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STABILITY ANALYSIS OF FINITE-DIFFERENCE, PSEUDOSPECTRAL
AND FOURIER-GALERKIN APPROXIMATIONS
FOR TIME-DEPENDENT PROBLEMS*

EITAN TADMOR¥

Abstract. We consider finite-difference, pseudospectral and Fourier-Galerkin methods for the
approximate solution of time-dependent problems. The paper provides a unified framework for the stability
analysis of all three discrete methods. In particular, the problem of stability for highly accurate stencils is
studied in some detail.
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Introduction. Finite-difference methods are today a classical tool for the approx-
imate solution of time-dependent problems. These methods are equipped with a well-
developed theory for analyzing their various properties [34], [21]. Here, the concepts
of consistency, stability and convergence, familiar to all practitioners in the field, play
an essential role.

During the past decade, other discrete methods for the approximate solution of
such problems have gained popularity. Primary examples are the pseudospectral and
Galerkin-type methods, e.g., [2], [6], [8], [10]-[12], [20], [28]-[30]. At the same time
the stability and convergence analysis of these methods has also rapidly developed
[2]-(4], (6], [8]-[11], [13]-[15], [17], [18], [20], [27], [36].

The purpose of this paper is to provide a unified framework for studying the
properties of consistency, stability and convergence of all three discrete methods,
namely the finite-difference, pseudospectral, and Galerkin schemes.

As a model problem we consider the symmetric hyperbolic system

0.1) %u(x,t)=A(x)%u(x, 1)+ B(x)u(x,t), t=0,

with initial conditions, u(x, 0), given at ¢ = 0. For this problem to be correctly posed,
appropriate boundary conditions should also be specified. At present, however, a
satisfactory analysis of such numerical boundary conditions is available only in the
case of finite-difference methods [16], [19], [31]; consequently, we restrict our atten-
tion to a unified discussion for the periodic problem, which requires no special
boundary treatment.

To approximate the problem in hand, one may proceed in two stages. First, at
each time level the solution is projected into a finite-dimensional space, say of
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dimension N. Thus, in the case of finite-difference and pseudospectral methods the
N-projection consists of N equidistant grid values, while the (periodic) Fourier-
Galerkin schemes are usually calculated in terms of their first N Fourier coeflicients.
In either case, it is the finite-dimensional projection which is actually calculated
by the numerical scheme. The numerical scheme itself is then constructed in the
second stage by replacing the spatial differentiation with its discrete counterpart. Being
finite-dimensional, this discrete version of differentiation admits an N X N matrix
representation, the so-called differentiation matrix.

At this point our numerical scheme is a semidiscrete algorithm, i.e., it amounts
to a system of ordinary differential equations governing the calculated N-projection.
We focus our attention on the important question of the stability of such a system.
Once stability is established, the resulting stable system can be integrated by an
appropriate ODE solver.

We begin in Part I by discussing finite-difference methods. Such methods are
usually employed with a fixed, N-independent order of accuracy. Yet, by periodic
extension of the differencing stencil, one may consider highly accurate finite-difference
methods, say of order N or more, e.g., [20], [9]. Our discussion will apply equally to
the low, fixed order accurate methods as well as to the highly accurate ones.

Studying the properties of finite-difference methods can be carried out by the
familiar von Neumann analysis, where the Fourier symbols of the difference scheme
are examined [34], [21, §9]. In our discussion, there is a particular emphasis on how
the accuracy and stability properties of finite-difference methods are directly deter-
mined by the corresponding differentiation matrices, rather than by their correspond-
ing Fourier symbols. The reason for taking this approach is two-fold. First, we do so
in order to shed light on the classical von Neumann analysis from a point of view
slightly different than the usual one. The second and main motivation in choosing
this approach is its relevance to the other two methods discussed in later sections. In
other words, the discussion on finite-difference methods in terms of their differentia-
tion matrices, carried out in the first part, will lead into the second and third
parts where the same unified stability discussion will apply to the pseudospectral as
well as the Galerkin methods. We will thus achieve the main objective of this paper,
that is, to point out the intimate relation within the stability analysis of all three
methods.

Each of the three methods is identified with a different differentiation matrix. In
order to maintain a unified discussion with regard to all three of them, we consider a
rather general differentiation matrix. Such a matrix is assumed to share with the
differentiation operator the properties of being an antisymmetric and periodic, i.e.,
circulant, matrix. To guarantee stability, we also require that the differentiation matrix
meet a certain locality restriction. Specifically, this locality restriction requires the
boundedness of the Fourier symbols associated with the high modes of the scheme.
On the other hand, a reliable numerical scheme should satisfy an accuracy requirement
as dictated by the exactness of differencing the lower modes. The combinaton of these
two requirements guarantees the convergence of the calculated numerical N-projection
to the exact solution. Indeed, the lower modes carrying most of the information will
be accurately represented by the numerical model; while this need not be the case
with the higher modes, stability will assure us that these high modes are not amplified
and hence rapidly tend to zero in complete analogy with the differential set-up.

We distinguish between discrete methods having a fixed N-independent order of
accuracy such as the classical fixed “low” order accurate difference methods, and
highly accurate methods of order N or more. In the first case, the fixed order of
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accuracy concerns only the lower modes, and therefore does not interfere with the
stability restriction placed on the higher ones. However, in the second case of high
accuracy, the accuracy and stability requirements contradict each other. That is, the
exactness in differencing the high modes (= high accuracy), results in the unbound-
edness of the corresponding Fourier symbols (= instability). Trying to resolve this
contradiction, we are led to the discussion closing the first part of the paper, where
we deal with skew-symmetric differencing and smoothing procedures. In both cases
one wishes to bound the Fourier symbols associated with the high modes while
retaining the accuracy of the lower modes.

We continue in Part II, studying the (periodic) pseudospectral Fourier method.
This method can be viewed as the infinite limit of periodic center differencing [9].
Consequently, our previous discussion on the highly accurate finite-difference methods
equally applies. In fact, it is particularly relevant for the infinite-order accurate Fourier
method. Here, we also analyze the stability question from still a slightly different
point of view. To this end, we first introduce the aliasing formula, relating the Fourier
coefficients of a periodic function to those of its equidistant interpolant. We then
proceed to develop the stability analysis of the Fourier method, based upon this
aliasing formula. The aliasing errors are then shown to play a key role here, since they
dominate the problem of stability versus high accuracy in this case. In order to resolve
this problem and to guarantee stability, two commonly used solutions are suggested
in the literature. These were already encountered in connection with the highly
accurate finite-difference methods. Namely, one may use skew-symmetric Fourier
differencing [20], [37] or employ an appropriate smoothing procedure [1], [10], [15],
[22], [25]. As a final note to the second part, we close the circle here with the
previously studied finite-difference methods: the latter can be viewed as special cases
of the Fourier method which differ in their buil/t-in smoothing recipe.

In Part III, we conclude with a third type of discrete methods—the Galerkin-type
methods. In order to stay within the unified framework, we confine ourselves to the
periodic Fourier-Galerkin method. This, in turn, enables us to elaborate on the close
connection between the stability analysis of the Fourier-Galerkin method on the one
hand, and both finite-difference and pseudospectral methods on the other hand.

The Fourier-Galerkin schemes are evaluated in terms of the first N exact Fourier
coefficients of the solution. The error committed in this case consists solely of
truncation errors. Consequently, the stability of these schemes is intimately related to
the correctness of the differential model itself. Once the exact Fourier coefficients are
discretized, additional aliasing errors are introduced, and our stability study carried
out in the previous sections becomes relevant. In particular, finite-difference and
pseudospectral methods, with or without smoothing, can be viewed as special cases
of the Fourier-Galerkin method; they can be classified according to the spe-
cific quadrature rule they employ in order to discretize the exact Fourier-Galerkin
coefhicients.

Finally, in order to make the paper self contained, we have collected in the
appendix some basic properties of Toeplitz and circulant matrices; these will play a
vital role in the analysis.

Part I. Finite Difference Methods.

1. Finite difference operators. Let v(x) be a 2x-periodic m-dimensional vector
function, whose values v, =v(x,) are assumed known at the gridpoints x, = vh,
h=2x/N, v=0,1,... ,N—1. A second-order accurate approximation to its
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derivative, D,v(x), is given by the centered divided difference
vix+h)—v(x—h)

When augmented by the periodicity of v, these divided differences are well defined at
all gridpoints x =x,, v=0, 1, - - - , N — 1. The transformation which takes the vector
of the assumed known gridvalues' v = (vo, --- , Ux—;)’ into the vector of divided
differences drp,[v] = (D2(h)[ve], - - - , D2(h)[un-1])’ is linear, and hence has a matrix
representation

(1.22) drp,[v] = Dv.

Here the matrix D, = D,(h) consists of m-dimensional block entries given by

0 I 0 - 0[]

- 0 1 \O

A O N :

(1.32) D=7 \ 0
0 0 7

7N .. 0 7 o

Similarly, fourth- and sixth-order accurate centered divided differences are given
respectively by

4Dy(h)— Dx(2h)

Dy(h)[v(x)]= 3 [v(x)]
(1.14)
_Blv(x+h)—v(x—h)]—[v(x+2h)—v(x—2h)]
a 12h ’
(1.16)
Ds(h)[v(x)]
_ 15D, (h)— 6D12(§2h) + D,(3h) [0(0]
_ 45[v(x+h)—v(x—h)]—v(x+2h)—v(x—2h)] +[v(x+ 3h)—v(x—3h)]
60h

with the corresponding matrix representations

0 81 -1
—87 0 8I
I -81_ 0
1 0
(1.3,) D, h ,
‘3§° ~
81 -=I 0

! We denote the transpose of a vector, w, by a prime, w’, we use a star to denote its conjugate
transpose w*, and we let ||w|| = (w*w)"? denote the usual Euclidean norm. Similar notation is used for
matrices.
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(1.36) [~ 0 451 91 I
—451 0 451 -91I
91 —451 0 451
-1 9 —45] 0
0 —I-_ 91_—45I

~60h :
(;<0\
—or 10 0 45
| asrSor N7 S0 0 S=rTor Sast 0|

Observe that the matrices D,;, s = 1, 2, 3 are antisymmetric matrices which admit a
block circulant form. By this we mean that the (j, k) block entry of such matrices
depends only on (j — k)[mod N].

The examples above illustrate special cases of a more general recipe for 2s-order
accurate centered differencing which is given by [20, §3]

(_1)k+l(s!)2
S+ (s—k)"

Likewise, each one of these differencng stencils is connected with an antisymmetric
block circulant differentiation matrix, D,; = D,,(h), such that

(1.25) 0rp,,[v] = Dasv.

(L) Du=23 Dalkh), = fu(o)=

As s increases, so does the amount of work required to perform the multiplication on
the right-hand side of (1.2,,). Traditionally, finite-difference methods are employed
with small, fixed (i.e., N independent) values of s, e.g., s=1, 2, 3, where a total
amount of work of N - s operations is required (1 operation = vector addition +
vector multiplication by a scalar). For large values of s, of order N or more, Dy
becomes a full matrix whose multiplication requires an increasing amount of work
up to N? operations. However, the number of operations can be substantially reduced,
due to the circulant form of the matrices D,, which enables their efficient diagonali-

zation by a block Fourier matrix F. To be more specific, let us denote by n the integral
part of N/2,

(1.4a) n=integral part of %V;

then, the above-mentioned block Fo\urier matrix, F, consists of m-dimensional block
entries given by

1
(1.4b) [F]jk=ﬁ-e"’""-lm, -n=j,k=sN-n—-12

In the Appendix, (A.3), we verify that circulant matrices such as D, admit the
following spectral representation in terms of a block diagonal matrix Ay, = Ax(h),

DZS=F_IAZSF3 F~! ENF*,
(1'323)

[A2]=AY) - Ims%- Y k™'Bksin (jkh)-I,,, —n=jsSN-n-—1.
k=1

2 Alternatively, one may consider [F] = 1/N . e7!0=X=mk . [0 = j, k= N. However, in order to
simplify the notation later on, we prefer the (J, k) entries of F to lie within the range —-n=j, kS N—-n— 1.
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Multiplication by D,, in its spectral representation (1.3,5) can now be efficiently
implemented by two FFTs and N scalar multiplications which amount to 8 Vlog N
operations. Thus, for high 2s-order accurate differencing, we have regained the
(almost) linear rather than quadratic dependence on V.

Next, we extend our discussion by considering rather general discrete differentia-
tion operators. Motivated by the centered differencing examples above, we make one
assumption regarding the corresponding matrix representation of such operators,
D = D(h). Specifically, we assume that the differentiation matrices have the following
antisymmetric block circulant form:

(1.5) [Dlx=diu-j - In=—dj-1y- In, ~ [l]=I[mod N].

The antisymmetric form is related to centeral differencing, while the circulant form
reflects the assumed periodicity. We require both in order to enable a unified
framework for our later discussion on the pseudospectral and Galerkin methods. The
circulant matrix D in (1.5) admits the following spectral representation (see (A.3))

(1.6) D=F"'AF, F'=NF*

with a block diagonal matrix, A, whose diagonal consists of the so-called Fourier
symbols

N-1
(1.7a) A=\ I,= Y die™ .I,, —n=jsSN-n-1.
k=0

Since D is assumed to be antisymmetric, dx + dv—x = 0, and hence the Fourier symbols
can be rewritten in the simpler form

(1.7b) _ ND=2j. ¥ dysin (jkh), —-n=j=N-n—1.
k=1

The discrete differentiation described by the spectral representation of D,
D =F"'AF, can be interpreted now as follows. Using the gridvalues v,jos,=n—1, One
forms the discrete Fourier modes 0,, given by

1 N-1 )
(1.8) [ﬁ]wE[Fu]w=N- Y ey, -n=w=N-n—1.
»v=0

Then, each one of these modes is differentiated as it is being multiplied by the Fourier
symbol A, Finally, the differentiated modes

X%

©|_psusN-n-1

are transformed back into the physical gridspace upon multiplication by F~'.

2. Stability of finite difference approximations. Replacement of the spatial de-
rivative in the symmetric hyperbolic system (0.1) by the differentiation matrix
D = D(h), results in the semidiscrete approximation

(2.1a) é%v,(t)=A(xy)D(h)[v,(t)] + B(x,)u,(t), v=0,1,--- ,N—1.
Let us introduce the block diagonal matrices 4 = diag [4(X), - - - , A(xy-1)] and
B =diag [B(xo), - -- , B(xn-1)]; then we can rewrite the approximation (2.1a) in a

concise matrix formulation

(2.1b) | & (0)= ADu(0)+ Bo(t).
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We note that the symmetric hyperbolicity of the system (0.1) is reflected by the
coefficient matrix 4 being symmetric.

The time-dependent difference equation (2.1) serves as an approximation to the
differential problem (0.1), in the sense that any smooth solution, u, of (0.1), satisfies
the approximation (2.1) modulo a small local truncation error 7(4) = 7(/;t)

22) & u(t)=ADu()+ Bu)) + £(h; ).

The approximation is said to be accurate of order o if ||z(h)|| = O[h*]. For example,
with D = D,, one obtains a difference approximation which is accurate of order 2s,
llz2s(h)| = O[A*]. In order to link the local order of accuracy with the desired global
convergence rate of the approximation, one has to verify stability. We say that
approximation (2.1) is stable, if for all sufficiently small / the following estimate holds

(23) I exp (4D +B)]l=K=Kr, O0=t=T.

Observe that the stability definition takes into account the lower order term, Bu,
appearing in (2.1b). We claim, however, that stability in the above sense is in fact
insensitive to such low-order perturbations. This is the content of the following
classical perturbation lemma. This perturbation lemma, whose proof is given here for
completeness, will play an essential role in our discussion (see, e.g., [34, §3.9], [35],
[40]).

PERTURBATION LEMMA. Let A be a given linear operator whose exponent is
bounded.

llexp [At]]| = K7, 0=(=T.

Then, after adding a “low-order” bounded perturbation, B, we still have a bounded
exponent, that is,

lexp [(A+B)]ISK(:), K()=Krekr"®lt 0=(=T

Proof. The solution of the inhomogeneous linear differential equation

(2.4a) %w(t)=Lw(t)+ G(1), w(t=0)=w(0)
is given by
(2.4b) w(t)=e“w(0)+ j; - eLHG(§) dt.

Applying (2.4b) with L= A + B and G =0, we get
w(t) = elA+B1ly(0).

Hence, (2.4a) can also be written as the inhomogeneous problem w,(t)=
Aw(?) + BelA*®1y(0). Applying (2.4b) once more, this time with L=A and
G = Bel@+Bily(0), we obtain

!

w(t)=e*w(0) + f ARl A+ y,(0) g

£=0
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Equating the last two representations of w(t), which are valid for arbitrary initial data
w(0), we arrive at the well-known identity

exp [(A+B)t]=exp [At]+ J; i exp [A(z—£)] - B - exp [(A + B)¢] dt.

Taking norms on both sides, we find

K()=Kr+Kr- ||B] -J;=0K(E)df~

Using the Gronwall inequality, we conclude that

‘[—OK(E) dgé "B"_l . [eKT' IBj-t __ 1]’

and hence
K(t)=Kr+Kr- | B - |B]| ™" - [eXr 1B — 1] = KreXr 1B,

as asserted. We remark that similar arguments apply for the analogous question
concerning low-order perturbations of power-bounded operators, e.g., {34, §3.9].

Making use of the perturbation lemma, we can now show that stability is
equivalent to the boundedness of |lexp [4Dt]||. In other words, if we consider a
discrete scheme with or, in particular, without its low-order terms, then the solution
of such a stable scheme, v(¢), depends continuously on the initial data, v(0),

(2.5) lu@)l = le%2%(0)| = K(2) - lw(0)]l.

Indeed, if stability holds in the sense that |lexp [(4D + B)t]| is bounded, then by the

perturbation lemma with A =4D+ B and B=—B, |exp [4Dt]] is also bounded.

On the other hand, if the exponent exp [4D¢] is bounded as in (2.5), then by the

perturbation lemma with A = 4D and B = B, so is the exponent exp [(4D + B)t].
Given stability, we can now estimate the global error E(t) = u(t) — v(t). To

accomplish this, we subtract (2.1) from (2.2) to find that the error E() is governed by
the error equation

2 EO=(4D+BEQ) +2(h1)

The solution of the error equation is given by

t

E@t)=exp [(4D+B)]E(t=0)+ JE;OGXD (4D + B)t =)z (h;§) dt,

and by using the perturbation lemma we end up with the error estimate

IEOIS K@) - EG=0)I+ sup Iz(h: )l - fg RGL3

Thus, if an a-order accurate approximation starts with an a-order accurate initial
data, i.e., both ||7(/#; £)|| and || E(t = 0)|| are of order O[A°], then stability will retain
the a-order of convergence rate later on, ||E(?)]] = O[h®]. Consequently, verifying
stability becomes our main objective in the rest of this section.

We start by noting the identity

ADt=5(4D+ DA)t+3(4D— DA).
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We recall that 4 is a symmetric matrix while D is an antisymmetric one. It follows
that the first parenthesis on the right of the above identity is antisymmetric, which
therefore has a bounded exponent; more precisely, we have

lexp [2(4D+ DA)]ll = 1.

We refer to the above identity once more, this time with the second parenthesis on
its right viewed as a low-order perturbation of the first one; in order to estimate the
exponent of their sum we invoke the perturbation lemma which yields the following
bound:

(2.6) lexp [4De]ll Sexp [I2(4D— DA - Tl, 0=¢=T.

Thus, we are left with the task of finding a bound for the symmetric part of 4D,
Re(4D) = 3(4D — DA). The (p, q) block entry of that part is given by

[%(AQ —DA)pe= %d[p—q] - [A(xp) — A(xp)], 0=p,g=N-1.
Since A(x) is a symmetric 2r-periodic matrix, we have,
14(x) — AN =5 - (};’Ig 4”@l - Min [|p—g],N—|p—q]].

Hence, the matrix in question, 3(4D — D4), is dominated entrywise, and therefore in
norm, by the matrix whose ( p, g) block entry is given by

h , )
E-Max 14°COll - |dip-gl - Min[|p—q|,N=|p—q|]-In, [p—4gl=p—g[mod N].

This latter matrix is a circulant one. Corollary (A.8) in the Appendix tells us that the
norm of such a circulant matrix does not exceed the absolute value sum of the
elements along the first ( p = 0) row,

N-1

h , .
5 - Max 4" (0l - 20 Min [¢q,N—q] - |d,|.
=

Recalling the antisymmetry of D, we have di + dy—, = 0, and we finally end up with
the desired bound

(2.7) H %(AQ—DA) ” Sh- X kld - Ma)2< 4" ol
k=1 0=x=2~n
Inserting the last bound back into (2.6), we find that the following estimate holds:
(2.8) llexp [ADt]]| =exp [h- Y kldy] - Max |4’ (x)| - T] , 0=(=T.
k=1

The above estimate serves as a discrete analogue to the standard energy estimate one
has in the differential case. An abstract version of the latter amounts to

lexp ([A(X)Dxt]ll = exp || 3(A(X)Dx— D<A - T)
Sexp(;-Max |4’ ()| - T), O0=¢=T.

2.9

Let us consider the case in which the coefficient matrix A(x) is not a constant, i.e.,
A’(x) #0. Then the two estimates, (2.8) and (2.9), differ—the term 4 - 37, k|d|
appears only in the first of them. Therefore, in order to guarantee stability, we require
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this term to be bounded uniformly in 4:
(L) h- Y k|di| = Const.
k=1

The essence of the (L) condition is that the differencing operator D should be a /oca/
operator, thus reflecting the local nature of differentiation D,. To summarize our
conclusion, we have shown the stability of discrete approximations which employ
rather general differencing operators. These are differencing operators which, like
differentiation itself, are antisymmetric, periodic (= circulant form) and local. Ex-
amples of such stable differencing operators are provided by the centered divided
differences D-,, with any fixed value of s. These fixed, “low-order” accurate operators
are clearly local, as they employ information extracted from a fixed number of
neighboring gridvalues. The locality of these operators is also reflected in their matrix
representation, D,,, which has a finite width of s nonzero super diagonals. Thus,
defining the bandwidth of the general circulant matrix D in (1.5) as

w(D)= Mkax {k|d#0},
1=k=n

yields w(D = D) = s. Since in general, the differencing coefficients di do not exceed
a constant times 4~ it follows that finite-width operators are indeed local, i.e.,

h- Y k|di = Const w*(D).
k=1

This, in turn, implies that the corresponding local schemes are stable.

As s increases, however, D,, becomes a full matrix which fails to satisfy the locality
condition (L). That is not to say that such highly accurate differencing results in
unstable approximations, since the locality condition was only shown to be sufficient
for stability. To the best of our knowledge, the necessity for such a condition is not
known. One case in which stability can be verified independently of such locality
restriction is when the coefficient matrix A(x) is positive (or negative) definite. Indeed,
multiplication by the definite matrix 47'(x) reduces our problem to that of the
constant coefficient case where Max ||4’(x)|| =0, and the estimate (2.8) yields
a uniform bound of one, |lexp[4D¢]]| =1. Yet, regarding the general variable-
coefficients problem, the above stability proof fails whenever the locality restriction is
violated. To overcome the difficulty of controlling the high modes, which may arise
with “nonlocal” methods, two standard types of remedies are usually employed. These
are skew-symmetric differencing and the introduction of dissipation via appropriate
smoothing. These topics will be discussed in the following section.

3. Skew-symmetric differencing and smoothing procedures. The spatial part of
the differential system (0.1) is skew-symmetric apart from low order terms. This
follows from the identity

A(X)Dx+ B(x) = 3[A(X)Dx+ D A(X)] + [B(x) — 34" (X)].

We begin by considering skew-symmetric differencing which is based on this formal-
ism. It can be implemented for linear problems [20] as well as for a wide class of
nonlinear ones [37].

Using the above identity, we can rewrite (0.1) in the equivalent form

a% u(x,t)= {% [A(x) % u(x,t)+ %(A(x)u(x, l))] + [B(x) - %A '(x)]}u(x, t).
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Replacing the spatial derivatives on the right by their discrete counterpart, we end up
with the skew-symmetric approximation

3 f1 1,
—u(t)=-z[4D +|B—= .
U= 314D+ D41 [13 54 ]}y(t)
The stability of the skew-symmetric approximation is immediate. The first term inside
the curly brackets above is antisymmetric, and hence its exponent is bounded by 1.
Therefore, according to the perturbation lemma, the exponent of the sum of both
terms inside these curly brackets is bounded by the exponent of the second term:

lexp [{3[4D+ DA+ [B— 24"l Sexp (I1B—24"l - T),  0=(=T.

This coincides with the exact energy estimate for the differential problem; compare
with (2.9) in the special case B = 0. Thus, the stability of skew-symmetric differencing
is gained by retaining essential antisymmetry of the whole spatial operator,
A(x)D, + B(x), rather than that of the differentiation itself. This is done, however, at
the expense of doubling the total amount of work required.

A less expensive alternative to skew-symmetric differencing, which is also proved
to be stable, is to apply appropriate smoothing procedures. This topic is discussed in
the rest of this section. We start by going back to estimate (2.6) where we were left
with the task of bounding the symmetric part of 4D, Re (4D) = 3(4D — D4). By
employing the spectral representation of D (see (1.6)),

D=(N'’Fy*A(N'?F),
we obtain the equality
(3.1 3(4D— DA4)=3[A(N'?F)*A(N'’F) — (N '?F)*A(N '’ F)4].

Let us multiply this equality by N/2F on the left and by (N'/?F)* on the right. By
(A.6), this implies that the above matrix is unitarily similar and therefore equal in
norm to

(3:2) 134D =D =:I{(N'F)AN"PF)*} A — AN F)AN F)H|.

Next, we examine the matrix inside the curly brackets on the right of (3.2), whose
(p, q) block entry is given by

N—-1

- Y A(x)e e —p=p gq=N—n-—1.

(33 (NPRANPFY )=y
»=0

Using the Fourier expansion
27

., , N |
Ax)= ¥ Aw)e™, Alw)=5— J; =Oe_"°5A(€) dt,

w=—0

we can also express the (p, g) block entry given in (3.3) as

1 N1 1 N—1 © . ) '
]—V. EO A(xy)e"""””"=ﬁ- 20( ¥ A(w)ewx,>ez(q—p),,h
(3.4) r= v= w=—00
© . 1 N—1 ~ 0 R .
= 2 AWy Bewr= 3 Ap-gtiv)
w==—00 y= j=—on

We now combine the representation of {(N'?F)A(N'/?F)*} in (3.4) together with the
diagonal structure of A in (1.7). We then conclude, on account of (3.2), that the
matrix norm of 3(4D — DA) equals that of another matrix whose (p, g) block
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entry is given by

(3.5a) (A9=-A?). ¥ A(p—q+jN), —n=p,gSN—-n-—1.
j=—
We note that the sufficiency of the locality condition (L) can be deduced again
at this stage, if we are to proceed as follows: according to (1.7b) we have

(3.5b) ND—\P=2;. ¥ d, - (sin (gkh)—sin ( pkh)),
k=1

since
Isin (gkh)—sin (pkh)| =k - h - Min [|p—q|,N—|p—ql],

the matrix in (3.5) is dominated entrywise, and therefore in norm, by the matrix
whose ( p, g) block entry is given by

2h - kZlkldkl - {Min [lp—ql,.N=Ip—ql]- X IIA(p—61+jN)II}’ L.
= e

Consider the norm of the circulant matrix inside the above curly brackets. By Corollary
(A.8) it does not exceed the absolute value sum of its elements along the first row,
which in turn can be estimated in terms of the derivatives of A(x). Thus, assuming
that the locality condition holds, % - Y% k|di| = Const, we conclude that
(4D — D4), and hence exp [4Dt], have bounded norms.

The merit of the representation (3.5) lies, however, in the possibility of expressing
a locality condition in terms of the Fourier symbol blocks associated with D, \X® . [,
rather than in terms of its entries dj - I,,. To this end we proceed as follows.

We write the matrix in (3.5) as the sum of two matrices. The first matrix singles
out the index j = 0 in the summation on the right-hand side of (3.5a),

AD — \(P) R
(3.6a) —<—q—7) -(p—q) - A(p—9).
In the second matrix we include the rest of the j-indices,
(3.6b) (\Q=\P). ¥ A(p—q+jN).

Jj#0

It is a property of the finite difference methods that the first matrix in (3.6a) is
bounded. Indeed, since the Fourier symbol, A’ =2 - ¥ d sin (jkh) represents the
discrete derivative of j mode, ¢*, the difference A — \¥’ should not exceed a constant
times |g — p|. Hence, the matrix in (3.6a) is dominated entrywise and therefore in
norm by the matrix whose (p, g) element is given by

Const | p—g| - |A(p—g)ll.

According to Corollary (A. lAl), the norm of the above Toeplitz matrix does not exceed
a constant times Y=4 |||l A(w)]l, which in turn can be bounded by the derivatives of
A(x). Thus, it remains to verify the boundedness of the second matrix given in (3.6b).
Here we observe that if p — ¢ is bounded away from jN, j#0, e.g., |p—g| S 6N,
6<1, we have ||Y <0 A(p — g+ jN)| = C,,N™, and hence the corresponding (p, q)
entries in (3.6b) are negligibly small. To guarantee the boundedness of the
entries which correspond to the remaining indices where |p —gq| ~ N, i.e., where
+p ~ Fq ~ n, we require A and \? to be bounded. Thus the locality condition
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amounts to the boundedness of the Fourier symbols, \ - I,,,, associated with the high
frequencies |j| ~ n. If this is the case, then the matrix 3(4D — D4) in its unitarily
similar representation (3.5) is bounded and stability follows from (2.6).

The above considerations are typical for a wide class of time-dependent discrete
methods, whose accuracy is determined by the exactness of differentiating the low
modes, \“ ~ jj, while for their stability we need the boundedness of the Fourier
symbols, ||, associated with the highest modes, |j| ~ n.> The combination of the
two guarantees convergence, as the low modes carrying most of the information are
accurately represented, while stability guarantees that the inaccurate highest modes
are not amplified and hence rapidly tend to zero, just as is the case with the
differential problem.

The two requirements of accuracy and stability are well accommodated in
difference methods having fixed (= N independent) degree of accuracy. Consider, for
example, the second-order differencing we started with in (1.1,). According to (1.32)
we have A\Y’ =ih~" sin (jh), and hence, \Y’ ~ ij + O(h?) for |j| ~ 0, i.e., we identify
the second-order accuracy. In addition we have |A$’] = |A~" sin (jh)| = Const for
| j] ~ n, which implies stability. The situation is less favorable, however, for highly
accurate differencing methods (of order N or more): here the accuracy requirement
for the highest modes, \Y) ~ ij, contradicts the locality restriction which requires the
highest Fourier symbols to be bounded, |A\“’| = Const. We observe that the latter
contradiction still leaves us with a bound of order N, which corresponds to a familiar
situation of “losing one derivative”* in the differential case.

The purpose of smoothing procedures is to resolve the above contradiction by
bounding the Fourier symbols associated with the high modes while leaving the lower
accurate modes unharmed. Consider, for example, the Shuman filter, where the
smoothing transformation

U,— §(Vp+1)+ Up—1) + 20,)

is first applied to the right-hand side of (2.1a). In Fourier space, this amounts to the
further multiplication of the j mode by 3 - (1 + cos (jA)). Thus, the following trans-
formation takes place:

0;—3(1 +cos (jh)) - U,.
The resulting smoothed discrete differentiation operator, Dsnyman, is of the form
Dspuman = N F*AQshuman F
where
Qshuman = diag [3(1 +cos (=nh)) - I, - - - , 3(1 +cos (N — 1 —=n)h)) - I,].

In other words, we see that the original Fourier symbols A were replaced by
AY . 3(1 + cos (jh)). Consequently, we now achieve the desired boundedness of the
highest modes where in fact we have |A? . 3(1 + cos (jh))| ~ O for |j| ~ n. This is
done, however, with the expense that the overall accuracy is now reduced to second
order, i.e., AY) . 3(1 + cos (jh)) = ij + O[h?] for | j| ~O.

31t should be emphasized that this stability restriction is only sufficient. Its necessity is still an open
question.
“In fact, as we shall see later on, we have a loss of only “one-half” derivative.
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Let us discuss the general case. A linearly smoothed discrete differentiation
operator, D, , takes the form

(3.7a) D,=NF*AF, A, ,=AQ
where
(3.7b) Q=diag[¢" - I, -+ ,a™ ' L]

Both the requirement of accuracy on the one hand and that of stability on the other
hand can be formulated in terms of the smoothing coefficients, o, in the following
concise form:

(3.8) o= J[zl for | j| bounded away from n (= accuracy),

10 for|jltn (= stability).

Various smoothing procedures of the type described above have been advocated in
[1], [15], [22], [24]-[26] and [29]. In these references, smoothing procedures which
involve polynomial and exponential cutoff of the highest modes were introduced and
were shown to guarantee stability for smooth as well as for nonsmooth data. We now
demonstrate that in the smooth case, a first-degree polynomial cutoff will be sufficient
for stability, compensating for the loss of one derivative mentioned earlier. To work
out this case in some detail, we fix § < 1 and let the smoothing factors, o, be given by

A 1, |j1=6n,
(3.9) o= 1
Const————, on<|j|=n.

(1j1 —6n)

The new Fourier symbols are given now by A", A fixed §-portion of the first N
modes remains the same so that the original order of accuracy is retained. To verify
stability, we use the real symmetric part 4D, in its unitarily equivalent form (3.5). As
in (3.6), we consider it to be the sum of two matrices. The (p, g) block entry of the
first is given by

<>\(q>a(q>_ AP (P
q—Dp
As we argued before, this first matrix can be bounded by the norm of the derivatives

of A(x). We claim that the second matrix, whose (p, g) block entry is given by
(compare (3.6b))

) (p-9)-A(p—9).

()\(q)g(q)_ )\(p)a(p)) . 2 /i(p—q+jN),
Jj#0

is likewise bounded. Indeed, for |p —gq| = (1 + 6)N/2, these entries are negligibly
small as they are bounded by N - ¥ . |A(p— g+ jN)lI =C,sN™*'. For the
remaining (p, g) indices, where |p—gq| > (1 +6)N/2, we either have p>6n and
g < —0n, or else the roles of p and g are reversed; in either case we conclude that
|p| > 6n and |gq| > 6n. Consequently, the second matrix is bounded entrywise and
therefore in norm by the matrix whose (p, g) entry is given by

(e
lgl—6n |p|—6n

A direct calculation shows that the latter matrix can be bounded in terms of the
derivatives of A(x).

- Y NA(p—q+jiN) - I, DI, 1g]>0n.

Jj#0

(3.10)
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Part II. The Pseudospectral Fourier Method.

4. The Fourier differencing operator. We let v(x) be a 2r-periodic m-dimensional
vector-function whose values v, = v(x,) are assumed known at the gridpoints x, = vh,
h=2x/N, v=0,1,...,2n. To simplify the notation, we consider here the case of an
odd number of gridpoints, N = 2n + 1, leaving for the appendix a similar treatment
of the even case. By Fourier differentiation we mean differentiation of the trigono-
metric interpolant based on those gridvalues. That is, one constructs the trigonometric
interpolant

n

(4.1a) ix)= Y D.e"*

w=—n

in terms of the discrete Fourier coefficients, 0., which are given by (compare (1.8))

. 1 2n

(4.1b) bo==—- Y v,  —n=w=n.
N S
The Fourier differentiation then takes the form
30 n _

4.2 —(x,)= iwd, e,
(4.2) = % i
The above procedure consists of the following three basic steps. First, we transform
the discrete space of gridvalues v = (v, - - - , U2,)” into the Fourier space of amplitudes
0= (0_n, -+, 0y, oOr, in matrix notation,
4.3) v=Fuv.

Then we differentiate in Fourier space, which amounts to
0—ArD;

here Ar denotes the block diagonal matrix which reflects the differentiation carried
out in (4.2),

(4.4a) Ar=diag[—in- Ly,—i(n—1) - L,,--- ,i(n=1) - Ly, in - I,]].

Finally, the differentiated amplitudes Ar0 are transformed back into the discrete
“physical” space thus arriving at the Fourier differentiated gridvalues, d-[v],

dr[L]=F~'[ArD].
Added altogether, the Fourier differencing operator F amounts to multiplication by
(4.4b) F=NF*A;F, F'=NF*

This can be efficiently implemented by two FFI’s and N scalar multiplications
requiring O(N log N) operations.

An explicit representation of the Fourier differencing matrix F can be obtained
using the interpolant formula (cf. [42, Chap. X])

2w _sin [(n+3)¢]
T R I a FrYery

Differentiation of the right-hand side yields
I ) ;
2sin (k—j)x/QRn+1) ™

(4.5) [Flx= 0=j,k=2n.
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Thus, the Fourier differencing operator belongs to the class of antisymmetric block
circulant matrices discussed above in (1.5),

-1 )I+ 1
4.6 Flu=d®, - L dP = :
(4.6) (£ 5= duemy - I I 2sin[lr/(2n+1)]
Being antisymmetric and circulant, the Fourier differencing matrix admits a spectral
representation which can be read from (4.4). Fornberg [9] has shown that the matrix
of Fourier symbols in this case, Ar, equals the increasing limit of the 2s-order
accurate finite-difference symbols studied in (1.32),
1} F= lim 423 .
S§—>0
That is, the Fourier differencing can be viewed as a special centered finite differencing
based on an ever increasing number of periodic stencils
E =lim D2s-
§—>0
With this in mind, we may claim that while the Fourier differencing enjoys an “infinite
order of accuracy”—a statement to be made precise below—it is a nonlocal one.
Hence our previous discussion, at the end of §2, concerning the problem of stability
versus high accuracy, is particularly relevant for the pseudospectral Fourier method.
Here we intend to re-examine this problem in terms of the all-important aliasing
phenomenon.

5. Aliasing. Let w(x) be a smooth 2z-periodic m-dimensional vector-function
with a formal Fourier expansion

(5.1a) w(x)= E: w(w)e™ .

w=—00

Here W(w) are the Fourier coefficients given by
2T
(5.1b) W(w)=i f w(E)e ™t dt.
2w Je=0

Given the sampled gridvalues w(x,), »=0, 1, - - - , 2n, of the function w(x), one can
construct its interpolant, Ww(x),

(5.2a) w(x)= i W, e~

w=—n

in terms of the discrete Fourier coefficients (see (4.1b))

1 2n )
(5.2b) Wo==- 2 wx)e ™ o] =n.
N S

Comparing this with the exact Fourier coefficients in (5.1b), we observe that the
discrete coefficients are nothing but the trapezoidal rule applied to the integrals on
the right of (5.1b). The precise relation between the two, the Fourier coefficients w(w)
of w(x) and the coefficients W, of its interpolant W(x), is contained in the following
lemma.

ALIASING LEMMA (Poisson’s summation formula). Let w(x) be as above. Then
we have

(5.3) W, = § w(w+kN).

=—00
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Proof. Inserting (5.1a) into (5.2b), we obtain

A 1 3 —iwvh 1 3 ol A iux, —iwvh
A B I

By the assumed smoothness of w(x), the summation can be interchanged, yielding

oo 2n oo
b= 3 W) e T eI S (e k),
p=—o N S k=—oo

Indeed, the second summation in the middle term is nonvanishing only for those
indices p such that [u — w] =0, i.e., p = w + kN. This completes the proof.

Next, we consider the difference between the gridfunction w(x) and its equidistant
interpolant w(x). We have w(x) = [Yuisn + X jui>n]W(w)e™*, and, with the help of the
aliasing lemma, we rewrite

wx)= Y w(w)e“*+ 3 < > Ww+kN )>e“"".

|lw|=n |w|=n \k#0

This shows that the difference w(x) — w(x) can be decomposed as the sum of two
contributions. The first contribution, the truncation error, consists of the higher
truncated modes, |w| > n,

(5.4a) Truncation [w(x)]= Y Ww(w)e™*;

|lw|>n

the second one, the aliasing error, consists of the higher aliased modes folded back
on the lower ones |w| = n due to the finite resolution of the grid

(5.4b) Aliasing [w(x)]=— Y { Y wlo+k(Qn+ 1)]}ei“”‘.

lw|=n k#0

We observe that while the truncation error involves modes higher than », the aliasing
error involves modes less than or equal to n. Hence, these two kinds of errors are
orthogonal to each other and the size of the difference w(x) — Ww(x) is given by

(5.5a) | w(x) — w(x)||>= | Truncation (w)||?+ || Aliasing (w)||

Using Parseval’s relation, the two squared terms on the right are found to equal

(5.5b) I Truncation (W)|2=2x - 3 |W(w)[?,
|lw|>n
2
(5.5¢) lAliasing (W)|?=2x- 3 | ¥ wlo+kQn+D)]| .
lw|=n | k=0

In both cases only the high amplitudes, those associated with modes higher than n,
participate in the summations on the right. It is well known that for smooth functions
these high amplitudes rapidly tend to zero, i.e., integration by parts on the right-hand
side of (5.1b) yields

(W(w)| =C,(1+|w|)™™ forany y>0.

It then follows that the two squared terms appearing on the right of (5.5) have the
same size, which is of order C, - N©*Y, Likewise, we find that (d/dx)w(x) differs
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from the differentiated interpolant, (d/dx) w(x), by

2

2

=2r- Y |w? Ww)|?+27- Y |w|*- kEOW[w+k(2n+l)] ,

|lw|>n lw|=n

which is of order C,N©"*?, As pointed out above, the Fourier differencing of the
function w(x) is nothing else but the exact differentiation of its interpolant w(x). We
therefore conclude that the error committed by differentiating w(x) rather than w(x)
is of the negligibly small order C, A" for any vy > 0. It is in this sense that we say the
Fourier differencing has “infinite order accuracy.”

We note in passing that the aliasing relation (5.3) can be used in order to show
the isometry between the discrete and continuous space functions. To be more specific,
consider the discrete space of 2x-periodic vector functions, y(x), z(x) equipped with
the usual Euclidean inner product (-,-),

27
(5.6a) (y(x),z(x))= J; z*(§) y(§) dt.
The discrete analogue of this space consists of gridfunctions y=(yo, -+, Jan)’s
z= (20, - - - , Z2n)’ equipped with the discrete inner product (-,-)
2n
(5.6b) (yzy=h- X ziy.
~ »=0

The above-mentioned isometry now takes the concise form
(5.7) (P(x), 2(x)=(y, 2)-

Indeed, if we let w(x) be the 27-periodic function 27 - Z*(x) j(x), then by definition,
the left-hand side of (5.7) equals w(w = 0), while the right-hand side equals W.—o.
According to the aliasing lemma, the two terms differ by the sum of aliased modes
higher than 2n, Yixo w[k(2n + 1)]. This sum vanishes, however, since w(x) is a
trigonometric polynomial of degree 2n which contains no modes higher than 2n.

6. Stability of the Fourier method. In this section we examine the stability of
the Fourier method, i.c., when spatial differentiation is carried out by Fourier
differencing. According to the perturbation lemma we can neglect the low order term
and assume that B = 0. Hence, our Fourier approximation of (0.1) takes the form

. ~ )
6.1) &vy(l)—va‘:xv, L—A(x)ax.

The stability question of the Fourier method can be answered similarly to our
previous discussion on finite-difference methods in §3. That is, the unboundedness
of the Fourier symbols in (4.4a), A\¥’ = ij - I,,, requires smoothing of the highest
modes, in agreement with the nonlocality of the method as evidenced from (4.6),
h - Yiei k|d") = O(1/h). The stability analysis of the Fourier method outlined below
employs a somewhat different point of view; in fact, it is the one that motivated our
discussion in §3 above.
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To begin with, we multiply (6.1) by 4v¥ and sum over all gridpoints, to obtain

2n—1 9 2n—1
h' 2 l):r_l),,(l)=h' 2 v;kLﬁlx=x,,=(Lﬁ5Q)-

v=0 al v=0

Taking the real part of both sides of the last equality and using the isometry (5.7), we
find

2n—1

(6.2) 4 I51I°=2 Re |:h 2 U::gvu(l)]=2 Re [(L5,0)]=2 Re [(£3,5)].
dt =0 ot

The next step, which is at the heart of the matter, involves the decomposition of the
right-hand side into the sum of two terms. The first term accounts for the differential
operator itself,

(6.3a) 2 Re [(LD, )] =([L + L*]0, D).

The second term accounts for the deviation due to interpolation of the differential
operator,

(6.3b) 2 Re [(£3 - L3, b)].
We note that the above decomposition, reflected by the identity
(6.4) 2 Re [(L3,5)]=2 Re [(L3,5)] + 2 Re [(L5 — L, 0)],

is in complete analogy to the previous splitting of the matrix in (3.5a) into (3.6a) and
(3.6b).

That the first term (6.3a) is bounded by a constant times ||5||? is a property solely
of the differential operator L, called semiboundedness. This can be easily verified in
our case by integration by parts, yielding

6.5) |([L+ L*10,0)| =Const - [|5]|%

The last estimate implies the usual exponential growth bound in complete agreement
with the behavior indicated in (2.9). Thus we are left with the task of bounding the
second term, the one given in (6.3b). It is exactly this term which measures by how
much we deviate from the standard energy estimate whose abstract version was quoted
in (2.9).

To this end, we recall that the difference between w= L and its interpolant,
w = LD, consists of two basic contributions; these are the truncation error (5.4a) and
the aliasing error (5.4b). The point to note here is that the truncation error, being the
sum of modes higher than n, is orthogonal to the n-degree interpolant 0. Hence the
contribution of the truncation error to the deviation term under consideration, (6.3b),
is completely suppressed. In other words, it is solely the aliasing error which controls
the stability of the discrete approximation (6.1). To see this, we express the amplitudes
of Lv as the convolution sums

L= Y ig-Aw—q), —®<w<o.
q=-n
By (5.4b) the aliasing error is then given by
Aliasing [Lo]=—3 { Y Yig-Alw—q+kQn+ 1)]6[,}6"‘“.

lw|=n |gq|=nk#0
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Multiplying by & and making use of the Parseval relation, we find that

(L3 — Lo, 5)=(Aliasing [L0], 0)=2xi- Y vk-q- % Alp—q+kQ2n+1)]b,;
k#0

Ipl, 1q1=n

or, after taking the real symmetric part of both sides of the last equality we get

(6.6) 2Re (fﬁ—Lz}, 0)=2wi- ﬁ;ﬁ{(q—p) .Y Alp—q+kQ@n+ 1)]}1%.
Ipl,1ql=n k#0

Our purpose is to estimate the expression on the right of (6.6) in terms of 5112 By

doing so we will end up with an energy estimate

6.72) 4 o= Const - 191,

which in turn will imply stability (see (2.5)):
(6.7b) le@)I2=15@)IP= K@) - 150)I>=K() - 120)II>.

To assert that the right-hand side of (6.6) does not exceed
Const |5]|>=Const - Y, |0,]*

|w|=n
for all possible amphtudes 0, is, by definition, equivalent to asserting the boundedness
of the matrix given in the curly brackets above (6.6). Denoted by A, the (p, g) entry
of this matrix equals

(6.8) [Al,=(g—p)- kgofi[p—q+k(2n+ ], -n=pq=n.

A similar expression was already obtained in (3.6b). These terms represent the effect
of aliasing due to the presence of a variable coefﬁcmnt matrix A(x). In the constant
coefficient case, for example, no aliasing occurs, A(w) = 0, w # 0, so that the terms in
(6.8) and hence in (6.3b) vanish and stability follows, in agreement with the earlier
conclusion of stability for the constant coefficient case. The situation with the variable
coefficient case is more delicate, however. We examine the (p, g) entries we were left
with in (6.8). For |p — g| bounded away from 2n, ie., |[p—q| =6 - 2n, 6 <1, these
entries are negligibly small, since by the smoothness of 4(x) we have

‘ kA

Y A[p—qg+kQ@n+1)]| =C,sN7.
0

Yet when |p —¢| approaches 2n, that is, either when p 1 n and g | —n or vice versa,
Zk;éoA[ p — q + k(2n + 1)] contains the lower modes of 4(x) whose amplitudes are
of size O(1), and hence these entries are of size O(N = 2n + 1). In other words, we
conclude that the matrix A given in (6.8) is unbounded, no matter how smooth A(x)
is. For example, consider the case where A(x) consists of only one mode; the
only nonzero entries in (6.8) are (p, q) = (xn, ¥n), given by F2nd(w = F1). The
unboundedness of A then follows. Another way of expressing this last conclusion
is that in contrast to the local finite-difference methods studied in (2.7), here
Re (AF) = 3(4AF — FA4) is unbounded no matter how smooth A(x) is. Indeed,
up to unitary similarity the latter differ from A by the bounded term (6.3a).
Nevertheless, the unboundedness encountered above does not necessarily imply
instability, as much as it indicates the shortcomings of the above method of proving
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it. We observe that the difficulty arises when we try to estimate these (p, g) with
|pl, |g] ~ n. These entries are multiplied in (6.6) by the amplitudes associated with
the corresponding high modes 0%, 0,. The latter are expected to be of a negligible
small size provided the Fourier method is indeed stable, which is what we are trying
to prove. That is, despite the unboundedness of A in (6.8) we can still bound the
aliased terms in (6.6), provided a priori information on the decay rate of |0,,| is at our
disposal. It is well known, however, that the L,-norm ||J]|? is too weak to provide
such a priori information on the decay rate.

With this in mind, smoothing may be viewed as a procedure which provides us
the a priori information we seek. For example, consider the case where 4(x) consists
of fixed number, say of r modes. Then smoothing by cutting off a fixed number of
modes—only the last r ones, 0, =0, |w| > n — r—will guarantee stability. Indeed the
aliasing term in (6.6) will vanish in this case. The particular case r = 1 requires the
estimate of only the last amplitude 0,. Such an estimate exists in the case of even
number of gridpoints, since F, being an even order antisymmetric matrix, has a double
zero eigenvalue. This then leads to H'-stability (see the Appendix for details).

In closing this section, we remark that (6.6) can be rewritten in the form

2Re(D—Lv,p)=2xi- Y I1+[p|- b}

1p1,19] =n

(Ud) . 1 )
' : - 2 ) b
{ 1+ gl V1+]pl 2, Alp=a+k( nt+ Dl - Vi+lal -2,

The matrix in the last curly brackets is bounded; hence the expression on the right
does not exceed a constant times

Iollze= X (1+]wl?)?]0.]%

lw|=n

Together with (6.5) we are then led to the final estimate
(6.9) % I5]1>= Const || 5| 31.

That is, there is a loss of “one-half” derivative. If some dissipation is present in the
system to begin with, e.g., with L = A(x)D, + D2, the gain of one derivative from the
second-order spatial differentiation dominates and stability follows; see, e.g., [22].

Part III. The Fourier-Galerkin Method.

7. The Galerkin procedure. In this part we deal with the Fourier—Galerkin
method. The literature on the subject is rather extensive; see [2], [6], [8], [11], [18],
[27], [28], [32], to mention but a few. In the spirit of earlier remarks, we therefore
confine ourselves to a stability study of this method, emphasizing its interplay with
the other two methods—the finite-difference and pseudospectral ones.

The essential strategy behind the Galerkin-type methods is to reduce our infinite-
dimensional differential equation by projecting the problem into a finite-dimensional
subspace. Let the latter be spanned by a basis of 2wx-periodic functions ¢,(x),
—n=p=n. To solve (0.1),

d
—= =A(x)—+B
Lu, L=A(x) I (%),
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an N =2n + 1 degree approximation of the form

n

(7.1) v(x, )= X 0(g,)de(x)

q=-—n
is sought. The coefficients 0(g, ¢), —n = g = n, so-called generalized Fourier coeffi-
cients, are to be determined by projecting our problem

(7.2p) (a—g—Lv, ¢,,>=0, pP=—H,--- N
at

Substituting (7.1) into (7.2), we conclude that the vector of generalized Fourier

coefficients, 0(¢) = (0(-n, 1), - - - , O(n, 1))’ satisfies the following system of ordinary

differential equations:

(7.3a) M%Q(l)=GQ(l).

Here, M and G are (2n + 1)-dimensional matrices whose ( p, g) block entries are given
respectively by

(7.3b) [M]p=(¢q, d’p) A, [Glpe= (Lo, ¢p) .

The stability of the resulting system (7.3) is a direct consequence of the previously
mentioned semiboundedness of the differential operator L, namely, we have,
asin (6.5)

Re (Lw, w)=3([L + L*]w, w) = Const | w||>.
Indeed, multiplying (7.2,) by 4(p, t), summing up and taking real parts we find

1d

2= @ >= < 2
2 lv@)l*=Re (at,v Re (Lv,v)=Const [u(1)]|%,

and hence the asserted stability follows (compare (2.9)).

Unless chosen with care, however, the basis functions ¢x(x) may lead to an ill-
conditioned mass matrix, M, whose required inversion in (7.3a) can be found
numerically disastrous. To avoid such situations, two types of basis functions are
usually employed. The first choice is local basis functions which induce sparse, well-
behaved mass matrices. This in turn leads to either explicit or implicit, smoothed or
unsmoothed finite-difference and finite-element local methods. Here locality is inter-
preted according to our discussion in §2 above. The second choice is global, orthogonal
basis functions, where the mass matrix is reduced to the identity M = I. A universal
example for the latter choice in the periodic case is the trigonometric system

dp(x)=€", —n=p=n.

We thus arrive at the Fourier-Galerkin method which will occupy the rest of our
discussion.

The expansion we seek in (7.1) now amounts to the usual truncated Fourier
expansion. The corresponding Fourier coefficients 9(z) = (0(—n,t), - -+, 0(n, 1)),
satisfy the ordinary differential equations

(7.4a) £5(0=Go(0).
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The coeflicient matrix G is given here by

2
(7.4b)  [Gly=iq- ﬁ J; AX)e™ "> dx=iq- A(p—q), —n=p,q=n,
where as before (see (6.1b)) we have neglected the lower order term, assuming
L = A(x)Dx. We note in passing that given the exact Fourier coefficients A(w), |w| < n,
the implementation of the Fourier-Galerkin method can be carried out fast,
using O(Nlog N) operations. Indeed, the method consists of two basic steps: first,
differentiation is carried out as a multiplication by the diagonal matrix Ar,
[AFlg = iq - I, requiring N =2n+ 1 operations, and then multiplication by A(x),
reflected as a convolution sum in the Fourier space, follows. The latter can be
accomplished by a fast multiplication of the Toeplitz matrix A(p — g). Details can be
found in Appendix A (see Corollary (A.10)).
In order to evaluate the Fourier coefficients

27
(7.5) ip- = f A(x)e™ = dx,
27 Jo

various quadrature rules can be applied for the approximate evaluation of the integrals
on the right. This in turn leads to a whole variety of discrete Fourier-Galerkin
methods. In particular, the previously discussed finite-difference and Fourier methods
are obtained as special cases.

8. Discretization. The Fourier-Galerkin method in component-wise form reads

(8.1a) S6(n0=3 Ap=a)-ig-5(a.0)

q=n

where A(w) are the usual Fourier coefficients

27
(8.1b) /i(w)=i f e “*A(x) dx.
21!' x=0

To approximate the integrals on the right, we use the trapezoidal rule based on the
N =2n + 1 equidistant points x, = vh, h =2x/N,

. 1 N-1
(8.2) Aw)~=- Y A(x,)e .

N >

Since A(x) is assumed periodic, the trapezoidal rule serves our purpose as does any
other high order quadrature rule—in fact, it is “infinite order accurate” in the precise
sense discussed in §5 above (cf. [7, §2.9]).

If we use the trapezoidal discretization (8.2) we find that the terms on the right
of (8.1a), A(p — g), are to be replaced by the corresponding discrete sums we have
already met in (3.3),

“ 1 NI )
(8.3) A(p—q)~ N 20 A(x,)e" 7" = [NFAF*],,.
Thus, the corresponding discretization of the Fourier—Galerkin method (8.1a)
amounts to a system of ordinary differential equations which, using (8.3) and (4.4a),
reads

(8.4) 250 = NFAF*A-5(0).
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The resulting system is exactly the Fourier method for the discrete Fourier amplitudes
0(2) = Fu(t) = (0_n(2), - - - , 0a(2))’. Indeed, multipication of (8.4) by F~' on the left
brings this system back into its familiar form in the physical space (see (4.4b)),

8.5) £ 0(0)= ANF*A () = AF().

In summary, we have seen that the equidistant discretization based on N
gridpoints (8.3) reduces the N-degree Fourier—Galerkin method to the Fourier method.
The difference between the two lies exactly in the aliasing term Y, ;o A(p—q+ jN).
Indeed, (3.4) tells us that the latter term is the exact difference between the right- and
left-hand sides of (8.3). Since the Fourier-Galerkin method was shown to be stable,
we thus shed a different light on our previous conclusion, namely, that stability of the
Fourier method is solely determined by aliasing errors. To suppress those aliasing
errors, one may smooth the highest modes. Smoothing procedures such as those
discussed in §3 above can be interpreted within the framework of the discretized
Fourier-Galerkin methods. In particular, the typical cutting off of the highest modes
corresponds to equidistant discretization based on more than N gridpoints. The details
are outlined below.

Let M=(1+¢N be the number of gridpoints, x,=vh, h=2x/M,
v=0,1,---,M— 1, used by the trapezoidal rule, for the approximate evaluation of
the Fourier integrals on the right of (7.4b),

. 1 M-1 )
(8.6) Ap—q)~—- T Alx,)e" "™,
M 2
If we substitute this into (8.1a), the resulting system is
a R n 1 M-1 ) ) R
(8.7a) a—tvp(l)= 2 [1\_4' 20 A(xu)é"(""’)”"] - iq - Dg(2).
q=-n =

Here, we adopt the subindex notation for the discrete Fourier coefficients of the
computed amplitudes 5,,(t). We note in passing that the matrix whose (p, g) block
entry is given inside the right brackets is no longer a circulant matrix, as in the
Fourier case where M = N. Yet, since it is a Toeplitz matrix, one can carry out a fast
multiplication of such a matrix (see Corollary A.10).

To verify stability, we employ (3.4) rewriting the ( p, ¢) entry inside these brackets
in the form

d . o < 3 . L.
(8.7b) &vp(l)= 2 [ 2 A(D—Q+JM)] - 1q - Dg(2).
g=—n| j=—o
Similarly to our treatment of the finite-difference methods in (3.6a) and the Fourier
method in (6.4), the second summation is decomposed into two contributions:

Y A(p—q+jM)=A(p-g)+ gofi(p— q+JM).
Jj=—x J
The first term on the right corresponds to the semi-bounded differential operator and
can be estimated as before. The second summation term represents the pure effect of
aliasing. Thanks to the smoothness of A(x), this term is of a negligibly small size:

Y lA(p—g+jM)|=C,(N)", ¥>0, —n=p,q=n.

Jj#0
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Indeed, a second look at (8.7b) reveals that the approximate system can be viewed as
the standard Fourier method based on M modes, the last (1 + ¢)~'M of which were
cut off. In the notation of (3.8) we have ¢? =0 for (1 +¢)"'M < |j| = M; such
smoothing guarantees stability.

Appendix A. On Toeplitz and circulant matrices. In this section we record some
well-known information about Toeplitz and circulant matrices which is frequently
referred to in the discussion above.

A block Toeplitz matrix T consists of m-dimensional block entries, where the
(j, k) entry depends only on its distance from the main diagonal, [T] x = tx),

to 4 t IN-2 lN—J
[—1 tN—Z
(Al) TET(tl_N,'-' ,t(),"' ,tN_1)= o .
1)
b-n A
| hen St-n o I o

Thus, an N X N Toeplitz matrix is completely determined by a (2N — 1)-dimensional
vector£=(t;_n, - -+ , to, - - - , In—1); in our case the entries #;, (N — 1) = /=N — l are
m-dimensional blocks.

In particular, if the vector ¢ is defined on its negative indices as the periodic
extension of the positive ones, t,=ty—, 0</=N-1, ie., if Ty depends on
(k—j)imod N] then the matrix T is defined as a block circulant one, T=C,
[Cljx = Cupimoans

™ Co Ci C2 e CN—Z\ Cn-1 ]
CN-1 CN-2
_ _ | Cn-2 :
(A.2) C=C(co, -+ sen-1)=| :
. G
C2 Ci
C \Cz cr+ COn-2 CN-1 G0 |

Thus, a circulant matrix is completely determined by an N-dimensional vector
c¢=(co, - -+ ,Cn_1); its entries, ¢;, 0 =/= N— 1, are again m-dimensional blocks in
our case.

An essential ingredient in studying circulant matrices is their spectral represen-
tation, given by

(A3) C(O)=(N"F)*A(N'?F).

Here, F denotes the block Fourier matrix (compare (1.4))

(A.4) [F],k=—l]\—,- e . I,  —n=jk=N-n—1, n=integralpartof g,
where A. is a diagonal matrix whose diagonal block entries are given by the Fourier
symbols

N—-1
(A.5) [Ady= X e .c, —n=jsN—n-—L.
=0



550 EITAN TADMOR

Verification of (A.3) is a straightforward one: the (v, k) entry of the right-hand side of
(A.3) amounts to
N—n—1

{(Nl/z F)*AC(NI/Z F)}jk =N 2 (F*] o[ A [Fox

p=-n

N—n-1 1 o N—-1 ) 1 )
N. 2 N ezpjh. 2 etplh . ¢ X/ e—zpkh

p=-n =0

1 N—-1 N-n-1

. 2 c 2 eip([+j—k)h‘
N =0 Ip=—n

Since the second summation on the right vanishes unless / + j — k = 0[mod N}, i.e.,
unless / = (k — j)[mod N1], we are finally left with the asserted term

l N—-1 N-n-1 ) .
Y& 120 a X exp (ip(l+j—k)h)y=-jimoan1 = Co—pimoan1 = [Cl -
0 p—n
If we view the block identity matrix Iy as a circulant one, generated by first row vector
¢=(I;m, O, - - -, 0n), then (A.3) and (A.5) give us its spectral representation as

(A.6) In=(N'"F)*(N'/*F).

That is to say that the matrix N'F is a unitary one. Moreover, the spectral
representation in (A.3) is then nothing but a unitary diagonalization of the circulant
matrix C. Since the spectum and the L,-norm of a matrix are invariant under such
unitary transformations, it follows that for general circulant matrices, C, both are
identical with those of the block diagonal matrix A.—the Fourier symbol blocks. In
particular we have the following lemma.

LEMMA A.7. For a block circulant matrix C(c) we have

N-1
Y iV ¢,
=0

(A7) ICol= Max

—n=j=N-n-1

Proof. The norm of a block diagonal matrix A, is given by the largest norm of
its diagonal entries.

As an immediate corollary we have the following.

COROLLARY A.8. The norm of a scalar circulant matrix does not exceed the
absolute value sum of its elements along its first row.

Proof. In fact, from (A.7) we have the more general

N-1
(A.8) 1€l = [go el

The corollary is just a restatement of that last inequality for the scalar case where
¢;=Const; - I,.

Next, we employ the information just obtained for circulant matrices, and apply
it to Toeplitz matrices with the help of the following lemma.

LEMMA A.9. Any N-dimensional block Toeplitz matrix can be imbedded into a
2N-dimensional block circulant one.

Proof. Consider the block Toeplitz matrix T =T(t) with = (ti-n, - -, lo,
«vv,tn—1). Denote " =(ti_n, -+, 1), tT=(t;, - -+, ty—1) and define the associated
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Toeplitz matrix R=Ry=T(",s,¢17) with s being an arbitrary m-dimensional
block. It is readily verified that

T R
(A.9a) C=<RT TT>

is a 2N-dimensional block circulant
(Agb) C=C(g)9 §=(t0,l+, S, l_)'

[n entrywise form we have

lo o oes U2 I S _hen o L2 —1
) Nivoy I \t—z

tz_N\ tl tl—N
) _ IV e tve
‘A9¢c) C= L-n N\ 1y o 131 N 1\S

S h-n o 2 14 b L e In-2 In-
t tl—N\tz—N L
~
| tl\ L - IS LN by - I to

Remark. Rewriting C in (A.9c) as T(z), t = (¢%, s, ¢, s, t7) clarifies that the imbed-
ling was made possible by the process of periodic doubling.

Making use of Lemma (A.9), we have the following corollary.

COROLLARY A.10. Multiplication by an N-dimensional block Toeplitz matrix can
re implemented “fast,” i.e., using O(N log N) block operations.

Proof. Given an N-dimensional vector w, we want to compute z = Tw, where T
s an N-dimensional Toeplitz matrix. To this end we imbed T into

[T Rp

(s, %)

ind compute z, = Cw,, w, = (w, Qn)’. Since C is a circulant matrix, the last multi-
llication can be efficiently implemented using the spectral representation (A.3) with
wo FFT’s requiring O(N log N) operations. The first N components of z, are then

he desired vector z.
COROLLARY A.11. For a block Toeplitz matrix T(t) we have

N-1
Y UM Ly
I=—(N—1)

A.10) IT()l= Max l

—Ns=j=N-1

Proof. As before, we imbed T(¢) into C(c) with ¢ = (t, t*, 0, 7). Lemma A.7 tells
1s that

2N-1

E eul(21r/2N) ¢
=0

ITOI=1Cl = Max

—N=;=N-1
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Inserting the values of the blocks ¢; expressed in terms of the corresponding Toeplitz
ones, #;, shows that the expression on the right equals the asserted value

N—1 2N-1
Max || ¥ e .+ (=1)-0+ ¥ e"™ .y 5y
—N=)=N-1 || /=0 I=N+1
N-1 B
= Max Y M.y
—N=j=N-1 || [=—(N-1)

Remark. Making use of the freedom in choosing an arbitrary block s along the
main diagonal of the associated Toeplitz Ry, we similarly get

In Corollary A.11 the choice s =0 was made. Corresponding to Corollary A.8 we
now have the following corollary.

COROLLARY A.12. The norm of a scalar Toeplitz matrix does not exceed the
absolute value sum of its elements along its first and last rows.

N—-1
llT(z)IIéigf[ Max ’(—1)’~s+ Y ey

—N=j=N-1 I=—(N-1)

Appendix B. The Fourier method—the case of an even number of gridpoints.
The Fourier method is usually implemented with trigonometric interpolants based
on an even number of gridpoints, N =2n. More precisely, when N is an integral
power of two, then the Cooley-Tukey variants of the FFT are optimal. Here we
record the slightly different formulas governing this case.

Assume v, are known gridvalues at x, = vh, h =27 /N=n/n,v=0,1, --. ,2n— 1.
Their Fourier differencing amounts to differentiation of their trigonometric interpo-
lant

n

(B.1a) i(x)= X" b.e™,

w=—n

expressed in terms of the discrete Fourier coefficients o,

1 2n—1

—lwvh
. 2 v,e 1w .
N o

The double prime summation indicates the usual halving of the first and last terms.
An explicit representation of the Fourier differencing matrix F, transforming

(B.1b) b,=

v=(vo, -+ , U2n—1) into its differenced values dr[v] = (DyD|x,, - - - , Dx0|X20-1)’, can
be obtained by differentiating the interpolant formula, e.g., [42, Chap. X]

| sin (n§)
B.2 i(x)=—- v, K(x—x,), K(¢)= .

A straightforward calculation yields, e.g., [13]:

(B.3) [Flix=—(—=1)*7. cot ((k—j)x/2n) - I, 0=j,k=2n—-1.
Being a block circulant matrix, F admits the spectral representation
(B.4a) F=NF*ArF

whose Fourier symbols are given by

(B.4b) Ar=diag [0 - I,,—i(n—=1) - Lpp, -+ ,0- Ly, -- - ,i(n—1) - L.
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Observe that zero is a double eigenvalue in this case. This is necessarily so since F
being an antisymmetric even dimensional matrix must have the other, complex
eigenvalues, in pairs. The left eigenvectors corresponding to the double zero eigenvalue
are

(B.5a) ' F=0, CN=UmnsIm,- - In)’
and
(B.5b) (") F=0, (2")=Um,~Lm, -+ s Im,—=1n)".

The equalities (B.5) reflect the exactness of the differentiation in (B.3) for i(x) = Const
and 0(x) = cos (nx) (compare [13, Lemma 1.1]).
The Fourier method (6.1) now reads

B.6) £ 0()=4F(0).

Stability analysis in this case is similar to that dealt with in §7 for the case of an odd
aumber of gridpoints. That is, to estimate the real symmetric part of (Lv, §) (6.2), we
shall use the aliasing formula which still has the same format as in (5.3)

Wo= Y W(w+kN), N=2n.
This, in turn, leaves us with the task of bounding an aliasing term similar to that
:ncountered before in (6.6)

~ . . . p .
B.7) 2Re(Lv,0)=2mi- 3, v;!‘[(q—p) - Y A(p—q+ 2kn)]vq.
Ipl,lql=n k=0
[n this case, however, we have a priori information about the last discrete Fourier
soefficient §,. To see how it comes about, we multiply (B.6) by F on the left to find

hat the new variable w = Fu satisfies

d
5 W0 =EAw(@);

f we then multiply by (z™)’ on the left and use (B.5b) we conclude that

2n—1
™)' w(t)= Y w,cos (nx,)=Wa,(?)
v=0
‘emains constant in time, i.e., that W.,(t) = W.,(t = 0) = 0. Thus, returning to the
iliasing term in (B.7), it is enough to sum only the first (» — 1) modes

2 Re (L'\ﬁz—Lw, w)y=2xi- Y w;ﬁ‘[(q—p) Y fi(p—q+2kn):|ﬁzq.
Ipl, 1g1=n—1 k%0
[n particular, if A(x) contains only one mode, the vanishing right-hand side results in

‘he desired energy estimate for w= Fp, which in turn yields the H'-stability
lerived in [13].
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