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1. INTRODUCTLON

Consider the evolution partial differentiacion equatien wup = Lu, eon a
finite interval, where L is a hyperbolic operstor. The solution u  has a
projection Py u on a finlte subapace (which may for example consist of the
first N modes in a Galerkin method, er M  collocating polnts in the
interval), and a numerlcal approximation  uy genersted by some spectral
method, For linear operatora it is known from the Lax equivalence Etheorem
that if the scheme is consistent and stable, then wuy approximates Py u in
gome appropriate norm. If u  is swmooth, then the theorem implies that  wy,
approximates the solution u ia the same sense.

In practice, one looks at the point values of uy Aat the grid points and
takes it as an approximation to che values of the true solutiom w  ab theasa
points. We shall call this approach the realizatlon of cthe computed solution
via its grid-points walue. The aims of the paper are: 1) demonstrabe that
whern i iz a complicated funceion, this realization will not produce
acceptable results; 2) to suggest different ways for the realization of the
golution 1n auch cases.

The following examples glve & wery clear illustration of the misleading

fesults that may be obtained by polntwise reaiizatiﬂﬁ-

Example 1

Conaider the esguation

ut=1.|. 0 4§ % & 25
(i}
whx,0) = uuixl



Eﬂ{“} 15 a discontinuous

where ufx) and uplx) ave periodic functions and

funccion. If we ewpand uplx) in Fourier garies we get

upl) = > T (2a)

whetre

Zn e
a == [ mgte (2b)
a

The solution wl(x) is thus given by

- ikt  ikx
ulx) E: 8, ¢ g .

lt=—ta

Suppose that (1) is solved numerically by the Fourier-Galerkin method, namely

we seek a trigonometrle polynomial of the form
iy
1kx
uy (x,t) = k;ﬂ b, (t)e

that satisfies

du du
| H 1kx
(EE_- il e ) 0, M<k<H
(3]
115
1k
Lh} {:‘.,I:I:l - E a4 e &
: =y
From {3} it is clear that
dhk[t}
—— = tk b (L), - & k&N (&)

ard



b (0) = a,

yielding the solution

= fkt

Theretare

]
uylx,t) = Zﬁ ay, eabC gl {5)

Equation (3) dmplies that wy(x,t), obtained from the numerical selutien (3],
colncides with Py u{x, b}, the Galerkin projection of u, thus yielding the
best possible comvergemce of uy to Py u. However, since the Fourder sevies
of wix, t) converges very slowly, the point wvslues uH{ﬁer} will not
approximate well u(xj,t). In general, one would witness the Gibbs phengmenca
of overahoot in the neighborhood of the discontinuity and glebal oscillations
all over the domain. In fact, even the initlal approwimation, wy(x,0),
displays the same behavior in relatiom to “U{“)*

In the second example we show that the same phenpemencn occurs even if the
numerical initial point values do approximate the Crue inftlal polnt values to

4 high degree of accuracy.

Example 2

Conslder the equation {1) where uﬂ(x} iz the saw=kaobh funetion

Ax ¥ £ %
uy (¥, %) = (a3
A2y - 1) X3

for some k, 0 <k < 20-1, ¥ =& (ktlp). .



In the psewdospectral Fourier method we seek a trigonometric palynomial

VHI:H:-L.:I
il ig«
vl e) = ¥ b, (t)e (7}
E=-N

gich that

B, B

K [ . 7 .
T ab the points X, = %i-, = 0,...,20-] (Ba)
vN{x,UJ = uﬂ{x.ij. [8h)

Since "W 1= a polynomial of degres M, (8a) implies that

av i
] 4]
TN TS ()

for all == (0,27). Moreover, from (%h) it s clear thar vatx,0}  is the

(unique) trigonometric polynemial of order N that interpolaces uplx} at the

pDi]‘.lI'.S ]{j’ _j = D}lll’,EH_].' th'l..l.&

vy (x,0) = Ez_;w 2, (et = aF (x5 (10)
rase 28-1 —1ix,
- 4
"-"| I:_} T E j: .] +* I:ll}
* =0
Performing (11} we get
(%) = A& [k - 0+ 5] (12)



L (ichl)
a. (= peseBeauy Lz ® sdctn ™1, L 20 {13
[ Eﬂﬁg -1nk H x )
)
| = &
whera
i mg m g c, =1, |&] # M.

&

The numerical solutlon  wy(x,t) of (9), (10) is
v (%, 0} = wlx + £,0) = 4F (x + t,x) (16}
and upon manipulating (12), {13} one gets
vﬂix,t] = ﬂFNEx,E = t) + At. (133

The ctrigomometric interpolant Fuix,;] callocates uﬂ{x,;} at the grid

poinks % Howewver, In between the grid peoimts it oscillates. Lf we read

T
the values of wylx,t) at the grid points, then by (14)

vH{xj,t} = EFH[xj + t,x]
and unless ¢ ﬂ-l% for some integer m, we will get solution that looks
aselllatory, Thus, even though the initial approximation looks smooth at the
grid points, when it evolves ia time the oscillations will presenmt themselves

at the polats %y



The conclusion one might draw from the above examples is that spectral
methods  (or any higher-order metheds) are useless when applied to
discontinuous function. 4 Jdifferent approach 1ieg ko look at a different
realization of cthe sumerical solution rather than the pointwise cne, We will
argue that high-order accurate Information is contained im the numerical
solution and demonstrate how that information can be extracted in such a way

that accurate polntwise approximation to the true solution can be cbtained,

2. INFOBMATION AND HOW TO EXTRACT IT
Consider the linear esgquation
u, = Ln
; (16)

uld) = Uy
where L 1is a liasar hyperbolic operator with variable coefficients and wp
iz a discontimuous funccion., For simplicity, we will restrvicr ourselves to &
periodic, one {(space} dimensional problem thowgh the results are more gemeral,
{see Gottlieb and Tadmor [2]). Let v he the salubtlon of the auxiliary

problem

{17}

where wp 1is a "  funetion. Because of the hyperbolicicy of L, (17) is a

well=poged problem. In Lemma I we gquote the well=-known Green”s identity,



Lepma 1: Let w(t] and w(t) be the solutions of (L&) and (LT} at some
level [, chen

(ultd, v(td] = [uD,vb]. (18}

Assume now that (16) and (17} are discrecized by the Fourier-Galerkin
method. That is, we seck uy and wvy that are trigonometric poalynomials of

degree N such that [or every k, |k| < H

du

{EEE - Lug, &) =0 (19a)
(u, 000 = uy, e¥%) = g, {19b}
( SExf [;;E L vq}) =0 (19e)
M, [wytdd = vp) = 0. (L9d)
We have also a Green identity for wuy and vy
Lemma 2:
(yCEd,wy(8)) = (g (0) v (0], (20)

Proef: Since wy{c) and qut} are Nil=grder trigonometric polynomials we

use (193} and (19} to get



H

(e = Loys ) =

1
=

avH

*
(g g+ 1 Wy

]
o
L

and therefore

%E [uH,?H] - {L“H'qﬂj = [uH=L* vn} gk

which implies (20},

We will proceed by chowing the relatiom of the KHS of (20} co that of

(LB},
Lemma 3:
(ug€03y vy (03] = (.9 ) + &)
whersa
v I
o] < x—
M

for every S.
Proof: From (19b)} it is clear that
[uH{Dj = U vH{ﬂ}] = 0,

Alsa,

|[uﬂ.vN{DJ = ?Djl < Kllug, 1 By 400 — i

{21}

(223

(22}



and since wp is a " funetiom,

I:I‘.rl}lls

= ie (Z4}
|UH{DJ Vil 4 K e for every s

N

How

[u, €03, v kD3] = (ug,vgd # [0y €0} — uyy v (03] + (a7 (0 - )
and in wiew of (23) and (24},
(00, v (01] = (uy,v) + g

where

H?UTE
8

|E1| < K
gnd this proves the Lemma.
From Lemmas 1 — 3 we can conclude:

Theorem 1: Let wlt) and  wit) be the solutlons of (16) and (173,
respecbively. Let  uplt) and  wylt} be the solutions of the Fourler-—
Galerkin approximations of (16) and (17}, Then

IvuiE

|[uE{t},vH[:}] — (ufe},wi{t)]]| s K o for every E. (25)

The proof 1s an immediate consequence of (1B}, (20}, and (Z1].



Assume now Cthat che Fourier=Galerkin method described in (19¢) and §19d)

1s scable, then wy{t} approximates wi(t) within spectral aceuracy, that is

RS
= = %
I"-"N':t.:' vitln 51 o K FT *

We ¢an, therefore, teplace umft} in €25} and get
{uH[:},w{t}] = {u{t},v{t}} + e

where e 18 spectrally small, We wse now the fact that every € function
¥(t) can be cbtained from saome vy im (17}. This is, in fact, one of the

definitions of hyperbolicity. We can, therefore, atate:

Theorem 2: Let wult) be the (nonsmooth) solution of (16} and let wy(L) be
the solution of the apectral Galerkin approximation to (l6}. Then for any (i

function w(t)
[uH{t},v(t}] = [uft),wit)] + & {26}
where e 1s spectrally small.

Thua, Umft} approximates weakly w(c) within spectral accuracy. It i1s
in this sense that uy{c) contains a highly accurate information about
u{c). We will show later how to use this information in order to obtain

spectral accurace approximation to the grid-poimt walues of uft).



We turn now to the pseudospectral Fourler case. Here we need some
preprocessing of the initial data in order to prove the same result as in

Theatem 2.

Theorem 3: Let  wuy(x,t) be a trigonometric polynomial of erder N that

gatisfies
EuN -y
= . = = i = waw JN-1
= Lui'il at = ;r:j, :»:j —ﬁ- S | Q, 5
{273
1bkx
(ugt0) =uy, ¢ ) =0, || = H,

(dega, uplx, ) iz the solution of the paeudoapectral Fourier scheme, but
initially wuy(x,0) 1is obtained by the Galerkis projection).

Then for every smooth Functionm wufx,t)

IN-1 Zn
% ., y, (x Wy vl‘.'xj.l;:l ='J|; ulx,t) wie,clde + e {28
1=0

where g 13 spectrally small, provided that the pseudcspectral approximation

is stablao.

Froof: Let vy be the solution of che peeudespectral Fourier approximation

af {(17a) and let uH{D) he the Galerkim projection of wps that i1s
(v @) = ¥, ¥y = g, || < M. (29}

From {27} and the analog equation For v, one gets



_l 2_

2M-1 M
m T
T jié uH{xj,t} VH{xj,t} = ﬁ-jga uH{xj.ﬂJ?H{xj,D}. {30}

From the cxactness of the trapezeddal rule for polynomials of degree 2H, we

conclude
2l -
5 j;ﬂ (e 5E) G40 —_ji; u(,0) wy (6,00dx = (w, (D), v, (0)). (31)

Hote that the 1indtial funccions viglx, 0} and 3,00 are not the
interpolants of up amd vy as in the usual pseudospectral methads but rather
the Galerkin approximation co uy =end ¥y, We recall now Lemma 3 and
equalicty (18} to establish (ZEB), The proof is thus completed.

It is inceresting to note the way in which the information is contained,
The interpolant of wp looks smooth at the grid points, whereas the Galerkin
approximation of uy  looks pscillatory on the grid pednts., Ic means that im
order te preserve the informatioen one has to require initielly cecillatory-
leoking asolutien.  The informstion iz preserved im che structure of the
oscillacions.

We will show now a way of using (26) and {28) in order te conscruct a
batter approximation to u{xj,t} then the one given by um(xj,t} (hers
uglx,t) 1s given by either the Galerkin method or the pseuwdospectral method).

From (18) and (26) it iz elear that in order to get & good appreximaticn
te  wu{y,t) at some polnt y  (0,21), we need to Find a function NS
such that

27

ulx, e} v (=, thdx = u{y,c} + £
u o'



where €, 1s spectrally amall. By (26) we will have

in

_£ uy [, £} vy{x.cidx = uly,t) + g + £,

for the Galerkin method and

2
]E (:-t.n}v{x rc.'ll—1..u{;,e1:]n++:+.:l
J. j”ﬂ

[or the pseudospectral method.

For convenlency we will shife the interval [0,27] to [-w,n].

Let

{32)

{33)

plx) be a C“=functiom vanishing outside the interval [-r,r] satisfying

p(0) = 1.

Let HPEK} be the Dirichlec kernel, namely

1w _ biu{E+ 1?) ¥
D {ﬂ = E ~ Zn sim (y/2 ¥

P
e set now

v, (x) = §%°P(x) = 7] p(ﬂ-lj‘Jl}p[B_]‘}'}.

One can prove (see [2 ]) that

il

J‘ u{ﬁ}ﬂE'P{yﬂx]dx = u{y) +.£2
Lia

where e, is spectrally small.

Thus, Lt is possible to extract accurate pointwise valuss from

UH{H].

{34)

(353

{36)

(37
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3. HNUMERICAL RESULTS
In this section we demonatrate the efficacy of che smopthing procedure

outlined above. As a test funetion we have chosen the plecewlse ¢ =function

sin% 0 x5 7
f{=} = (383
=5in %— T % x % 21,

Denote ita spectral approximacion by EE{K}, and 1let ?ﬁ{x} b th?
pseudospectral approximation to f{x}, It {5 evident from the firat column of
Tables I and III thac %H{?u} — the spectral approximation sampled at
yoom v/l = do not approximate fl:],ru} within spectral sccuracy. In fact,
the error committed by Ellscl‘ru:' is only half of that committed by EE;,':I-’,_.:'-
Regarding the peeuwdospectral approximatiaon, Tﬁ{x], it, of course, collocaces
the exact values at the sampling grid points, ?ﬁ{yu} = Etyu}; vet, in between
these gridpeincs, ?H[yu+ I (v +15 )n/0)  approximate £y 1&3 within
first—order aceuracy only, as shown in the firat eolumn of Tables II and IV.
In erder to censtruct our regularization kernel in (36), we define the

cut=aff funetion p(£) = pn{g} to be

EKP:E— lg] <1
p () = ; (349)

a otherwisea

namaly, pﬁ[ﬁ} iz a C - functian whose support is the ianterval |g| ¢ 1.

p  to be used in (36) is of the form

8, el -1 sin {p+ 15 1y/a
I# Pt}r} L m pII{B :I?:l' -bll'IEiE llr.llliﬂ [ I:"I'.F‘:l]
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The post-processing procedure of the spectral approximation EH invalveas

convoluting E against ¢E’P, namaly

H

2n .

_ AL =y, sin (pr L Yu—yisa
£(x) mjl; Ey(e(Fg) i 4y (&L}

where = is a fixed point of interest. (In practice, we use the trapezoidal
rtule to evaluate the rtight-hand-side of (41} taking & large number of
quadrature polnta.)

The parameter & 2 was chosen as

B o= x| — x|; {42
this gpuarantees that ¢ is so localized that it does nat interact with
regions of disconcinuity.

It should be noted, in this stage, that 1f & was so chosen to he the
game [or each x, (and mot as in (42)), the formula (51} admits a simpler

form; chac is, if

lI.'H:Fl':}":' - E u_k E:”f.],i‘ l:_-ﬁ-a}
k=-w
cthen
X - ik
E(xd ~ 37 flkdo, o™, (44)
=1y

This procedure can be carried out efficiently in the Fourier space.
Mext, we tutn to the post=processing for the peeudospectral approximation

EHEx} which is simpler than (41}, In fact, in this case



-1 ﬁ—

SES IR RIS RE (45)
=

Wote that carcying out the asmoothing procedure defined im {43} does not
tovolve any extra evalustion of T{(v)} in peolnts other than ¥t in contrast
to spectral smoothing procedure in (&%1). As before, the parameter & was
chosen according to {(42). We have vet to determine Lhe parameters p and

e The parameter p must be egual to ' fer 0 ¢ g <1, in order to
ageure infinite accuracy. (In our computations, f = .&.) Finally, we feel
that o 1s problem dependent and we chose o = 10. We have not tuned the
parameters te get optimal results; further tuning may improve the quality of
our filtering procedurs.

In Tables I, II, TIII, and IV we give the results of Cthe amoothing
procedure at several points in the domain. The pointwilse walues are oo
tecovared with high accuracy. The first column fn each table indicates the
pointe in which the procedure was performed. We limited ourselves to four
points in the interval (0,m) because of the symmetry of the function Fix).

The aecond coclumn gives cither the spectral approwimacion EHEI} or the
paeudospectral approximation ?H{x}, M = 128 in Table I and II and H = &4 in
Tables III and IV. The third column glves the smoothed results, when Eiltered
by (4l) on {45}, at the same points as in eolumn I.

The rcesults indicabe the dramatie improvement obtained by the smeocthing
procedure. Moreover, note that the error commicced by TLEE {or EIEE} is
better than Che one committed by ?ﬁﬁ {or fﬁqj only by a Factor of 2 whereas

after che post-processing the error lmproves by a factor of 10%,



Table I, EResults of smoothing of the spectral
approximacion of E(x), N = 128

L - - w
x, =I’-g- |f{:{lr|}l - EH{xv}] |E - Eu Bl
w oaguals at x = =x
W
2 3.2 (-3 Fed (=103
3 5.2 -3} 7.9 (=10}
é 7.8 (-3) fed (=10}
5 1.1 (-2} 1.1 {-10)
Table II. Same as Table I for the pseudo-
spectral approximation ?N{x}.
=Tt L L o A
tly T F (we 2 ) l““‘ui- lfzj ?Ntxw Lty 3 k EI-.‘ vl
v equals ab ® = Iﬂ*'Hi
2 a =3} 7 {=10]
3 E.1 (-3) Fu8 (=102
& 1,2 (-2} Bub (=102
a 1.8 (-1) 1.2 (=10}




=] E=

Table III. Results of smoothling of the spectral
approximstion of f(x}, K = Aé
z =i |£(x ) - £ {x )] |£ - £ "yl
W 2 N N N :
v equals at x = =
3 L (=2} 5.9 (-6)
& 1.5 (=2} 7.7 (-6}
5 2.3 (=2} 8.9 (-6)
Tahle I¥. Same as Table TIL far che pasudo-—
gpectral approximation, TH{x}+
*

. i F-f,
Xl =T (vl |f'::u+1fg} T'H(xu_l_]ﬁﬂ | K |
v agquals at  E e Ty Ly

2 1 (-2} 4.1 (-0}
3 l.6 (=) & (—63
4 2.4 (=) 7.8 (—6)
2 3.6 (=2) 8.9 (-0}
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4. A DIFFERENT METHOD FOR EXTRACTING INFORMATIOH
In this section we would I1ike to present a different approach For
extracting the information from an oscillatory solution. The idea iz to
subtract from the solution thoso secillations that cerrespond to the sawv-taoth
function discussed in Example 2. This leads to the following procedure:
i 3 Eilx

Let u, (x,t) = u :
N E___E_Ha

be the solution of che peeudospectral

approximation to a hyperbalic problem, We try to Eind an unknown smooth
function and a {oscillatory) saw—tooth function FH{x-t,xE} with an unknrown

Jusmp 2¢A4 &t an unknown location ¥; such chat

2n=1 P igk | £
E _ T i
H = E %, 1) AFy G % ) - e E b, e (46)
J=0 i=-p
g0

i$ minimized. HNote that we have Zp + 3 unknowns in (46): Ay Hg, ¢ and

2P wvalues af biii # 0},

The conditions for local minfma of H ave found from the following

Ip + 31 equaticns:

2H -1 3 P 12x,
— = me o= I = - " J Ex £|-|-I|
ag = O == E u Fy - 4F cF, . Z‘bge 0 (47
j-[:l I_:—P
220

where FJ = FH(HJ.nE}, uj = uﬂtxj,t}. Also,



=3 [=

o ”'x.]
oy - AF, = - -
Te Z u, e Z bLe = {53}
i=0 1=-p
130
2h-1 P 1%, &
aH
== == F{ u, = AF; F_ — oF7 = F’ -
o E i ﬂ;l 1 {‘J lj Z bi‘. a 0 (49)
=0 E=-p
E#0
L Bz (s)  fhx,
where ¥ = aF(x.,x_}/3s = E = se 1 and
==
aH _ o *
E’b"m" 0==rb "u =4a, m| = 1,2,.0.,p (300
whiete
- i 2H-1 ey
u = E u, Llx, Je J
m e [ X
1=0
Substituting {50} into (47}, (48}, and (49) we get, respectively:
up ~ A3y -~ ¢ =0 {51
Z c u, = 4 c, a, a, =1 £52)

E [1:1 a:£ EE - .!EJ z |[1:L a”_a, = Ilf|}| (53]

|2 |>p

whera a“(s) = Eaa{thaa‘ Next, we combine (52) and (53) to get a single



nonlinesr equation for s:

E:fi al, u, E:ci A_, 8, ~ Z:EE a_, u, E:GL E:E a, =0 (34

where all sums run over p < [g] < M.

Equation (54) is solved iteratively for B, Having found g, one
fmmediately obtains from Example 2 all the aiis}’s. Then from {(50) we have
the by™s, and A4 from (52). Finally, having A we find ¢ from (51).

The minimum thus obtained may be a local one while we are seeking a globhal
winimum. This mesns that in practice one searches for the glokal minimum.

We now give en example that illuscraces the efficacy of the procedurs. We

folve the following problem:

EuH BuH

st ta= 0, O<x2n, £20 {533
sin % s % g1

uH{x,D} - (5G]
—sxn-% ™Te N & X

u (0,e) = u (2n,e}, (37}

Ao ran the problem on several grids and exhibit here the auvmerical results for
the case N = 8 (i.e., 16 subintervals in the domain (0,2q)). The

unadulterated results at t = n/2N on the grid points are shown in Figure 1,



Lot

-

exact goluction

unsmoothed pseudo—
spectral sclucion

smoobhed solution
(W = &)

= e+

Figure 1



e T

Table V
—_— = et
J exact selution error 1 = ercor £ = greer 1
|exact-unsmoothed|  |exact-smoothed | error 2

0 9,80 x 1072 5.86 x 107 5.86 » 1077 1.00
1 9,80 x 107° 1.26 x 1072 5.86 x 1077 211

2 2,90 % 107} 2,57 % 1072 B.30 % 107 408

3 4,71 % 1077 4,13 x 1072 7.33 % 107 563

4 B34 x 107 5,15 % 1072 9,30 % 1077 a6l

5 7.73 = 107} 9.11 % 1072 1.31 x 1074 695

& B.B2 x 1071 1.43 % 1071 216 % 10 662

7 9.57 x 1071 2.70 « 107} 552 % 1077 611

8 9,95 « 1071 1.00 x 109 1.10 x 1072 91

g ~4.95 x 1071 2,68 » 1071 1,34 x 1072 200

10 ~9,57 x 1071 1.42 x 1071 4,42 % 107 321

11 -8.82 x 107! 9,07 x 102 2.16 » 107 420
12 ~7.73 % 1071 6.12 % 1072 1.32 % 1079 464

13 -6.34 = 1071 bull = 1077 9,30 = 1072 442
L4 -4,71 = 1071 2.55 x 107% 732 x 1070 148
15 -2,90 x 107t 1.22 x 1072 6.30 x 1072 194

We then post-processed cthese uﬂixj,ﬂfzﬂ} values acecording to the procedure
deseribed above. The filtered values are shown on the same greph, and the
errers listed in Table V are computed hefare and after processing. The
dramatic improvement is evident,

Mext we demonstrate the procedure in the case of the Euler equation for
gas dynamics. Because the physical problem involwes inflew, eutflow, and no-
flow boundary conditions, periedicity could not he imposed and we use the

Tchebyshev, rather than Fourier, pseudospectral mechad.
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The physical problem is that of a wedge, inserted as & zero angle of
attack, into a uniform supersonle flow of an ideal gas with ¥ = 1.6, an
oblique shock develops in time and the flow reaches, after a while, a greedy
state. The time—dependent Euler equations in two=space dimensions were
discratized by the paeudsapectral Tchebyshev method in space with an Hxd grid
and & modified EBuler scheme was used Eor the time discretizatiom. Since we
are interested in the steady state enly, the aseccuracy for the time integration
i5 of little importance. In order to be sure that a steady state is reached ,
the code was run until all physical quantities did not change to 1l
significant Figures over a span of 100 time steps. The values of the deasity
in the sceady state at the grid points together with the grid points

themselves are given in Table VI,

Table VI,

1.B62 1.850 1.BG69 1.871 1.837 1.865 [Ll.3882 1.885% 1.8B78 (1.
1.862 1.B70 1.B67 1.820 1.870 1.%%4 1.89% 1.803 1.75% 941
{.862 1.B854 1.%52 1.904 1.877 1.7% [1.782 1.864 1.800 B33
1.862 1.871 Ll.&876 1.812 1.B338 1.96% 1.975 1.BB4 1.841 1
|. 862 1.B48 L.842 1.935% 1.B89 .703 1.710 1.B80 1.984 £
[.862 1.BB3 1.894 1.729 1.8532 2.42% 2,%94 3.153 1,316 - 308
1.B62 1.50B 1.810 2.387 3.133 3,375 3.124 3.054 2,002 « 145
1.B62 2.115 Z.BG68 3.2B8 2,176 2.965 3.006 3.13% 1.187% L3
1.862 3.083 3.046 2,575 3.087 J.108 3.024 2.013 1.006 (@

X n 3B T 30 a3 -1} X 6L 1.
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Mote that the raw data in Tabkle Y1 seems o indlcate roughly the same y-shock
location &t xp = 1, ¥ = 961, and xp = 853, namely betwsen the grid poincs
yi = +3086 and y5 = «300. This means that becawse of the coarse Tchebyshew
grid the shock location cannot be resolved te better thon 208 of cthe domain.
In Fact, the correct shock locations at those x—atations are vy = 434 for
Ep, ¥ = W417 for x; and y = .370 for xg.

In the present case it is not necesstry to employ a saw=tooth piecewise
smooth functiom, &5 was done im the previous section, becawse chere is 9o need
to preserve periodicitw. Instead, we subtract from the oscillatory daca an

expansion of the Heavisdde function, SLy,ys}:

d, +d -l €y % ¥y,
sgay)= ) 12 5 (58)
dl Y, S ¥ s 1

where dy, the state =shead of the shock, and dp, the magnitude of tche
discontinuity, are constant. The description here of 5(y,ygd. @8 if
independent of x, has to do with che fact chat che cwo-dimensional results of

the psewdaspectral algorithm were post-processed at fixed x~stations. The

expansion of S(y,y. ) 1s glven by
H .
Byly.y.) = EU A ()T, (y) (59

where TE{y} iz the Tchebyshev polynomial of ocder 3,

T, (¥} = cos[t cos 1(y)], and



EU{EJ = [5 + Eﬂih

4 (5] = 5in[T£ (a + 1 J] /sl UL 1%k < BE-1
(] wTT n TR

ﬁﬂts} = gin{ (s + %)]fzn.

If s is an integer, then oo the grid points, yJ = cos{x]/N}.
Sylygaygd = 50rya¥.) (60)

The Ls=noTR which we wish to minimlze is now, at any glven ¥-station:

B ) p<H 5
H = jzu = [oglyyd = d) = dy Sylypay) - 3, b, T,rp)]" (61)
=0 7] i=1
1 13 ¢ Bl
ey = (b2}

2 1=0, W

Differentiating (61) with respect to the parameters dy, dg, & and

hﬂ{i ¢ L & p € N}, using Cthe orthogonalicy relations Ffor Cthe Tehebyshev
pelynemials and manipulations similar to thoese uwsed in che previous section,
we get p o+ 3 nonlinear algebraic equatlons which are completely analogous CO

[0y = (53). They are:
[y L= 1,2, 0uu,ps (63)



B o -, A2
c, A p. —d o, AT =10 (65}
et S R I T
H l ]
i el a3 c A AT =0 (06}
gpton® obuiby 2 L-Zp:+1 bt Loni
where
il
- Z 1
Ap = m:-; Eq D':FJ]TE{}fj:I {67}
j=0
AT = EE'“n{Sj' (68)

fgain, we combine {(63) and (66} into a single monlinear equation for the shack

locatiopn index, s:

- 2 -
E: . E I’ - E = e ]

where all the sums are from £ = p+tl to £ = M.

The procedurs for extracting the shock location, jump magnitude and smooth
part of the golutfisn from the raw data p{x,yj} {given 1in Table VI) ie
exactly the same as described above for the Fourier problem,

For the wedge—flow problem considered here, this procedure applied in che
case of a eparse met (N = B}, loeated the shock with arm error only in the
fourth significant figure. The smooth part was recovered Lo within 1% ar the

worst field point.



Conclusion

We hawve demomstrated that the reelization of & numerical soclution wia its
grid=point wvalue may be misleading when the Erue solution has a complicaced
structure which is not cesolved by the grid. We have shown, however, that the
numetical solution does contain highly accurate information about the solution
and we suggested two ways of extracting this information.

The analysis outlined in this chapter is5 & Lineat ooe (Chough the
proceducre was applied also to nonlinear problems). Howewver, in [28] Lax has
argued that more information about the solution is contained in high
resclution schemes even in the nonlincar cascs In fact, uwsing notions from
information theory, Lax has shown that the e=capacity of the set of
approximate solutions 1s  closer to the e—capacicy of Ehe gset of the
projecticns of exact solutions IF the numerical scheme iz a high-order scheme.

In the area of digitel filters cne always pracesses the data in order bo
cvercome the Gibbs phenomenon. If we look at the initial conditions as an
input signal and at the finsl result aa the output signal, the idea of

filtering is a natwral one.



[1]

[z]

[3]

[£]
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