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Summary. It has been a long open question whether the pseudospectral Fourier
method without smoothing is stable for hyperbolic equations with variable coefficients
that change signs. In this work we answer this question with a detailed stability
analysis of prototype cases of the Fourier method. We show that due to weighted
stability, the N-degree Fourier solution ilgebraically stablen the sense that it&?
amplification does not excead(N). Yet, the Fourier method iseakly L2-unstable
in the sense that it does experience saglv) amplification. The exact mechanism
of this weak instability is due the aliasing phenomenon, which is responsible for an
O(N) amplification of the Fourier modes at the boundaries of the computed spectrum.
Two practical conclusions emerge from our discussion. First, the Fourier method
is required to have sufficiently many modes in order to resolve the underlying phe-
nomenon. Otherwise, the lack ofsolutionwill excite the weak instability which
will propagate from the slowly decaying high modes to the lower ones. Second —
independent of whether smoothing was used or not, the small scale information con-
tained in the highest modes of the Fourier solution will be destroyed by ¢hgi)
amplification. Happily, with enough resolution nothing worse can happen.
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1. Introduction

In this paper we address a long open question regarding the stability of the pseu-
dospectral Fourier method for linear hyperbolic problems with variable coefficients,

O ue )= 7 (gl 1), 1> 0.z € T[O, 20)

The answer of this stability question is known to be affirmative for one-sigtexs:
the solution operator in this case is similar to a unitary one, which in turn implies
the weightedL?-stability of the Fourier method. Our main thrust is therefore geared
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towards the more intriguing cases witfir)’'s which may change sign. Of course, the
canonical stability question in this context is posed within fifesetup. For partial

list of references on this subject we refer to the pioneering papers of Kreiss and Oliger
[KO1] and Orszag [Orl1],[Or2], the early results of Fornberg [Fo], the short reviews
of e.g., Gottlieb and Turkel [GTu] and Tadmor [Ta4], and to the comprehensive texts
of Gottlieb and Orszag [GO], Canuto et. al. [CHQZ], Boyd [B] and Funaro [Ful].

We provide sharp estimates for tié-growth of the Fourier approximation. It is
shown that theN-degree Fourier approximation may be amplified — relative to its
initial L?-size att = 0, by at most a factor of ordeD(N). In short, this says that
the Fourier method isveakly L?-unstable, though this statement does not ‘faithfully’
explain the behavior of the Fourier method. Indeed, such dissipation-free weak insta-
bilities are expected to turn into the easily detectabiponentialinstabilities in the
presence of low-order terms, etc. [RM, Sect. 5.2]. The Fourier method, however, does
not experience such exponential behavior, which partly explains why this stability
guestion remained inconclusive in the past. We provide a rather complete descrip-
tion of the behavior of the Fourier method, which explains among other things how
the Fourier method maintains igdgebraic L?-stability in the presence of low-order
perturbations, etc. Let us briefly review our main results.

That theL?-amplification is not larger tha@(V) is a consequence of tieeighted
L?-stability of the Fourier method stated in Sect. 2. This weightédtability is due
to the fact that as in the one-signed case, the solution operator of the Fourier method is
similar to a unitary one. However, the similarity transformation in this case involves
the ill-conditionedN x N Jordan blocks; as the condition number of the latter may
grow linearly with N, we conclude, in Sect. 3, that there is@@QV) upper-bound on
the L2-growth. That the amplification is not smaller th&{N') in certain cases is a
consequence of the aliasing phenomena. In Sect. 3 we show that the aliasing relations
are responsible for th@ (V) reflection of the Fourier modes at the boundaries of the
computed spectrum. As long as the computed solution remains sufficiently smooth,
this O(IN) amplification applies to the relatively small Fourier modes at the end of the
spectrum, and therefore will not affect ttié-size of the overall computed solution.
Yet, for nonsmooth dat ( — our specific example consists 6f delta-like initial
dipole), this mechanism of high-frequency amplification will yield Bfrgrowth of
order O(N).

The two ingredients of weighted?-stability and linear high-frequency ampli-
fication are utilized in Sect.4 to shed further light on the behavior of the Fourier
method. We first note that the changing sign(s);6f) are responsible for the de-
velopment of sharp (spatial) gradients in the underlying solution. Consequently, if
the Fourier method does not contain enough modes to resolve these sharp gradients,
then this will lead to the linear amplification of the rather slowly decaying high-
frequency amplitudes. We conclude that independent of whether the initial conditions
are smooth or not, the lack of resolution in later time will manifest itself as a weak
L?-instability propagating from high to lower modes. We also show that whether the
weak L?-instability is ‘genuine’ or is just due to lack of resolution, tveightedZ?-
stability guarantee that nothing worse than égV) amplification will be excited. In
particular, one concludes with the usual spectral convergence rate estimates.

We have made a serious effort to simplify the presentation of this material which
otherwise involves tedious algebraic manipulations. For this reason the paper is or-
ganized as follows. In the first three sections, Sects.2—-4, we prefer to concentrate
on (what is later justified to be) the prototype case of a simple 1-wave coefficient,
q(x) = sin(x). The highlights of these sections include the following.
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— Section 2 is devoted to the weightéd-stability of the Fourier method. The main
result of this section, stated in Theorem 2.1, asserts that there exists a positive
definite H-weighted norm,|| - ||z, such that the Fourier approximation of the
1-wave equationyy (-, t), satisfies,

[un(, )z < C@Olun(,0)llz-

— Section 3 deals with the algebraically webk-instability of the Fourier method.
The main result of this section, stated in Theorem 3.1, asserts that

N < sup VO - o
un (@0 |[un (O)]

— Section 4 concludes with the convergence rate estimate stated in Theorem 4.1:

lunC,t) — ul, B)|lws < C’onsts,aNz_aHu(-,O)||Ws+a, Vs+a > ;
In Sect.5 we turn to show that the basic ingredients introduced in Sects. 2—4 carry
over to more general situations. In particular, Theorem 5.2 extends the basic weighted
L?-stability result to arbitrary sinusoidal wave coefficienjgy) = sinpz), p > 1.
We also treat the Fourier approximation for combination of simple sinusoidal and
cosinusoidal wave coefficients, based on both odd and even number of gridpoints.
Numerical experiments are found to be in complete agreement with the details of our
analysis.

Epilogue The moral of our stability analysis is two-fold:

1. The Fourier approximation is required to have sufficiently many modes (or to use
sufficiently refined grids) which will enable te@solvethe underlying phenomena;
otherwise, the lack of resolution will excite a weak high-frequencies instability.

2. There are various high-frequencies smoothing procedures which are known to
enforce the stability of the Fourier method. Yet, the stability achieved in this
manner is at the expense of destroying the small scale information contained in the
corresponding high-frequencies. Our analysis shows that the plain, smoothing-free
Fourier method suffers the same deficiency. Namely, the small scale information
contained in the high-frequencies of the Fourier method (with or without enough
resolution) is destroyed due to th@(/N) amplification of the latter. Happily,
nothing worse can happen.

2. Weighted L?-Stability
We begin our discussion with the Fourier method based on an odd ntiofdaw + 1

equally spaced grid points;, := VZJ%;:U vr=01...,2N. We letyyw(xz) denote
the N-degree trigonometric interpolant af(z) at these equally spaced grid points

N 2N
. 1 .
21 = 3 ek, iy = 3w, )e e
(2.1a) Yyw(x) k:_kae' , Wy 2N+1V:0w(90 )e

1 The reason for this odd choice is explained in Remark 2 on page 113. We get even in Sect. 5.
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Observe that the discrete Fourier coefficienisafe well-defined’k € Z with period
2N +1, i.e.,

(2.1b) iy =iy, [K] =k mod[2N+1] k€ Z.

This reflects thaliasing phenomenon, where different waves in the discrete Fourier
expansion are tagged by the same wave number modvle 2.
We want to solve by Fourier method the scalar;f#riodic hyperbolic equation

(2.2) aatu(a:,t) = 8(1 (¢(@)u(x,t)), t >0, zeT[O,2r).

To this end we approximate the interpolant of the exact solutigry(-, t), using
an N-trigonometric polynomialyuy (x,t) = ZQLN ax(t)€**, which is governed by
the semi-discrete Fourier approximation

23 (e 0= ) o la@une 0]

ot
This Fourier approximation could be realized in the physical space by tkie+(P)-
vector of its grid valuesy(t) = (u(zo,?), ..., u(zan,t)), Which is governed by the
system of ODE’s

d
(2.4) dtu(t) = DQu(t).
Here, D denotes the (X + 1) x (2N + 1) Fourier differentiation matrix,
—1y—F
Djy = -1y (1= 6jx),

Zsin(mf;””’“)

and @ is a diagonal matrix representing multiplication bfr), Q1 = é;xq(xs).
Together with one’s favorite ODE solverthis system give rise to a fully discrete,
consistent (— in fact, spectrally accurate) approximation of (2.2), and we now raise
the stability question of the underlying semi-discrete Fourier approximation.

The stability question has a rather simple affirmative answer in g@9es one-
signed, say positive, so th§ > 0. Indeed, since in this cageq is similar to the
antisymmetric matrixy” = QéDQ%, it implies that the solution operator is similar
to a unitary one, BQ* = Q—:U(H)Qz with U(t) = e”t, and weightedL2-stability
follows,

(2.5) lun@lz = [un Oz,  H=Q>0.

Observe that ifg(z) is bounded away from zero thelf has a uniformly bounded

condition numberConst = %) < oo, and hence the weighteti?-stability in

(2.5) could be translated into the usuzl-stability,
[un(@®)] < Const - [[un(0)[|.

We now turn to consider the more intriguing case whgte may change sign.
In this section we take a rather detailed look at the prototype cagérpf sin(x):

2 The numerical experiments reported below employ the standard 4th order Runge-Kutta ODE solver.
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(2.6) 0 un(z,t) = a@ Y [sin(@)uy(z,t)] .
x

ot
We shall show that as in the one-signed case, the solution operator associated with
(2.6) is also similar to a unitary matrix — consult (2.20) below for the precise statement.
This in turn leads to the announced weighf&dstability. It should be noted, however,
that the similarity transformation in this case involves the ill-conditioed N Jordan
blocks; as the condition number of the latter may grow linearly wththis in turn
implies theweak L?-instability discussed in Sect. 3.

We begin by noting that the Fourier approximation (2.6) admits a rather simple
representation in the Fourier space, using té<{2)-vector of its Fourier coefficients,
a(t) = (a_n(t),...,an(t). With the periodic extension af.{t) Vk € Z in mind —
consult (2.1b), we are able to express the interpolant of:gin((«x, t) as

N

Yy [sin@un(z, 0] = >

k=—N

1

2 [Tk—1(t) — Trsa(t)]E™,

so that the Fourier approximation (2.6) then reads

(270) k) = i)~ i), N <k <N,

augmented by the aliasing boundary conditions (2.1b)

(2.70) U—(N+1)(t) = an(t) = a-n(1), Un+1(t) = a-n(t) = un(t).

Thus, in the Fourier space, our approximation is converted into the system of ODE’s
O -1 0 ... -1
1 0 -1 0

d. . .1
(28) ()= 4Q0(), Ay =hksy, Q=] 0 1
10 ... 1 0

Remark We note in passing that the two representations of the Fourier approximation
— the ODE system (2.4) in the real space (wjfl;) = sin(xx)) and the ODE system
(2.8) in Fourier space, are unitarily equivalent: indedd) = .7 *DQ.7 with .7
being the unitary Fourier matrix,

Tp = (2N +1) 2674 _N < j k< N.

We shall study the stability of (2.6) in terms of its unitarily equivalent Fourier
representation in (2.8), which is decoupled into its real and imaginary pdt)s= "
a(t)+ib(t). According to (2.7a)-(2.7b), the real part of the Fourier coefficient§,) :=
Reuy(t), satisfies

(2.90) )= 5 o a) )], N <k<N,

augmented with the boundary conditions

(2.90) a—nv+1)(t) =a—n(t), an+(t) =an(?).
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The imaginary part of the Fourier coefficients,(t) := Ima(t), satisfy the same
recurrence relations as before

d k
(2.10a) 0= [bk—1(t) — brsa(t)], —N <k <N,
the only difference lies in the augmenting boundary conditions which now read
(2.100) b_(n+1)(t) = —b_n(t), bn+a(t) = —On (D).

The weighted stability of the ODE systems (2.9) and (2.10) is revealed upon
change of variables. For the real part in (2.9) we introduce the local differences,

Py, (&) = ax(t) — ag+(t);
for the imaginary part in (2.10) we consider the local averages,
Pr(t) = bi(t) + bra ().

Differencing consecutive terms in (2.9a) while adding consecutive terms in (2.10a)
we find

d .,. k 1
(2.11a) diPr (t) = 2 of

The motivation for considering this specific change of variables steams from the side
conditions in (2.9b) and (2.10b), which are now translated into zero boundary values

(2.11) e ORI OR

Observe that (2.11a), (2.11b) amount to a fixed translatioanmisymmetricODE

systems forp™(t) := (p~ 5 (1), - - -, py_4(1)) and pr(t) = (prn (D), ..., py_a(t)), that
is, we have

E+1

o Pea®E o), —N<k<N-1

Pil(t) -

(212) o) = ST+ S )

where.¥” denotes the antisymmetric matrix

0 N-1 0 ... 0 -1 O
, 1-N 0 . 0 1 0 . 0
S = . . ® . .
0 . o1 0o . . 1-N
0 -1 0 © 0 N-1 0

The solution of these systems is expressed in terms afriftaery matrix U (t) = ex 't
(2.13): pr(t) = €2UR)p™(0),  UT(OU() = Loy

The explicit solution given in (2.13) shows that our problem — when expressed in
terms of the new variables*®(¢), is clearly L?-stable,

lo* 0)Il = €72 p*(0)).
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Remark.We note that this.?-type argument carries over for higher derivatives, that
is, the W -norms of p*(¢) remain bounded,

1
2

(214) [ollwe = 1A%pl| = (Zlklzalka) ;o Aji = k.
k
Indeed, multiplication of (2.12) on the left hyl|* yields
d a , + 1 () a +
g1 AITPT O = S (EL+ S A% p™(0).

The matrices” ¥ = |A|*.%”|A|~* are not antisymmetric (except for the= 0 case
treated before),

oote) = [ |K[OK/|k =1 j=k-1%0
! - +D/Ik+1t j=k+170;
ok k[o(k+1)/[k+ 11 j=k+170

Nevertheless, the#(*)’s are not far from being antisymmetric since their real part is
bounded,
@) Ft <20, T, Co ~ o

This implies that

(215):  |APpER) =€ % AR ), e < e,
and the assertetd/“-stability then follows

(2.16) P @ lwe < =D 02 O)lwe,  lpllwe =[|A%p].

We want to interpret thesé&?-type stability statements for the™-variables in
term of the original variables — the real and imaginary parts of the system (2.8). This
will be achieved in term of simple linear transformations involving & N Jordan
blocks

1 +£1 ... O
=01

: Lo+l

0O ... O 1

To this end, let us assume temporarily that the initial conditions have zero average,
i.e., that

(2.17) ao(0) = 2N1+ 1 Z u(x,,0) =0

v

According to (2.9a)ao(t) remains zer®/t, and so will be temporarily ignored. Then,
if we let

a(t) == (a—n(@),...,a—1(t), a1(t), ..., an(?))

denote the 'punctured’ Z-vector of real part associated with (2.8), it is related to
the 2V-vector of local differencesp™(¢), through

() =T at), T_:=J_ oJt.
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This enables us to rewrite the solution given inl@_ as
(2.18) T_a(t) = e 2Ut)T_a(0).

Similarly, sinceby(t) = ]Imz.l\}+l >, u(z,,t) = 0in the real case, it will be temporarily
ignored. Then, the 'punctured’2-vector of imaginary part associated with (2.8),

b(t) = (b-n (1), - ba(t), bald), - by (D),
is related to the X -vector of local averages;'(t), through
pt(t) = Tub(t), Ti:=Jw®JL
which enables us to rewrite the solution given inl(®, as
(2.19) T.b(t) = €/2U (1) T+ b(0).

The equalities (2.18) and (2.19) confirm our assertion in the beginning of this
section, namely,

Assertion. The solution operator associated with the Fourier approximation, (2.6),
(2.17), is similar to the unitary matri&/ (¢) := U(t) @ U(t), in the sense that
(2.20) . _

a(t) = T7IU()Tu(0), a(t) = %a) @ e V2@), T:=T_ T

We are now in a position to translate this similarity into an appropriaghted
L?-stability. On the left of (2.18) we have a weightéd-norm of a(t), |T_a(t)| =
lla(t)||r: r_. Also, U(t) being a unitary matrix has ah?-norm = 1, hence the right

hand side of (2.18) does not exceed!/&||T_a(0)|| = e‘t/2||a(0)||TiT7, and there-
fore a(t) = Re(@_n(t), ..., U_1,u1(t), ..., un(t)) satisfies

@@t . < e 2|a@)giq, TLT-=JLJ-@J_Jt.

Expanding the last inequality by augmenting it with the zero valueq(f) we find
the weightedZ?-stability of the real part

(2.21a) la®)||z. < e V?|a)|g., H-=J'J &laJ Jt.
Similarly, (2.19) gives us the weighted stability of the imaginary part
(2.21b) 16|z, < €/26(0)|| ., He=JLJe ® 16 JoJL

Summarizing (2.21a) and (2.21b) we have shown

Theorem 2.1.Consider the Fourier method (2.6) subject to initial conditions with zero
mean, (2.17). Then the following weightdd’-stability estimate holds

(2.22) Ilun @Il < €/2/]Jun )] -
Here |||un(t)|||z denotes the weighted?-norm
(2.23) un @]l = (|[Red(t) & Ima(t)||m,

where the weighting matri¥ := H_ & H, > 0 s given by
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Hy = JiJi®laeJiJl
1 41 1
+1 2 +1

+£1 2

A o
1 1

We close this section with three extensions of the last weighted stability result.
We first note that the requirement of initial data with zero mean in Theorem 2.1 is
not a restriction. Indeed, Duhammel’s principle gives us

Corollary 2.2. (Inhomogeneous termsbet uy(t) = un(-,t) denote the solution of
the inhomogeneous Fourier method

Dunte,)= ) o Tsingeun (e, 0] + PG, o)

Then there exists a constart(t), such that the following weightef?-stability esti-
mate holds

(2.24)

@25 [lux(Ollln < €O |[lfun) 1 + max [[Fy ()l |

The proof proceeds in three steps.

1. Consider first the case where both the initial and inhomogeneous data have zero
mean,up(0) = 0, Fo(t) =0, Vt. In this case Theorem 2.1 applies and Duhammel‘s
principle shows that (2.25) holds with, say,tiC¢ 2€/2.

2. Next we consider the case withy = 0, and arbitrary initial datay (-, 0). In this
casewy(-,t) := un(-, t) — uo(0) satisfies the inhomogeneous Fourier approxima-
tion (2.24) with Fiy(x,t) = ug(t = 0) cosf). Hence step 1. applies oy (-, t),
which in turn implies (2.25) for the general homogeneous problem.

3. Finally, we apply Duhammel’s principle once more to conclude with (2.25) in the
general inhomogeneous casel

Our second corollary shows that the weightetstability of the Fourier method
is invariant under low order perturbations.

Corollary 2.3. (Low order terms.)Let un(t) = un(-,t) denotes the solution of the
Fourier method

2.26) [ ux(e,t) = ;) o IsinG)ux e, O]+ [peux(e,0], peL™[0,20),

Then there exists a constart(t), such that the following weightef?-stability esti-
mate holds
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(2.27) un @z < CO|l|un O] a-

For the proof we appeal to the representation of (2.26) in Fourier space, consult (2.8),

d p(x0)
IO [AQ + P at), P=7" T
p(r2n)

Here P is the circulant matrix whose entrieB;; = 3", p;_rwean+1), 7], [E| < N,
represent multiplication by(x) as a convolution in the Fourier space. Corollary 2.2
tells us that .

e |5 < C(t),

and hence by Kreiss-Strang perturbation Theorem, [RM, Sect. 3.9], we conclude that

|\e[AQ+P]t||H is bounded in terms of P| ;. The latter involves thef.-weighted
norms of the real and imaginary partséf The following upper bound of the real
part,cé,—; = >, Rep;_r+2n+1) demonstrates the general case.

Let w = a +ib denote an arbitrary ¥ + 1-vector satisfying the aliasing relations
(2.1b). Then we have

A N-1 N s A
|RePal|?, _ 2k=-N |2 = vty — ¢k jlag)?
lall%_ Zi@v:__l]v lag+1 — axl?

The last quantity equals

N N—-1 ~
ZszN | ijfN Ck*jAaj‘z Aar ‘= { ap+1 —ag, k< 1
k

Sy | A2 ’

and by Parseval identity it does not exceed

SNy (k) Ady 2
Sy | Ad[?

A similar treatment applies to the other terms.

For an alternative proof one can argue along the lines of Theorem 2.1: though the
averaged quantitiesi™ will be now decoupled through the low ordgrdependent
terms, weighted stability follows as before due to the antisymmetry of the leading
term in (2.11a)-(2.11b). O.

In our third corollary we note that the last two weight&é-stability results ap-
ply equally well to higher order derivatives, which brings us to conclude with the
following

Corollary 2.4. (WeightedWW *-Stability.) Let un (t) = un(-, t) denote the solution of
the Fourier method

:N’

)

< IO, Ad:=7 Aa.

(2.28) 0 un(x,t) = 8(1 Uy [sin@)un(z,t)] .

ot

Then there exist positive definite matricé€®, and a constaniC,, such that the
following weightedi?/ “-stability estimate holds
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(2.29) lun@lllwg < Ca®lllun(O)l[lwg

Here [|[ux(t)||lwe denotes the weighteld’*-norm

(2.30) llun@1fvg = 1A ReG®Fc + A" IMa) |-

Proof. Let A denote the &' x2N "punctured’ A matrix. If we setT(f) = | ATy | A,
then we can rewrite (25)_ as

TO T 0a() = e 2e” 27| {105 0),

and a similar relation holds foﬁf(t) in view of (215).. The essential point is that
e”t/2 is bounded and hence

| A% s < D2 A2G(O) | o,  HE = TN T,

We conclude by noting thal®d(t) = A%a(t) (sincea > 0), and (2.29) follows with
H=HY ¢ H®. O

The last results enable to put forward a complete weigtitédtability theory.
The following assertion contains the typical ingredients.

Assertion. The Fourier method

(2.32) iuN(x, t) = ¥ n[sin(z) ;Cu]v(x,t)],

0

satisfies the following weightetd’-stability estimate

(2.32) [unC Dllwg < Cal®llun(,0)lwg-

Remark.The last assertion confirms the weighted stability of the Fourier method in
its non-conservative transport form.

Sketch of the ProofWe rewrite (2.31) in the 'conservative form’

O ()= 2 pnlsingu (e, 0] + [wN sin(). 8‘1] un (@, 9).

where Py sin@), 2 1:= ¥n(sin@) 2 ) — 2 (¢ sin()-) denotes the usual commu-
tator between interpolation and differentiation. The weighiéestability stated in
Theorem 2.1 tells us that this commutator is bounded in the corresponding weighted
operator norm. Therefore, we may treat the right hand side of (2.31) as a low order
term and weighted.?-stability (o = 0) follows in view of Corollary 2.3. The case of
generala > 0O follows with the help of Corollary 2.4. O



104 J. Goodman et al.
Table 1. Amplification of ||u (¢)|| att = 10, subject to initial data;(0) = isin(kw/N)

2N +1 65 129 257 513 1205

llun @Il
llun (O]

570 2003 5535 15028 39798

3. Algebraic stability and weak L2-instability

In this section we turn our attention to the behavior of the Fourier method (2.6)
in terms of theL?-norm. Table 1 suggests that when measured with respect to the
standard (weight-freel.?>-norm, the Fourier approximation may grow linearly with
the number of gridpointsv.

The main result of this section asserts that this is indeed the case.

Theorem 3.1.There exist constant&; () and Cy(t), such that the following estimate
holds

(3.1) C(HN < [|eP9| < Cy(t)N.

The right hand side of (3.1) tells us that the Fourier method may amplify.the
size of its initial data by an amplification facter O(N) — that is , the Fourier method
is algebraically stable The left hand side of (3.1) asserts that this estimate is sharp
in the sense that there exist initial data for which tigV) amplification is attained
— that is, the Fourier method geakly L?- unstable We note that this estimate does
not contradict the weighted?-stability discussed in Sect. 2; in fact, as we shall see
below, the weighted.?-stability reveals the mechanism for this algebraically weak
L-instability.

We turn to theproof of the algebraic stabilityLet u () denote the solution of
the Fourier method (2.6) subject to arbitrary initial data;(0). We claim that we
can bound the ratiduy (t)||/||un (0)|| in terms of thecondition numberx(H), of the
weighting matrixH, x(H) := ||H| - ||H~Y||. Indeed

[[un (@)l [Red(t) & Ima()|| < v/[1H 2| - [[|un @) |
< COVIHY - [[un )|z
(3.2)

< COVIH| - I1H - |[Reid(0) © Ima(0)|

= CE)Vr(H) - |lun(0)].

Here, the first and last equalities are Parseval's identities; the second and forth in-
equalities are straightforward by the definition of a weighted norm; and the third is a
manifestation of the weightefi>-stability stated in Corollary 2.2.

The estimate (3.2) requires to upper-bound the condition number of the weighting
matrix H. We recall that the weighting matrikl is the direct sum of the matrices
Hy given in (2.21a)-(2.21b), whosé?-norms equal the squaretf-norms of the
corresponding Jordan block$H .|| = ||J.|?, [[HL'| = ||JZY|? Inserting this
into (3.2) we arrive at
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(3.3) el == sup [un @ < CHr()), J=J_&J.
un (00 [[un (0)]

Thus it remains to upper bound the condition number of the Jordan bldgksor
the sake of completeness we include a brief calculation of the latter. The inverse of
J+ are upper-triangular Toeplitz matrices,

- ,
(3.4a) (J£1) 4 = { g$1)1 f i i:

for which we have,

N N
(34b) [Tl =Y 1Y FY FwP < Y D P L~ 2N wl .
j=—N k

=N k>j k>j

This means thaﬂJ;ln < v/2N, and together with the straightforward upper-bound,
[J<]] < 2, the right hand side of the inequality (3.1) now follows with(§ =

2/2C(). O
The aboveO(IV)-algebraic stability is essentially due to th&N) upper-bound
on the size of the inverses of Jordan blocks stated in (3.4b). Can this upper-bound

be improved? an affirmative answer to this question depends on the regularity of the
data, as shown by the estimate

N N

[Emtl D € i i N W el T S
k

J==N k=j J==N k>j

which yields anO(N*—-) bound forWW*-data,

1/2
[T w]| < Cna N& O wllwe,  [Jw]we = (Zlklz‘*wﬁ) :
k

Noting that the rest of the arguments in the proof of algebraic stability are invariant
with respect to thd¥*-norm — in particular, the weighte® *-stability stated in
Corollary 2.4, we conclude the following extension of the right inequality in (3.1).

Corollary 3.2. (Weak W *-stability estimate.)lhere exist constant§; ., s,«a > 0,
such that the following estimate holds

(3.5) [un (G B)llws < Cnvoa N~ Jlun (:, 0)[wrsver
_ [ Const-\/logN «a=3,1,
Here On.s.a = { < Cyn otherwise

Corollary 3.2 tells us how the smoothness of the initial data is related to the possible
algebraic growth; actually, folV*-initial data witha > 1, there is noL?-growth.
However, for arbitraryL? data ¢ = o = 0) we remain with theD()N) upper bound
(3.4b), and this bound is indeed sharp for, say, ~ (—1)*. (In fact, the latter is
reminiscent of the unstable oscillatory boundary wave we shall meet later in (3.20)).
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These considerations lead us to the question whethdimisar L2-growth upper-
bound offered by the right hand side of (3.1) is sharp. To answer this question we
return to take a closer look at the real and imaginary parts of our system (2.7).

We recall that according to (2.9a) the real pant(t) = Reuy(t), satisfies,

d k
dtak(t) =5 lag-1(t) — apn()], —N <k <N.
Summing by parts againat,(t) we find

N N

S A0=, Y meal) ) o pven®an() + axalay )]
=—N k=—N+1

1ld
Zdtk

The boundary conditions (2.9, (v+1)(t) — a—n(t) = an+1(t) — an(t) = 0, imply
that the second term on the right is positive; using Cauchy-Schwartz to upper bound
the first term yields? ||a(?)[|> < ||a(#)[|?, which in turn implies that the real part of

the system (2.7) id.?-stable
la@®I < &/2[a(O)ll,  a(t) = Red(?).

In contrast to thel.?-bounded real part, it will be shown below that the imaginary
part of our system experiences dR linear growth, which is responsible for the
algebraically weall.?-instability of the Fourier method.

The imaginary part of our system(t) = Imay(t), satisfies the same recurrence
relations as before

(3.60) )= [bea) ~ beal)], N <k <N,

the only difference lies in the augmenting boundary conditions which now read
(3.6b) bov+1)(t) = —b-n(t), bn+a(t) = —bn(t) =0.

Trying to repeat our argument in the real case, we sum by parts aga(tist
(3.7)

1d & 1 U N
ogr Do EO=5 D> be®beoa(t) = [b-vn(®b- v () + bvea(Bbn (1)),
k=—N k=—N+1

but unlike the previous case, the judicious minus sign in the augmenting boundary
conditions (3.6b) leads to tHewer bound

(38) b(t)||2 > —[|b(®)]|> + N[b2 y (t) + b3 (D).

!
dt
This lower bound indicates (but does not prove!) the posdiBlgrowth of the imag-

inary part. Figure 1 confirms that unlike tHe?-bounded real part, the behavior of

the imaginary part is indeed markedly different — it consists of binary oscillations
which form a growing modulated wave #g 1 N. Thesebinary oscillations suggest

to considemy(t) := (—1)*b,(2), in order to gain a better insight into the growth of the
underlying modulated wave. Observe that (3.6a)-(3.6b) then recasts into the centered
difference scheme
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Fig. 1. a—d.Fourier solution ofu; = (sin(x)u) s, ux(0) = Ei(n —£)3/20, &), = kw A€, Imaginary part of
Fourier coefficientsimay (t), computed withAt = 5}\, atat =0 andt=0.1 with N =200;b ¢t =0 and
t = 0.1 with N =400;c ¢t =1 with N =100;d ¢ = 1 with N =200

(3.9a)

d on(t) = & Vg+1(t) — v—1(?) 1
dt ’

= < < =

which is augmented with first order homogeneous extrapolation at the 'right’ boundary
(3.95) un+1(t) —un(t) = 0.

We note in passing thafi} The bx(t)’s, and hence they(t)'s, are symmetric — in
this case they have an odd extension faV < k < 0; {ii} No additional boundary
condition is required at the left characteristic bound&sy= 0; and finally, {iii }
Though (3.9a)-(3.9b) are independent of the frequency spacing — in fact\any
O(1/N) will do, yet the choice ofA¢ = (N + %)*1 will greatly simplify the formulae
obtained below. These simplifications will be advantageous throughout the rest of this
section.

Clearly, the centered difference scheme (3.9a) could be viewed as a consistent
approximation to the linear wave equation

) 0
atv(fat) - fagv(§7t)a 0 S f S 1

The essential point is that = 1 is aninflow boundary in this case, and that the
boundary condition (3.9b) isflow-dependerih the sense that it is consistent with the
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interior inflow problem. Such inflow-dependent boundary condition renders the related
constant coefficient approximatiamstable that is, the mixed initial-boundary value
approximation (3.9a)-(3.9b) with 'freezed’ coefficients, fails to satisfy the resolvent-
type stability of Gustafsson, Kreiss and Surgasr{GKS], consult [KL, Os, Tal, Tr].

In fact, the instability induced by using such first-order extrapolation (3.9b) in an
inflow boundary leads to ah?-growth of order> O(v/N), consult [Tal, Sect. 3].

To show that there is a@(V)-growth in this case requires a more precise study
along these lines, which brings us to theof of the weald.?-instability. We decom-
pose the imaginary componentg(t), as the sum of two contributien- a stable part,
si(t), associated with the evolution of the initial data; and an unstable paft),
which describes the unstable binary oscillations propagating from the boundaries into
the interior domain,

bi(t) = s(t) +wi(t).

Here,s(t) 1= (s1(t), - . ., sn(t)) is governed by aoutflow centered difference scheme
which is complemented bgtableboundary extrapolation,
(3.10) " ®

d Sg+1(t) — sp—1(T 1

dtsk(t) + & 2A¢ 0, 0<kKk<N, A¢: N+§

sk(0) = bi(0),

sna(t) = sn(b).

As before, we exploit symmetry to confine our attention to the ’right half’ of the
problem, 0< k < N.

A straightforward L2-energy estimate confirms that this part of the imaginary
components id.?-stable,||s(t)|| < e~||b(0)||. In fact, the scheme (3.10) retains high-
order stability in the sense that

N 1/2
(311)  [|sO)llw- = (Dk?ﬂsk(t)ﬁ) < Constay - [B(@)]lw=, ¥a > 0.
k=0

We close our discussion on the so called-part by noting that (3.10) is a second-
order accurate approximation to the initial-value problem

0 0
8t8(£at)+ 5655(571;): 0, § > 07
(3.12)

2N
s(¢,0) =b(¢), b(¢) = > un(zy,0)sinGve);
=0

2N +14

Observe that the initial conditioh(§) is nothing but a trigonometric interpolant in
the frequencyé-space’, which coincides with the initial value of the imaginary com-
ponents,b(¢;) = Imig(0) = br(0). Using the explicit solution of this initial value
problem, we end up with a second order convergence statement whicf reads

(313) si(t) = bEve™") + O(A€?, ¢ >0.

We now turn our attention to the unstable oscillatory pag(t) = (—1)Y ~*uv(t).
It is governed by arinflow centered difference scheme,

3 The last equality should be interpreted of course in W& -sense, witha limited by the initial
W e-smoothness 06y (0).
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Fig. 2. a—c.Fourier solution ofu; = (sin@)u)z, ur(0) ~ ,fs- Imaginary part of Fourier coefficients,

Imdiy (t), computed at = 3 with At = - anda with N = 100;b with N' = 200;c with N = 800

(3.14a) jtvk'(t) = gkvk+1(f)2£§k—1(t)7
v(0) = 0,

0<k<N,

which is coupled to the previous stabl€-part (3.10), through the boundary condition

(3.14b) vn+1(t) — on () = sy+a(t) + sn(t).

The boundary condition (3.14b) is the first-order accurate extrapolation we met earlier
in (3.9b) — but this time, with the additional inhomogeneous boundary data. And as
before, a key ingredient in the-instability is the fact that such boundary treatment

is inflow-dependent.

Specifically, we claimthe inflow-dependent extrapolation on the left (§.14b)re-
flects the boundary values on the right(8f14b),which are 'inflowed’ into the interior
domain with an amplitude amplified by a factor of ordéx(V).

To prove this claim we proceed as follows. Forward differencing of (3.14a) implies
thatrk+%(t) = vp+1(t) — v (t) satisfy the stable difference scheme
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Fig. 3. a,b. Fourier solution ofu; = (sin@@)u)z, 4k(0) = isin€y), & = kmAE. Imaginary part of
Fourier coefficientsImdy (), (— — —) computed at = 0.5 vs. sy (t) + wg(t), (coo), a with N = 100; b
with N =200
(3.15)
d 0 Epealpe3 () = &1rp 1 (8) T3 (t) = 2 () + 7y s N
r = — < N =1,
dt F*2 2A¢ 4 ’
Tk+;(0) = 07
’/‘N+%(t) = sy+1(t) + sn(t) = 2sn(2).

Clearly, this difference scheme is consistent with, and hence convergent to the solution
of the initial-boundary value problem

prED = gD, 0<e<1
(3.16) r(&,0) =0
r(1,t) = 2sn(t).

Observe that(¢, t) describes a boundary wave which is prescribed org me2 =

1 boundary of the computed spectrun{l,t) = 2sy(t), and propagates into the
interior domain of lower frequencies< 1,

2
(3.17) e 1) = fsN(t +In¢), t+Ing>0,
0, t+Ing<o0.

We conclude that the forward difference%%(t) = vg+1(t) — vi(t), form a second-
order accurate approximation of this boundary wave,

P ()= 16y )4 O(AEP, 603 = b+ )AC

Returning to the original variablesy,(t) = (—1)" Y52y ry1(t), the latter equality
reads
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k-1
we) = (1Y (G 1)+ O(R(AL))
(3.18) 70
—1)* ke
= O RE0+0L0.  R@= [ s

which confirms our above claim regarding the amplification of a boundary wave by
a factor ofO(1/A¢ ~ N).

The a priori estimates (3.11) and (3.18) provide us with precise information on
the behavior of the imaginary componeritg) = s(¢) +w(t): their initial value att = 0
propagate by the stablg™part and reaches the boundary of the computed spectrum
at §N+% = 1 with the approximate boundary values of (3.18)(t) = b(e~%) + O(Af);
the latter propagate into the interior spectrum as a boundary wave of the form (3.17),

2.1 S . .
r(&,t) = _b( et)’ whoseprimitive in (3.18) describes the unstable oscillatoxy-part
of the solution. Added all together we end up with

2(-1F [ &,
(3.19) bk(t):b(fke—m{ At /oet/&,b(f)g’ STsb=t }+0(A5).

0 0<& <et

)

Thus, the unstableJ"-part contributes a wave which is modulated by binary oscilla-
tions; the amplitude of these oscillations start witfiL/A¢ ~ N) amplification near
the boundary of the computed spectrufy, ~ 1, and decreases as they propagate
into the interior domain of lower frequencies. Moreover, for any fixed 0, only
those modes with wavenumbérsuch that e’ < |k|/N < 1, are affected by the
unstable &" part. Put differently, we state this as
Corollary 3.3. For any fixed ¢ > 0, the Fourier method2.6) experiences a weak
instability which affects only éixed fractionof the computed spectrum. Yet, the size
of this fixed fractionl — e~¢, approaches unity exponentially fast in time

There are two different cases to be considered, depending on the smoothness of
the initial data.

1. Smooth initial datalf the initial datau x (z, 0) are sufficiently smooth, then (0) =
Imd(0) are rapidly decaying d¢| 1 IV, and hence — by th&/*-stability of the
"s"-part in (3.11), this rapid decay is retained later in time £@(t),¢ > 0. This

implies that the discrete boundary wave — governed by the stable scheme (3.15),

is neglegibly small,r,ﬁ%(t) ~ 0, because its boundary values argy@) ~ 0.

We conclude that in the smooth cagé(t)|| ~ |b(0)|| + O(1) remains of the same
size as its initial datal|b(0)]|.

Figure 2 demonstrates this result for a prototype case of smooth initial data
in Besov B3 (L>) — in this case, initial data with cubically decaying imag-
inary componentsp,(0) ~ |k|=3. As told by (3.19), the temporal evolution

of these components should include an amplified oscillatory boundary wave,
wi(t) ~ (=1)¥E3N—°, consult Remark 3 below. Thi®(V) amplification is con-
firmed by thequadraticdecay of the boundary amplitudes (¢). Note that de-
spite this amplification, the boundary wave and hence the whole Fourier solution
remain L? bounded in this smooth case.
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2. Nonsmooth initial dataWe consider initial data: (x, 0) with very low degree
of smoothness beyond their meEé-integrability, e.g., forb(¢) = N—1/2(1 — &),
the corresponding componentslafii;(0) = N ~1/2(1— J’f,), are square summable
but slowly decaying a$k| T N. Sinceb(0) serves as initial data for the stable
"g"-part in (3.10), the components of;(t) will remain square summable for
t > 0, but will remain slowly decaying ag| T N. In particular, this means that
sn(t) = O(N~/2) can be used to create t&(N ~1/2) boundary waver(¢, t)
dictated by (3.16). According to (3.18), the amplified primitive of this boundary
wave, (1)°R(&,t)/AE ~ N2, will serve as the leading order term of the
unstable part. We conclude that the imaginary piact)| will be amplified by
a factor of O(IV) relative to the size of its nonsmooth initial dgf&0)||, which
confirms the left hand side of the inequality (3.1).
Figure 3 demonstrates this result for a prototype case of nonsmooth initial data with
imaginary components given by, (0) = siny), that is, initial data represented
by a strongly peaked dipole at.;, un(x,,0) = (2N + 1)j), 1. According to
(3.19), the evolution of these components in time yields

(-1 1
A (1— gke—t)++O(A’5)'

In this case theD(IV) oscillatory boundary wave(,*Algk (1 — fké*f> , is added

to the O(1)-initial conditions, sing;), which is responsible for thé2-growth of
orderO(N). This linearL?-growth is even more apparent with the 'rough’ initial
data we met earlier in Figure 1.

(3.20) bi(t) ~ sin(gke*t) + Consty,

Remarks.
1. Smoothing The last Theorem confirms th&?-instability indicated previously by
the lower bound (3.8),

d
PO = =[p@)[17 + N 12 5 + B3]

By the same token, summation by parts of the imaginary part (3.7), leads tipplee
bound

d
¢ PN < b7 + N [02 5 +07]

which shows thahad the boundary values of the computed spectrum — which in this
case consist of the last single modey (), were to remain relatively small, then the
imaginary part — and consequently the whole Fourier approximation would have been
L?-stable. For example, the rather wealpriori bound will suffice

C
VN

What we have shown (in the second part of Theorem 3.1) is that such an a priori
bound does not hold for general nonsmosfinitial data, where according to (3.19),
b (t) ~ OB

We recall that there are various procedures which enforce stability of the Fourier
method, without sacrificing its high order accuracy. One possibility is to use the skew-
symmetric formulation of our problem [KO1, GO]. Another possibility is based on

(3.21) ban @] <, [6O)] = (D] < X2 |b0)].
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Fig. 4. a,b. Fourier solution ofu; = (sinx)u)z, u(£,0) = sing). Imaginary part of Fourier coefficients,
Imdg (t) vs. kwr AE, computed at = 2 a with de-aliasing {V = 80 andN = 160); b without de-aliasing
(N =50 andN = 100)

the observation that the current instability is due to the inflow-dependent boundary
conditions (3.9b) — or equivalently (3.6b), and the origin of the latter could be traced
back to the aliasing relations (2.1b). We can therefore de-alias and hence by (3.21)
stabilize the Fourier method by settihg () = 0, or more generallyu Ly (t) = 0.
De-aliasing could be viewed as a robust form of high-frequency smoothing; in this
context we mention the various high-frequency smoothing procedures which could
be carried out either in the Fourier space as in Kreiss and Oliger [KO2] or Majda
McDonough and Osher [MMO], in the physical space as in Abarbanel Gottlieb and
Tadmor [GTa],[JAGT], or could be realized as high-order spectral viscosity as in
Tadmor [Ta3]. Figure 4a shows how the de-aliasing procedure stabilize the Fourier
method which otherwise experiences the unstable linear growth in Fig. 4b. With (3.21)
in mind, we may interpret these procedures as a mean to provide the missing a priori
decaying bounds on the highest mode(s) of the computed spectrum, which in turn
guarantee the stability of the whole Fourier approximation.

2. Smoothing cont'd — even number of gridpointfie situation described in the
previous remark is a special case of the following assertion [Ta2, p.24Sjume
that ¢(x) consists of a finite number, say: modes. Then the corresponding Fourier
approximation(2.3) is L?-stable, provided the last: modes were smoothed so that
the following a priori bound holds

N

> P < 3O

|k|>N—m

It should be noted that our present discussion(ej with m = 1 modes is a prototype
case for the behavior of the Fourier method, as long as the corresponding Fourier
approximation is based on aydd number of 2V + 1 gridpoints. Otherwise — the
case of an even number of gridpointslié-stable, as shown by Gottlieb, Orszag and
Turkel [GOT]. The unique feature of thig>-stability is due to the fact that Fourier
differentiation matrix in this case);;, = (*1§_k cot(*,"*)(1 — ;) — beingeven

order antisymmetric matrix, must have zero adaable eigenvalue, which in turn
inflicts a ’built-in’ smoothing of the last mode in this case, [Ta2, p.545], namely,

(322) biN(t) =0.
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Fig. 5. a—d.Fourier solution ofu; = (sin(x)u)z, u(x,0) = sinf). Imaginary part of Fourier coefficients,
Imdg (t), computed withN = 64 modes att =1.0;b¢=27;c¢t=3.0;dt=5.0

Table 2 confirms the usual linear weak-instability already for a 2-wave coefficient.
3. W@-initial data. Consider the case of sufficiently smooth initial data so that
the imaginary components decay of order

1
b©) ~ k7 >,

In this case, we may approximate the corresponding initial interpb{ght- (A£/€)<,
and (3.19) tells us the Fourier approximation takes the approximate form

et 2(-1) /1 (49"

be(t) = + dé+0(A

MO =t T o e A0
et (=1)F [/ ket \”

~ feo +Na—l |:<N) - :|++O(A£)

Observe that|[b(t)| ~ C.N2~%, (with C, ~ (€2 — 1)/(2c + 1)), where as

16(0)||w= ~ +/N. This lower bound is found to be in complete agreement with

the W<-stability statement of Corollary 3.2 (apart from the lgfactor fora = 1) —
an enjoyable sharpness.
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Table 2. Amplification of |Jux(t)|| at ¢ = 5 with even number of gridpoints. Hereaf’tuN(a:,t) =
& YN (Ein2r)un (2,1), un(z,0) = sing)

2N 64 128 256 512

[lun @Il

366 712 1906 5152
llun (O)]

4. Stability resolution and convergence

In the previous sections we analyzed the stability of Fourier method in terms of
two main ingredients: weighted?-stability on the one hand, and high frequencies
instability on the other hand. In this section we show huwoth of these ingredients
contribute to the actual performance of the Fourier method.

We first address the issue i&solution We left Sect. 3 with the impression that the
weak L?-instability is a rather 'rare occurrence’, as it is excited only in the presence
of nonsmooth initial data. But in fact, the mechanism of this weaknstability will
be excited whenever the Fourier method lacks enough resolution.

In this context let us first note that the solution of the underlying hyperbolic problem
may develop large spatial gradients due to the almost impinging characteristics along
the zeroes of the increasing part ¢fr). Consequently, the Fourier method might
not have enough modes to resolve these large gradients as they grow in time. This
tells us that independent whether the initial data are smooth or not, the computed
approximation will then 'see’ the underlying solution as a nonsmooth one, and this
lack of resolution will be recorded by a slower decay of the computed Fourier modes.
The latter will experience the high-frequency instability discussed earlier and this in
turn will lead to the lineat.?-growth. Our prototype example qgfz) = sin() is case

in point: according to Corollary 3.3, one needs here at |8ast ¢ modes in order

to resolve the solution, for otherwise, (3.19) shows that spur{@(S) oscillations

will contaminate the whole computed spectrum.

We conclude that the lack of resolution manifests itself as a wefaikstability.

This phenomenon is demonstrated in Figs. 5-9, describing the Fourier method (2.6)
subject to (the perfectly smooth ...) initial conditiar(z, 0) = sin{). Figure 5 shows

how the Fourier method with fixed number &f = 64 modes propagates information
regarding the steepening of the Fourier solution in physical space, from low modes
to the high ones. And, as this information is being transferred to the high modes,
their O(N) amplification become more noticeable as time progresses in Figs. 5¢c—d.
Consequently, thougtv = 64 modes are sufficient to resolve the exact solution at

t < 2.7, Fig.6¢—d shows that at later time= 3 and in particulat = 5, the under
resolved Fourier solution with 64-modes will be completely dominated by the spurious
centered spike. This loss of resolution requires more modes as time progresses. Figure
7 shows how the Fourier method is able to resolve the exact solutibn a5, once
'sufficiently many’ modes,N > €>° are used, in agreement with Corollary 3.3.
According to Figs.8 and 9V = 512> & modes are required to correctly resolve
the two strong boundary dipoles at= 4, yet att = 8 the Fourier solution will be
completely dominated by the spurious centered spike.

Assuming that the Fourier method contains sufficiently many modes dictated by
the requirement of resolution, we now turn to the second issue of this section concern-
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Fig. 6. a—d. Fourier solution ofu; = (sin(x)u),u(x,0) = sinf). Computed solutionu (-, t), with
N =64 modesaat=10;bt=27;ct=30;dt=50

ing the convergence of the Fourier methadere, a straightforward approach would

be to apply the wealt.?-stability estimate (3.5) to the error equation,

(4.2)
ot €N($, t) = aax (Sin(x)eN(xa t)) + FN(x7 t)a €N(£II, t) = UN(JJ, t) - wNu('/Ea t)>

where Fiy(z, t) denotes the spectrally small truncation error. Thisstyle approach

is limited due to two related reasons:

— For practical purposes one is interested of course in high&rconvergence
estimates. To this end one notes that spatial derivatives of the gfrsmN(x,t),
satisfy the same error equation as in (4.1), modulo the additional low order terms.
However, the weak.?-stability estimate isiot invariant in the presence of such
low order terms;

— Moreover, the ‘low order terms’ mentioned above are in fact not small — they
involve the L?-unbounded commutator )l sin(), 6‘1], and its higher order
variant$. Indeed, this commutator equals up to unitary equivalencBebQ,
and the latter cannot h&?-bounded in view of the weak?-instability stated in
Theorem 3.1. In fact, it was noticed already in [KO1, p.204] that iResize of
this commutator is of ordeD(N).

4 Though this commutator is bounded in thxeightedZ2-nom — a fact that was already used in the
closing remark of Sect. 2.



On the stability of Fourier method 117

100 5
80 1 4l
60 - 3
0 R

8
5

80k 4 4l
-100 5
-1 [¢] 1 2 3 4 5 6 7 -50 -40 -30 -20 -10 0 10 20 30 40 50
(al) physical solution at t=3.5, N=50 (a2) imaginary part of Fourier coeffecients at t=3.5, N=50
25 06
201 B
041 1
151 B
101 B
0.2r 4
5 4
or 1 o 4
5L 4
0.2 4
-10- 4
150 4
04f 4
20k 4
o5 -0.6
-1 0 1 2 3 4 5 6 7 -100 -50 [¢] 50 100
(b1) physical solution at t=3.5, N=100 (b2) Imaginary part of Fourier coeffecients at t=3.5, N=100
25 0.
201 B
04r 4
151 4
10r 1
0.2
5| 4
o B 0
s 4
-0.2
-10k 4
150 4
04} 1
20k 4
.25 -06
-1 0 1 2 3 4 5 6 7 -200 -150 -100 -50 0 50 100 150 200

(c1) physical solution at t=3.5, N=200 (c2) Imaginary part of Fourier coeffecients at t=3.5, N=200

Fig. 7. a—c.Fourier solution ofu; = (sin(x)w)z, wu(x,0) = sinf). Approximate solutionuy (-,t) and
imaginary part of its Fourier coefficientdmd(t) at¢ = 3.5 a with N = 50; b with N = 100; c with
N =200
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What saves the day is theeightedL?-stability of the Fourier method. This brings
us to the following.

Theorem 4.1. (Convergence rate estimatdpt wuy(z,t) denotes theN-degree
Fourier approximation of the corresponding exact solutidt, t). Then the following
error estimate holds

1
(42)  Jun(0) = u,Dllwe < Constsa N> Jut, O)were, Vs+a> .

Remark The requirement from the initial data to have at leHst/?-regularity is
clearly necessary in order to make sense opdmtwiseinterpolant.

Proof. We consider the error equation

(@30) et~ ule )= ) s0@) (1) — e 0]+ FO ),

with the local error,F™V)(z, t), given by

(43) FO )= ) o — Dysinteun(e, 0]
X
Next we invoke two classical a priori estimatesii& -stability estimate on the inho-
mogeneous hyperbolic equation (4.3a) which yields
(4.4)

lun (-, 8) = ul, Ollw- < " {||uN(~,0) —u,O)lw: + sup F“V’(-,T)st} :
and a canonical error estimate for Fourier interpolants, e.g., [Ta4, 1.2.17], stating that
. 1
(4.5) 1N = Dw)llws < CorN*" w(@)lwr,  Vr = max, ).

Now, application of (4.5) ta"()(-, 1) yields
[FMCD)lwe < 1y = DsinCun(, 7)lwen < ConsteaN " lun (-, 7)o,

The weak stability statement in Corollary 3.2 allows us to upper bound the right hand
side of the last inequality in terms of the initial data,

IFMCDlw: < Consty o NYlun (-, 7)|[weve
< Conste N2 [upy (-, )y

Also, application of (4.5) ta:n (-, 0) — u(-,0) = (i — Iu(:,0) yields

1
lun(,0) = u(, O)llw+ < Consty N~ [un(,O)flwee, s+a> .

The inequality (4.4) complemented with the last tow upper-bounds yield the desired
result (4.2). O
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Fig. 8. a—c.Fourier solution ofu; = (sin(x)u),, wu(x,0) = sin). Approximate solutionu (-, t) and
imaginary part of its Fourier coefficientdmd(t) att = 4.0 a with N = 64; b with N = 128; c with
N =512
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Fig. 9. a—c.Fourier solution ofu; = (sin@)u),, w(z,0) = sinf). Approximate solutionz (-, t), and
imaginary part of its Fourier coefficientdmd(t) att = 8.0 a with N = 64; b with N = 128; c with
N =512
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5. Weighted L?-stability revisited

In the previous sections we restricted our discussion on the stability of the Fourier
method to what was claimed to be a prototype case d&simple sinusoidal coeffi-
cientg(zx) = sin(x). In this section we will try to substantiate this claim by extending
our weighted stability analysis to include general coefficieqts), belonging to one
of the several large classes considered below.

As a first step we consider a general sinusoidal coefficient

(5.1), o un(x,t) = aaxz/}N[Sin(px)uN(x, ], p=12,....

ot

Though the technical details become more tedious, the ingredients are identical to
those encountered before in the case 1; moreover, once weighteb-stability is
established this could converted into an algebraic@l(yV)-weak L2-stability along
the lines of our discussion in Sects. 3 and 4.

As before, our starting point is the unitarily equivalent representation of,(£11)
the Fourier space, where

(5.20) () = i)~ @], N <E<N,

is augmented by the aliased boundary values

(5.2b) Ua (k) (1) = (v —k1)(t) = U(v—k+1)(8), E=12,...,p.

Next, we form thep-adic blocks (for simplicity we assume thaf is an integer
multiple of p),

(afkpfp+l(t)
(5.3) Up(t) = : , =N, <k<N,:=
'afkp(t)

The introduction of thesg-adic blocks will not only greatly simplify the algebraic
manipulations, but in retrospect it will be shown to capture the main features in this
p-wave case.

Expressed in term of thegeadic blocks, (5.2a) reads

d - k N
(5.4a) dtUk(t) = 2%[Uk—1(t) — Ur1 ()], —Np <k < Np,
augmented with the boundary conditions (5.2h),
(5.45) U ys)®) = ZT n, (1), Unypa(t) = Z 0w, (0).
Here &, abbreviate the x p diagonal matrix

p—1

Y, ::pIp—k )

and.7Z" denotes the anti-diagongalx p unit matrix
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T =
1

As before, we can decouple this system into its real and imaginary ﬁ’e(tb;, A(t)+
B(t). The real part of the Fourier coefficientd, (t) := ReU(t) = (akp—p+1, - - - » Qkp),
satisfies

d

(5.5a) it

Ai(t) = zg‘k [Ak_l(t) - Ak+1(t)} , —Np <EZLN,,

(5.5b) A_(n,+)(t) = FZA N, (1), An,1(t) = F7 AN, (1)

The imaginary part of the Fourier coefficients, (t) := ImUy(t) = (bkp—p+1, - - -+ bip)s
satisfies the same recurrence relations as before

(656 B = ST [Bial) ~ Beal)], N, <k <N,

the only difference lies in the augmenting boundary conditions
(56b) B_(Np+1)(t) = _v%.B_Np (Zf)7 BN,,+1(t) = —‘%‘BNp (t)

The boundary conditions (5.5b), (5.6b) suggest to introduce the local differences
of the real partp, (t) := .74 A, (t) — Ar+1(t), and the local averages of the imaginary
part, p;(t) = .72 By(t) + Bi+(t). Differencing consecutive terms in (5.5a) while
adding consecutive terms in (5.6a), we find (after taking into account the fac¥that
and.7Z" commute),
(5.7a)

d

k k+1
dtpk @) = Zfﬂp%fl(t) -

2
As before, the motivation for considering this specific change of variables steams

from the side conditions in (5.5b) and (5.6b), which are now translated into zero
boundary values

(5.70) P+ = P, (1) = 0.

Observe that (5.7a), (5.7b) amount to a fixed translatiobladk antisymmetri©DE
systems forp™(t) := (" (1),..., p, _1(t) and p*(t) := (o (1), ..., Pk, (1),
that is, we have

Drptg () £ 12),75;)3@), ~N,<k<N, -1

SO0 = S B TS )
where.”” denotes the block antisymmetric matrix
0 Sy,-1 O
~Sy,-1 0 .0
0 g
: 0 -5 0

=
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0 -5 0
S1 0 0
0 . . _Sprl

0 Sy,1 O

This shows that upon change of variables, our problem is converted into an ODE
governed by a fixed translation of an antisymmetric matrix. This implies that

Corollary 5.1. The eigenvalues of the solution opera&t?! associated with(5.1),,
are of the forme with e € {0,+5}.
Corollary 5.1 extends the result of Tal-Ezer [TE] for the case?2.

Next, since¥” is antisymmetric we conclude the a pridif bound

(5.8) = @) < €12 p=(0)|].

To interpret this in terms of the original real and imaginary variables we shall need
to use theN x N Jordan-like blocks

o £, ... 0
o
Jiow =
: -
0 o 0o

Assume temporarily that the initial conditions have zero average, (2.13), so that
ao(t) = 0. Then 4g and A; are related througy = N.7Z0°A;, where N is the
canonicalp x p "north” nilpotent matrix,N := J, — I . This enables us to invert the
relation between the local differencgs, () and the 'punctured’ vector of their real
predecessorsi(t) := (A_n,(t),..., A_1(t), As(t),..., AN, (1)),

p(t) = T_A(t).
Here the transformation matrik_ is given in terms of/_, J_ 5 and their transpose

r 7 -l T

The last equality together with (5.8) give us the weighted stability of the 'punc-
tured’ real part||A(t)||r: 7 < e‘Pt/2||A(O)HTiT7. A similar treatment applied to the

imaginary part yields| B(t)||¢1, < €/2|B(0)z;r,. Let us state the final result.

Theorem 5.2.Let un(t) = un(-, t) denote the solution of the Fourier method
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30 20 -10 0 10 20 30 40 50 |
@ (b)

Fig. 10. a,b.Fourier Solution ofu; = (sin(pz)u)z, 41 (0) = sin€y). Imaginary part of Fourier coefficients,
uy(t), computed withV = 50 andAt = 0.004 atat=1.0 (p=2);bt=0.5 (p = 3)

(5.9) Ot t)= ) p sinGryun (e ).

ot
Then there exists a constart(t), such that the following weighteH?-stability esti-
mate holds

(5.10) [lun @Oz < COIlun O] -

Here |||un(t)|||z denotes the weighted?-norm
[[un @)]]]a = [ReT () & I ¢)]| 1,

where the weighting matri¥] := H_ & H, > 0 is given in terms of/L 5, J+ and
their transpose

As before, we can now proceed in two complementing directions. On the one
hand, the weighted.?-stability stated in Theorem 5.2 together with the growth of
x(Ty) prove the algebraid.?-stability of the Fourier method. On the other hand, by
repeating our previous arguments for the special gasd we can trace the aliasing
phenomenon as being responsible for the same wgakstability we had before.
Indeed, the usual energymethod shows fifestability of the real part in (5.5a),
(5.5b), but as before it fails for the imaginary part, due to the judicious minus sign
on the right of the aliasing boundary conditions (5.6b). The weak instability of the
imaginary part manifests itself in terms of the modulated waggt) = (—1)* B (t),
which experiences a linear high-frequencies growth due to the augmenfiag-
dependenboundary conditions.

Figure 10 demonstrates this high-frequency instability in two prototype cases of
p = 2 andp = 3. Observe that in both cases, it is the corresponghaglic block
which experiences the unstable binary oscillations, in complete agreement with our
analysis.

Remark It is easy to detect one set of unstable modes, at least fop'sdthdeed, if
we setby(t) = Hmakwpzl (), then (5.2a) gives us

:N+1—p

d pk .
dtbk(t) =5 [br+1(t) — bp—2(®)], —Np <k<N,: » 2
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Fig. 11. a—d.Fourier Solution ofu; = (sin(2r)u);, w(z,0) = sinf). Computed solutiony (-, t), and
imaginary partImdg(t), with even number of ¥ = 128 modesa un(:,t) att = 1.2; b Imdg(t) at
t=12;cun(,t)att =3.0;d Imax(t) att = 3.0

complemented by the unstable aliasing reflection conditions (5&2R),+1)(t) =
—bin, (t).

We are now in a position to extend our stability analysis of the Fourier method
in several directions. Let us briefly indicate few possible generalizations.

1. Even number of gridpointaVe can now treat the Fourier method based on an
evennumber of 2V gridpoints,z, = 'J,» =0,1,...,2N — 1. Let us consider for
example the casp = 2 quoted in Table 3.2,

Dun(e. )= ntsin@un(e. ]

Expressed in terms of its Fourier coefficients, this approximation reads

) = Sl ot) ~ ], N <k <.

Observe that in the even case the corresponding Fourier interpolant is giveadpy
[GO],

5 As usual, we let the first (and second) primes indicate halving the first (and last) terms under summation.
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Fig. 12. a,b. Fourier Solution ofu; = ((sin(z) + ¢>sin(2r))u), att = 1. Imaginary part of Fourier
coefficientsu}, () with N = 100 anda At = 0.002; g2 = 0.2; b At = 0.0025,¢> = 1/1.14159

N
> Ma(t)ete.

k=—N

It contains the correct number of\2waves because — as we have noted earlier in
(3.22), the last mode is necessarily 'silerit}, 5 (t) = 0. This implies that one-part
of the imaginary components, namelyimdz; }o<i<n/2, IS L2-stable. However, the
odd-indexed imaginary componentg(t) := Imay;_1(t), satisfy

d 2k —1 N
(5.11a) dtbk(t) =, [brea(®) — bp—1(®)], 1<k <n:= 5

and augmented with thenstableinflow-dependent boundary conditions
(5.11p) bn+1(t) = —bn(t).

Due to this decoupling, one is led to the safifegrowth of orderO(N), encountered
before in (2.10a)-(2.10b). This even-odd decoupling in the Fourier space reflects the
decoupling between the even and odd gridvalues on the physical side. Similarly, we
can decouple at least one set unstable modes for the Fourier approximation gf (5.1)
Figure 10 demonstrates this weak instability (due to lack of resolution), analogous to
the results with odd number of modes in Figs. 5-9.

2. More simple wave coefficientSo far we considered simple sinusoidal coef-
ficients. We consider the Fourier method based on even numbeN afritipoints,
and assume without loss of generality, thétis an integer multiple of the fixed
wave numberm = m, = 2’9. Then the grid translationy,, — x,+,, implies that
sin(pz,+,) = cospx, ), which in turn converts our stability analysis of the sinusoidal
problem (5.1) into the corresponding cosinusoidal problem,

(5.12), 0 un(x,t) = 88$¢N[C03@x)u]v(z, ], p=lL2....

ot
It should be noted that the real components are no longer stable in this case.

3. Combination of simple wavesVe now consider more general variable coeffi-
cients of the form,
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(c1) Computed solution at t=18.
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Fig. 13. a—c.Fourier solution ofu; +g(z)us = 0, g(z) = 1— 26~ 105" 2™ (2, 0) = sing). Computed
solution, u (-, t), and imaginary partimday(¢), with even number of & = 128 modes aa ¢t = 1.2; b

t=25ct=18
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(5.12)

bun(e0 = ) dxla@u0l o)=Y, sinpe).

The detailed stability analysis in this case becomes more complicated. Unfortunately,
one cannot adopt a straightforward ’'splitting argument’ in this case. Though each
simple p-component ofg(x) is by itself weightedL?-stable, yet each makes use of
different p-dependent weighting matrices. Instead one has to consider the behavior of
an appropriate combination of the variopsdic blocks, along the lines of the proof

of Theorem 5.2.

We shall confine ourselves to show at least one set of unstable modes. As before,
we seek the behavior of an underlying modulated wave associated with the imaginary
part of (5.12). Expressed in terms of(t) = (—1)*Imdy,(t), the imaginary part of
(5.12) reads

(513) o) = 5 S 1Pk 0) — vi O,
p

augmented by the boundary conditions
(513{)) ’L)N+k(t) = vN*k*'l(t); k= 17 27 <o D

Observing that (5.13a) is consistent with

0 0 A
8tv(£’ t) = _quagv(ga t), Cq = Z(_l)pp%) < 00,

p

we conclude that

Corollary 5.3. (Weak L?-instability.) The Fourier method(5.12) is weakly unstable
if either > (=1)’pg, < Oor 3 pg, <O.

In the first case, the imaginary components are governed by the ungtéble-
dependenboundary conditions (5.13b); in the second case, the instability shows in
the corresponding real part. Note thEp(il)Ppc}p < 0 means that(z) decreases
monotonically through a simple zero at either 7 or x = 0.

Figure 12 shows the unstable behavior with a combination of two sinusoidal
waves. Observe that two types of unstable modes are superimposed one on top of the
other. The detailed information of this superposition is encoded in the corresponding
initial-boundary value problem (5.13a), (5.13b), which in this case involves a 5-point
stencil. Figure 13 demonstrates the increased complexity of this weakly unstable
behavior with more general coefficients.
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