,

and since (1 − xj)
−2 ≤ N(1 − x2

j)
−1, we find that the same upper bound of I1

applies to I2. We conclude

‖LN‖H = sup
|LNuN |H
|uN |H

≤ 2N
√

a∞ max
j

√
a(xj)

1 − x2
j

,

arriving at the following.

Corollary 6. Consider the fully-discrete Chebyshev approximation of the advection
equation (52) with the third-order RK time discretization,

uN (tn + ∆t) = P3

(
∆tANDT

)
uN(tn), AN =




a(x1)
. . .

a(xN)


 .

This fully discrete scheme is stable,

|uN(t)|H ≤ |uN(0)|H , |uN |H :=
( ∑

j

(1 + xj)ωj
1

a(xj)
u2

N (xj)
)1/2

,

under the CFL condition

∆t ≤ 1

2N
√

a∞
× min

j

√
1 − x2

j

a(xj)
. (58)
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The CFL condition (58) implies the familiar time-step restriction for Cheby-
shev method of order ∆t ≤ Const.N−2, the same we met earlier in (56). This is
more restrictive, by an extra factor of O(N), than the usual advective CFL con-
dition, e.g., (43), (51). Corollary 6 provides a more precise CFL bound, however,
which reveals that the extra factor of O(N) in this strict CFL condition is due to

the normalized speed, maxj

√
a(xj)/(1 − x2

j ) ≤ N
√

a∞/π. In particular, it sug-

gests that by a change of variables which ‘slows down’ the transport velocity near

the boundaries so that
√

a(xj)/(1 − x2
j) remains bounded, we could recover the

improved CFL restriction ∆t ≤ Const.N−1.

6 Appendix. On the resolvent stability condition

The notion of H-weighted stability (6) of LN ’s guarantees stability of the semidis-
crete (2) with respect to initial perturbations. That is, an initial perturbation, say
of size O(δ), is amplified by no more than Kδ later in time. This notion is intimately
related to yet another notion of stability – stability with respect to inhomogeneous
perturbations. This is realized by a resolvent stability condition which we now ex-
plore. Here, we are led to investigate the stability of our algorithm in the presence
of an inhomogeneous term, and to this end we consider the semidiscrete problem

duN

dt
= LNuN + FN , (59)

assuming, without loss of generality, zero initial values, uN(0) = 0, (for otherwise,
we can subtract the non vanishing initial data which instead can be added to the
inhomogeneous term).

To analyze the stability of (59), we multiplying (59) by an exponential weight
e−σt, σ > 0, and Fourier transform in time (setting uN ≡ 0 for t < 0),

e−σtuN(t) =
1√
2π

∫ ∞

ξ=−∞
ûN(ξ)eıξtdξ, ûN (ξ) :=

1√
2π

∫

t

uN(t)e−σte−ıξtdt.

The semidiscrete (2) reads

(σ + iξ)ûN (ξ) = LN ûN (ξ) + F̂N(ξ).

Abbreviating s := σ + ıξ, we arrive at the so-called resolvent-equation

ûN(s) = (sI − LN )−1F̂N(s),

where ûN(s) stands for the Fourier-Laplace transform ûN(s) := 1√
2π

∫
e−stuN (t)dt.

By Parseval, we have

‖e−σtuN‖ = ‖ûN(s)‖ ≤ ‖(sI−LN )−1‖·‖F̂N(s)‖ = ‖(sI−LN )−1‖·‖e−σtFN‖. (60)

Thus, the question of stability with respect to the inhomogeneous term F , boils
down to the boundedness of the resolvent, ‖(sI−LN )−1‖. Clearly, if the semidiscrete
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problem associated with LN is stable (4), then by bounding its Laplace transform
from above, we arrive at the resolvent stability estimate,

‖(sI − LN)−1‖ ≤
∫

t

|e−st| · ‖eLN t‖dt ≤ K

<es
. (61)

Finally, we can utilize (60) coupled with Parseval, to translate (61) back
into the “physical space”. Namely, if we let L2

σ denote the weighted L2-norm
‖w‖L2

σ
:=

∫ ∞
t=0 e−σt|w(t)|2dt < ∞, then the resulting stability of our inhomoge-

neous algorithm (59), states that

‖uN‖L2
σ
≤ K

σ
‖FN‖L2

σ
, ∀FN ∈ L2

σ , σ > 0. (62)

Thus, the notion of stability in (4) implies the resolvent stability in (62). In partic-
ular, H-weighted stability implies the strict resolvent bound (61) with K = 1, i.e.,
(sI − LN)−1‖HN

≤ (<es)−1 , which in turn yields the apriori estimate

‖uN‖H2
σ
≤ 1

σ
‖FN‖H2

σ
, ‖FN‖H2

σ
:=

∫ ∞

t=0

e−σt|FN(t)|2Hdt < ∞, ∀σ > 0. (63)

Similarly, the notion of strong stability of the inhomogeneous fully discrete method,

uN (tn + ∆t) = Pk(∆tLN )uN(tn) + FN(tn),

implies the resolvent condition,

‖(zI − LN )−1‖ ≤ K

|z| − 1
, ∀|z| > 1, (64)

and the analogous stability estimate

‖uN(t)‖H2
σ
≤ K

σ∆t
‖FN(t)‖H2

σ
, (65)

‖FN(t)‖H2
σ

:=

∞∑

n=0

e−nσ∆t|FN(tn)|2H∆t < ∞, ∀σ > 0.

The converse of these implications is a more intricate issue, with the important
example of families of finite-dimensional matrices, (8), covered by the Kreiss matrix
theorem, [RicMor67, §4.9]. Moreover, the Hille-Yoshida theory [Yos68] implies that
strict resolvent estimate, (63) with K = 1, implies the semiboundedness for arbitrary
LN ’s.

The result of Kreiss and Wu deals with the preservation of resolvent stability
by a class of RK methods, including the third- and fourth order methods (13) and
(14).

Theorem 7. [KreWu93, Theorem 3.2]. Assume the semidiscrete (2) is resolvent
stable in the sense of satisfying (61) and consider its time integration by locally
stable RK method. Then the corresponding inhomogeneous fully discrete system is
resolvent stable so that its solution, uN(t), satisfies (65).
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