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Summary. It has been a long open question whether the pseudospectral Fourier
method without smoothing is stable for hyperbolic equations with variable coefficients
that change signs. In this work we answer this question with a detailed stability
analysis of prototype cases of the Fourier method. We show that due to weightedL2-
stability, theN -degree Fourier solution isalgebraically stablein the sense that itsL2

amplification does not exceedO(N ). Yet, the Fourier method isweaklyL2-unstable
in the sense that it does experience suchO(N ) amplification. The exact mechanism
of this weak instability is due the aliasing phenomenon, which is responsible for an
O(N ) amplification of the Fourier modes at the boundaries of the computed spectrum.

Two practical conclusions emerge from our discussion. First, the Fourier method
is required to have sufficiently many modes in order to resolve the underlying phe-
nomenon. Otherwise, the lack ofresolution will excite the weak instability which
will propagate from the slowly decaying high modes to the lower ones. Second –
independent of whether smoothing was used or not, the small scale information con-
tained in the highest modes of the Fourier solution will be destroyed by theirO(N )
amplification. Happily, with enough resolution nothing worse can happen.

Mathematics Subject Classification (1991):65M12

1. Introduction

In this paper we address a long open question regarding the stability of the pseu-
dospectral Fourier method for linear hyperbolic problems with variable coefficients,

∂

∂t
u(x, t) =

∂

∂x
(q(x)u(x, t)), t ≥ 0, x ∈ T [0, 2π).

The answer of this stability question is known to be affirmative for one-signedq(x)’s:
the solution operator in this case is similar to a unitary one, which in turn implies
the weightedL2-stability of the Fourier method. Our main thrust is therefore geared
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towards the more intriguing cases withq(x)’s which may change sign. Of course, the
canonical stability question in this context is posed within theL2-setup. For partial
list of references on this subject we refer to the pioneering papers of Kreiss and Oliger
[KO1] and Orszag [Or1],[Or2], the early results of Fornberg [Fo], the short reviews
of e.g., Gottlieb and Turkel [GTu] and Tadmor [Ta4], and to the comprehensive texts
of Gottlieb and Orszag [GO], Canuto et. al. [CHQZ], Boyd [B] and Funaro [Fu].

We provide sharp estimates for theL2-growth of the Fourier approximation. It is
shown that theN -degree Fourier approximation may be amplified – relative to its
initial L2-size att = 0, by at most a factor of orderO(N ). In short, this says that
the Fourier method isweaklyL2-unstable, though this statement does not ’faithfully’
explain the behavior of the Fourier method. Indeed, such dissipation-free weak insta-
bilities are expected to turn into the easily detectableexponentialinstabilities in the
presence of low-order terms, etc. [RM, Sect. 5.2]. The Fourier method, however, does
not experience such exponential behavior, which partly explains why this stability
question remained inconclusive in the past. We provide a rather complete descrip-
tion of the behavior of the Fourier method, which explains among other things how
the Fourier method maintains itsalgebraicL2-stability in the presence of low-order
perturbations, etc. Let us briefly review our main results.

That theL2-amplification is not larger thanO(N ) is a consequence of theweighted
L2-stability of the Fourier method stated in Sect. 2. This weightedL2-stability is due
to the fact that as in the one-signed case, the solution operator of the Fourier method is
similar to a unitary one. However, the similarity transformation in this case involves
the ill-conditionedN ×N Jordan blocks; as the condition number of the latter may
grow linearly withN , we conclude, in Sect. 3, that there is anO(N ) upper-bound on
theL2-growth. That the amplification is not smaller thanO(N ) in certain cases is a
consequence of the aliasing phenomena. In Sect. 3 we show that the aliasing relations
are responsible for theO(N ) reflection of the Fourier modes at the boundaries of the
computed spectrum. As long as the computed solution remains sufficiently smooth,
thisO(N ) amplification applies to the relatively small Fourier modes at the end of the
spectrum, and therefore will not affect theL2-size of the overall computed solution.
Yet, for nonsmooth data ( – our specific example consists ofL2 delta-like initial
dipole), this mechanism of high-frequency amplification will yield anL2-growth of
orderO(N ).

The two ingredients of weightedL2-stability and linear high-frequency ampli-
fication are utilized in Sect. 4 to shed further light on the behavior of the Fourier
method. We first note that the changing sign(s) ofq(x) are responsible for the de-
velopment of sharp (spatial) gradients in the underlying solution. Consequently, if
the Fourier method does not contain enough modes to resolve these sharp gradients,
then this will lead to the linear amplification of the rather slowly decaying high-
frequency amplitudes. We conclude that independent of whether the initial conditions
are smooth or not, the lack of resolution in later time will manifest itself as a weak
L2-instability propagating from high to lower modes. We also show that whether the
weakL2-instability is ’genuine’ or is just due to lack of resolution, theweightedL2-
stability guarantee that nothing worse than theO(N ) amplification will be excited. In
particular, one concludes with the usual spectral convergence rate estimates.

We have made a serious effort to simplify the presentation of this material which
otherwise involves tedious algebraic manipulations. For this reason the paper is or-
ganized as follows. In the first three sections, Sects. 2–4, we prefer to concentrate
on (what is later justified to be) the prototype case of a simple 1-wave coefficient,
q(x) = sin(x). The highlights of these sections include the following.
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– Section 2 is devoted to the weightedL2-stability of the Fourier method. The main
result of this section, stated in Theorem 2.1, asserts that there exists a positive
definite H-weighted norm,‖ · ‖H , such that the Fourier approximation of the
1-wave equation,uN (·, t), satisfies,

‖uN (·, t)‖H ≤ C(t)‖uN (·, 0)‖H .
– Section 3 deals with the algebraically weakL2-instability of the Fourier method.

The main result of this section, stated in Theorem 3.1, asserts that

C1(t)N ≤ sup
uN (0)6=0

‖uN (t)‖
‖uN (0)‖ ≤ C2(t)N.

– Section 4 concludes with the convergence rate estimate stated in Theorem 4.1:

‖uN (·, t)− u(·, t)‖W s ≤ Consts,αN
2−α‖u(·, 0)‖W s+α , ∀s + α >

1
2
.

In Sect. 5 we turn to show that the basic ingredients introduced in Sects. 2–4 carry
over to more general situations. In particular, Theorem 5.2 extends the basic weighted
L2-stability result to arbitrary sinusoidal wave coefficients,q(x) = sin(px), p ≥ 1.
We also treat the Fourier approximation for combination of simple sinusoidal and
cosinusoidal wave coefficients, based on both odd and even number of gridpoints.
Numerical experiments are found to be in complete agreement with the details of our
analysis.

Epilogue. The moral of our stability analysis is two-fold:

1. The Fourier approximation is required to have sufficiently many modes (or to use
sufficiently refined grids) which will enable toresolvethe underlying phenomena;
otherwise, the lack of resolution will excite a weak high-frequencies instability.

2. There are various high-frequencies smoothing procedures which are known to
enforce the stability of the Fourier method. Yet, the stability achieved in this
manner is at the expense of destroying the small scale information contained in the
corresponding high-frequencies. Our analysis shows that the plain, smoothing-free
Fourier method suffers the same deficiency. Namely, the small scale information
contained in the high-frequencies of the Fourier method (with or without enough
resolution) is destroyed due to theO(N ) amplification of the latter. Happily,
nothing worse can happen.

2. WeightedL2-Stability

We begin our discussion with the Fourier method based on an odd number1 of 2N +1
equally spaced grid points,xν := ν 2π

2N+1, ν = 0, 1, . . . , 2N . We letψNw(x) denote
theN -degree trigonometric interpolant ofw(x) at these equally spaced grid points

(2.1a) ψNw(x) =
N∑

k=−N
ŵkeikx, ŵk :=

1
2N + 1

2N∑
ν=0

w(xν)e−ikxν .

1 The reason for this odd choice is explained in Remark 2 on page 113. We get even in Sect. 5.
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Observe that the discrete Fourier coefficients ˆwk are well-defined∀k ∈ Z with period
2N + 1, i.e.,

(2.1b) ŵk = ŵ[k] , [k] ≡ k mod[2N + 1], ∀k ∈ Z.

This reflects thealiasing phenomenon, where different waves in the discrete Fourier
expansion are tagged by the same wave number modulo 2N + 1.

We want to solve by Fourier method the scalar, 2π-periodic hyperbolic equation

(2.2)
∂

∂t
u(x, t) =

∂

∂x
(q(x)u(x, t)), t ≥ 0, x ∈ T [0, 2π).

To this end we approximate the interpolant of the exact solution,ψNu(·, t), using
anN -trigonometric polynomial,uN (x, t) =

∑N
k=−N ûk(t)eikx, which is governed by

the semi-discrete Fourier approximation

(2.3)
∂

∂t
uN (x, t) =

∂

∂x
ψN [q(x)uN (x, t)] .

This Fourier approximation could be realized in the physical space by the (2N + 1)-
vector of its grid values,u(t) = (u(x0, t), . . . , u(x2N , t)), which is governed by the
system of ODE’s

(2.4)
d

dt
u(t) = DQu(t).

Here,D denotes the (2N + 1)× (2N + 1) Fourier differentiation matrix,

Djk =
(−1)j−k

2 sin
(
xj−xk

2

) (1− δjk),

andQ is a diagonal matrix representing multiplication byq(x), Qjk = δjkq(xk).
Together with one’s favorite ODE solver2, this system give rise to a fully discrete,
consistent (— in fact, spectrally accurate) approximation of (2.2), and we now raise
the stability question of the underlying semi-discrete Fourier approximation.

The stability question has a rather simple affirmative answer in caseq(x) is one-
signed, say positive, so thatQ > 0. Indeed, since in this caseDQ is similar to the
antisymmetric matrixS = Q

1
2DQ

1
2 , it implies that the solution operator is similar

to a unitary one, eDQt = Q−
1
2U (t)Q

1
2 with U (t) = eS t, and weightedL2-stability

follows,

(2.5) ‖uN (t)‖H = ‖uN (0)‖H , H = Q > 0.

Observe that ifq(x) is bounded away from zero thenH has a uniformly bounded
condition number,Const = maxq(x)

minq(x) < ∞, and hence the weightedL2-stability in

(2.5) could be translated into the usualL2-stability,

‖uN (t)‖ ≤ Const · ‖uN (0)‖.
We now turn to consider the more intriguing case whereq(x) may change sign.

In this section we take a rather detailed look at the prototype case ofq(x) = sin(x):

2 The numerical experiments reported below employ the standard 4th order Runge-Kutta ODE solver.
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(2.6)
∂

∂t
uN (x, t) =

∂

∂x
ψN [sin(x)uN (x, t)] .

We shall show that as in the one-signed case, the solution operator associated with
(2.6) is also similar to a unitary matrix – consult (2.20) below for the precise statement.
This in turn leads to the announced weightedL2-stability. It should be noted, however,
that the similarity transformation in this case involves the ill-conditionedN×N Jordan
blocks; as the condition number of the latter may grow linearly withN , this in turn
implies theweakL2-instability discussed in Sect. 3.

We begin by noting that the Fourier approximation (2.6) admits a rather simple
representation in the Fourier space, using the (2N+1)-vector of its Fourier coefficients,
û(t) := (û−N (t), . . . , ûN (t)). With the periodic extension of ˆuk(t) ∀k ∈ Z in mind –
consult (2.1b), we are able to express the interpolant of sin(x)uN (x, t) as

ψN [sin(x)uN (x, t)] =
N∑

k=−N

1
2i

[ûk−1(t)− ûk+1(t)]eikx,

so that the Fourier approximation (2.6) then reads

(2.7a)
d

dt
ûk(t) =

k

2
[ûk−1(t)− ûk+1(t)], −N ≤ k ≤ N,

augmented by the aliasing boundary conditions (2.1b)

(2.7b) û−(N+1)(t) = ûN (t) ≡ û−N (t), ûN+1(t) = û−N (t) ≡ ûN (t).

Thus, in the Fourier space, our approximation is converted into the system of ODE’s

(2.8)
d

dt
û(t) = ΛQ̂û(t), Λjk = kδjk, Q̂ =

1
2


0 −1 0 . . . −1
1 0 −1 0

0 1
...

...
...

...
... 0 −1

−1 0 . . . 1 0

 .

Remark.We note in passing that the two representations of the Fourier approximation
– the ODE system (2.4) in the real space (withq(xk) = sin(xk)) and the ODE system
(2.8) in Fourier space, are unitarily equivalent: indeed,ΛQ̂ = F ∗DQF with F
being the unitary Fourier matrix,

Fjk := (2N + 1)−
1
2 eijk∆x, −N ≤ j, k ≤ N.

We shall study the stability of (2.6) in terms of its unitarily equivalent Fourier
representation in (2.8), which is decoupled into its real and imaginary parts, ˆu(t) =
a(t)+ib(t). According to (2.7a)-(2.7b), the real part of the Fourier coefficients,ak(t) :=
Reûk(t), satisfies

(2.9a)
d

dt
ak(t) =

k

2

[
ak−1(t)− ak+1(t)

]
, −N ≤ k ≤ N,

augmented with the boundary conditions

(2.9b) a−(N+1)(t) = a−N (t), aN+1(t) = aN (t).
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The imaginary part of the Fourier coefficients,bk(t) := Imûk(t), satisfy the same
recurrence relations as before

(2.10a)
d

dt
bk(t) =

k

2

[
bk−1(t)− bk+1(t)

]
, −N ≤ k ≤ N,

the only difference lies in the augmenting boundary conditions which now read

(2.10b) b−(N+1)(t) = −b−N (t), bN+1(t) = −bN (t).

The weighted stability of the ODE systems (2.9) and (2.10) is revealed upon
change of variables. For the real part in (2.9) we introduce the local differences,

ρ−k (t) := ak(t)− ak+1(t);

for the imaginary part in (2.10) we consider the local averages,

ρ+
k(t) := bk(t) + bk+1(t).

Differencing consecutive terms in (2.9a) while adding consecutive terms in (2.10a)
we find

(2.11a)
d

dt
ρ±k (t) =

k

2
ρ±k−1(t)− k + 1

2
ρ±k+1(t)± 1

2
ρ±k (t), −N ≤ k ≤ N − 1.

The motivation for considering this specific change of variables steams from the side
conditions in (2.9b) and (2.10b), which are now translated into zero boundary values

(2.11b) ρ±−(N+1)(t) = ρ±N (t) = 0.

Observe that (2.11a), (2.11b) amount to a fixed translation ofantisymmetricODE
systems forρ−(t) := (ρ−−N (t), . . . , ρ−N−1(t)) andρ+(t) := (ρ+

−N (t), . . . , ρ+
N−1(t)), that

is, we have

(2.12)
d

dt
ρ±(t) =

1
2

(±I + S )ρ±(t),

whereS denotes the antisymmetric matrix

S =


0 N−1 0 . . .

1−N 0
... 0

0
...

... 1
... 0 −1 0

⊕


0 −1 0 . . .

1 0
... 0

0
...

... 1−N
... 0 N−1 0

 .

The solution of these systems is expressed in terms of theunitary matrixU (t) = e
1
2 S t,

(2.13)± ρ±(t) = e±t/2U (t)ρ±(0), U∗(t)U (t) = I2N .

The explicit solution given in (2.13) shows that our problem – when expressed in
terms of the new variablesρ±(t), is clearlyL2-stable,

‖ρ±(t)‖ = e±t/2‖ρ±(0)‖.
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Remark.We note that thisL2-type argument carries over for higher derivatives, that
is, theWα-norms ofρ±(t) remain bounded,

(2.14) ‖ρ‖Wα := ‖Λαρ‖ =

(∑
k

|k|2α|ρk|2
) 1

2

, Λjk = kδjk.

Indeed, multiplication of (2.12) on the left by|Λ|α yields

d

dt
|Λ|αρ±(t) =

1
2

(±I + S (α))|Λ|αρ±(t).

The matricesS (α) = |Λ|αS |Λ|−α are not antisymmetric (except for theα = 0 case
treated before),

S (α)
k,j =

{ |k|αk/|k − 1|α j = k − 1 6= 0
−|k|α(k + 1)/|k + 1|α−1 j = k + 1 6= 0;

Nevertheless, theS (α)’s are not far from being antisymmetric since their real part is
bounded,

S (α) + S (α)t ≤ 2CαI, Cα ∼ α.

This implies that

(2.15)± |Λ|αρ±(t) = e±t/2eS (α)t/2|Λ|αρ±(0), ‖eS (α)t/2‖ ≤ eCαt/2,

and the assertedWα-stability then follows

(2.16) ‖ρ±(t)‖Wα ≤ e(Cα±1)t/2‖ρ±(0)‖Wα , ‖ρ‖Wα = ‖Λαρ‖.
We want to interpret theseL2-type stability statements for theρ±-variables in

term of the original variables – the real and imaginary parts of the system (2.8). This
will be achieved in term of simple linear transformations involving theN×N Jordan
blocks

J± =


1 ±1 . . . 0

0 1
...

...
...

... ±1
0 . . . 0 1

 .
To this end, let us assume temporarily that the initial conditions have zero average,

i.e., that

(2.17) a0(0)≡ 1
2N + 1

∑
ν

u(xν , 0) = 0.

According to (2.9a),a0(t) remains zero∀t, and so will be temporarily ignored. Then,
if we let

ã(t) := (a−N (t), . . . , a−1(t), a1(t), . . . , aN (t))

denote the ’punctured’ 2N -vector of real part associated with (2.8), it is related to
the 2N -vector of local differences,ρ−(t), through

ρ−(t) = T−ã(t), T− := J− 	 J t−.
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This enables us to rewrite the solution given in (2.13)− as

(2.18) T−ã(t) = e−t/2U (t)T−ã(0).

Similarly, sinceb0(t) ≡ Im 1
2N+1

∑
ν u(xν , t) = 0 in the real case, it will be temporarily

ignored. Then, the ’punctured’ 2N -vector of imaginary part associated with (2.8),

b̃(t) := (b−N (t), . . . , b−1(t), b1(t), . . . , bN−1(t)),

is related to the 2N -vector of local averages,ρ+(t), through

ρ+(t) = T+b̃(t), T+ := J+ ⊕ J t+,

which enables us to rewrite the solution given in (2.13)+ as

(2.19) T+b̃(t) = et/2U (t)T+b̃(0).

The equalities (2.18) and (2.19) confirm our assertion in the beginning of this
section, namely,

Assertion. The solution operator associated with the Fourier approximation, (2.6),
(2.17), is similar to the unitary matrix̃U (t) := U (t)⊕ U (t), in the sense that
(2.20)

ũ(t) = T−1Ũ (t)T ũ(0), ũ(t) := et/2ã(t)⊕ e−t/2b̃(t), T := T− ⊕ T+.

We are now in a position to translate this similarity into an appropriateweighted
L2-stability. On the left of (2.18) we have a weightedL2-norm of ã(t), ‖T−ã(t)‖ ≡
‖ã(t)‖T t−T− . Also, U (t) being a unitary matrix has anL2-norm = 1, hence the right

hand side of (2.18) does not exceed, e−t/2‖T−ã(0)‖ ≡ e−t/2‖ã(0)‖T t−T− , and there-
fore ã(t) = Re(û−N (t), . . . , û−1, û1(t), . . . , ûN (t)) satisfies

‖ã(t)‖T t−T− ≤ e−t/2‖ã(0)‖T t−T− , T t−T− = J t−J− ⊕ J−J t−.

Expanding the last inequality by augmenting it with the zero value ofa0(t) we find
the weightedL2-stability of the real part

(2.21a) ‖a(t)‖H− ≤ e−t/2‖a(0)‖H− , H− = J t−J− ⊕ 1⊕ J−J t−.

Similarly, (2.19) gives us the weighted stability of the imaginary part

(2.21b) ‖b(t)‖H+ ≤ et/2‖b(0)‖H+ , H+ = J t+J+ ⊕ 1⊕ J+J
t
+.

Summarizing (2.21a) and (2.21b) we have shown

Theorem 2.1.Consider the Fourier method (2.6) subject to initial conditions with zero
mean, (2.17). Then the following weightedL2-stability estimate holds

(2.22) |||uN (t)|||H ≤ et/2|||uN (0)|||H .
Here |||uN (t)|||H denotes the weightedL2-norm

(2.23) |||uN (t)|||H := ‖Reû(t)⊕ Imû(t)‖H ,
where the weighting matrixH := H− ⊕H+ > 0 is given by
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H± := J t±J± ⊕ 1⊕ J±J t±

=



1 ±1
±1 2 ±1

...
...

...
...

... ±1
±1 2

1
2 ±1
±1 2 ±1

...
...

...
...

... ±1
±1 1



.

We close this section with three extensions of the last weighted stability result.
We first note that the requirement of initial data with zero mean in Theorem 2.1 is
not a restriction. Indeed, Duhammel’s principle gives us

Corollary 2.2. (Inhomogeneous terms.)Let uN (t) ≡ uN (·, t) denote the solution of
the inhomogeneous Fourier method

(2.24)
∂

∂t
uN (x, t) =

∂

∂x
ψN [sin(x)uN (x, t)] + FN (x, t).

Then there exists a constant, C(t), such that the following weightedL2-stability esti-
mate holds

(2.25) |||uN (t)|||H ≤ C(t)

[
|||uN (0)|||H + max

0≤τ≤t
|||FN (τ )|||H

]
.

The proof proceeds in three steps.

1. Consider first the case where both the initial and inhomogeneous data have zero
mean, ˆu0(0) = 0, F̂0(t) = 0, ∀t. In this case Theorem 2.1 applies and Duhammel‘s
principle shows that (2.25) holds with, say, C(t) = 2et/2.

2. Next we consider the case withFN ≡ 0, and arbitrary initial datauN (·, 0). In this
case,wN (·, t) := uN (·, t)− û0(0) satisfies the inhomogeneous Fourier approxima-
tion (2.24) withFN (x, t) = û0(t = 0) cos(x). Hence step 1. applies towN (·, t),
which in turn implies (2.25) for the general homogeneous problem.

3. Finally, we apply Duhammel’s principle once more to conclude with (2.25) in the
general inhomogeneous case.ut
Our second corollary shows that the weightedL2-stability of the Fourier method

is invariant under low order perturbations.

Corollary 2.3. (Low order terms.)Let uN (t) ≡ uN (·, t) denotes the solution of the
Fourier method

(2.26)
∂

∂t
uN (x, t) =

∂

∂x
ψN [sin(x)uN (x, t)] +ψN [p(x)uN (x, t)] , pεL∞[0, 2π).

Then there exists a constant, C(t), such that the following weightedL2-stability esti-
mate holds
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(2.27) |||uN (t)|||H ≤ C(t)|||uN (0)|||H .
For the proof we appeal to the representation of (2.26) in Fourier space, consult (2.8),

d

dt
û(t) =

[
ΛQ̂ + P̂

]
û(t), P̂ := F ∗

 p(x0)
...

p(x2N )

F .

Here P̂ is the circulant matrix whose entries,P̂jk =
∑

` p̂j−k+`(2N+1), |j|, |k| ≤ N,
represent multiplication byp(x) as a convolution in the Fourier space. Corollary 2.2
tells us that

‖eΛQ̂t‖H ≤ C(t),

and hence by Kreiss-Strang perturbation Theorem, [RM, Sect. 3.9], we conclude that

‖e
[
ΛQ̂+P̂

]
t‖H is bounded in terms of‖P̂‖H . The latter involves theH±-weighted

norms of the real and imaginary parts ofP̂ . The following upper bound of the real
part, ĉk−j =

∑
` Rep̂j−k+`(2N+1) demonstrates the general case.

Let w = a + ib denote an arbitrary 2N + 1-vector satisfying the aliasing relations
(2.1b). Then we have

‖ReP̂ a‖2
H−

‖a‖2
H−

=

∑N−1
k=−N |

∑N
j=−N [ĉk+1−j − ĉk−j ]aj |2∑N−1

k=−N |ak+1− ak|2
.

The last quantity equals∑N
k=−N |

∑N−1
j=−N ĉk−j∆aj |2∑N

k=−N |∆ak|2
, ∆ak :=

{
ak+1− ak, k ≤ N − 1

0, k = N,

and by Parseval identity it does not exceed∑N
k=−N |p(xk)∆ǎk|2∑N

k=−N |∆ǎk|2
≤ ‖p(·)‖2

L∞ , ∆ǎ := F ∆a.

A similar treatment applies to the other terms.
For an alternative proof one can argue along the lines of Theorem 2.1: though the

averaged quantities,ρ± will be now decoupled through the low orderp-dependent
terms, weighted stability follows as before due to the antisymmetry of the leading
term in (2.11a)-(2.11b). ut.

In our third corollary we note that the last two weightedL2-stability results ap-
ply equally well to higher order derivatives, which brings us to conclude with the
following

Corollary 2.4. (WeightedWα-Stability.) Let uN (t) ≡ uN (·, t) denote the solution of
the Fourier method

(2.28)
∂

∂t
uN (x, t) =

∂

∂x
ψN [sin(x)uN (x, t)] .

Then there exist positive definite matrices, H (α)
± , and a constantCα, such that the

following weightedWα-stability estimate holds
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(2.29) |||uN (t)|||Wα
H
≤ Cα(t)|||uN (0)|||Wα

H

Here |||uN (t)|||Wα
H

denotes the weightedWα-norm

(2.30) |||uN (t)|||2Wα
H

:= ‖ΛαReû(t)‖2
H (α)
−

+ ‖ΛαImû(t)‖2
H (α)

+
.

Proof. Let Λ̃ denote the 2N×2N ’punctured’Λmatrix. If we setT (α)
± := |Λ̃|αT±|Λ̃|−α,

then we can rewrite (2.15)− as

T (α)
− |Λ̃|αã(t) = e−t/2eS (α)t/2T (α)

− |Λ̃|αã(0),

and a similar relation holds for̃b(t) in view of (2.15)+. The essential point is that
eS (α)t/2 is bounded and hence

‖Λ̃αã(t)‖H (α)
−
≤ e(Cα−1)t/2‖Λ̃αã(0)‖H (α)

−
, H (α)

− = T (α)t
− T (α)

− .

We conclude by noting that̃Λαã(t) ≡ Λαa(t) (sinceα > 0), and (2.29) follows with
H = H (α)

− ⊕H (α)
+ . ut

The last results enable to put forward a complete weightedL2-stability theory.
The following assertion contains the typical ingredients.

Assertion. The Fourier method

(2.31)
∂

∂t
uN (x, t) = ψN [sin(x)

∂

∂x
uN (x, t)],

satisfies the following weightedWα-stability estimate

(2.32) ‖uN (·, t)‖Wα
H
≤ Cα(t)‖uN (·, 0)‖Wα

H
.

Remark.The last assertion confirms the weighted stability of the Fourier method in
its non-conservative transport form.

Sketch of the Proof. We rewrite (2.31) in the ’conservative form’

∂

∂t
uN (x, t) =

∂

∂x
ψN [sin(x)uN (x, t)] +

[
ψN sin(x),

∂

∂x

]
uN (x, t),

where [ψN sin(x), ∂
∂x ] := ψN (sin(x) ∂

∂x ·)− ∂
∂x (ψN sin(x)·) denotes the usual commu-

tator between interpolation and differentiation. The weightedL2-stability stated in
Theorem 2.1 tells us that this commutator is bounded in the corresponding weighted
operator norm. Therefore, we may treat the right hand side of (2.31) as a low order
term and weightedL2-stability (α = 0) follows in view of Corollary 2.3. The case of
generalα > 0 follows with the help of Corollary 2.4. ut.
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Table 1. Amplification of ‖uN (t)‖ at t = 10, subject to initial data ˆuk(0) = i sin(kπ/N )

2N + 1 65 129 257 513 1205

‖uN (t)‖
‖uN (0)‖ 570 2003 5535 15028 39798

3. Algebraic stability and weakL2-instability

In this section we turn our attention to the behavior of the Fourier method (2.6)
in terms of theL2-norm. Table 1 suggests that when measured with respect to the
standard (weight-free)L2-norm, the Fourier approximation may grow linearly with
the number of gridpointsN .

The main result of this section asserts that this is indeed the case.

Theorem 3.1.There exist constants,C1(t) and C2(t), such that the following estimate
holds

(3.1) C1(t)N ≤ ‖eDQt‖ ≤ C2(t)N.

The right hand side of (3.1) tells us that the Fourier method may amplify theL2-
size of its initial data by an amplification factor≤ O(N ) – that is , the Fourier method
is algebraically stable. The left hand side of (3.1) asserts that this estimate is sharp
in the sense that there exist initial data for which thisO(N ) amplification is attained
– that is, the Fourier method isweaklyL2- unstable. We note that this estimate does
not contradict the weightedL2-stability discussed in Sect. 2; in fact, as we shall see
below, the weightedL2-stability reveals the mechanism for this algebraically weak
L2-instability.

We turn to theproof of the algebraic stability. Let uN (t) denote the solution of
the Fourier method (2.6) subject to arbitrary initial data,uN (0). We claim that we
can bound the ratio‖uN (t)‖/‖uN (0)‖ in terms of thecondition number, κ(H), of the
weighting matrixH, κ(H) := ‖H‖ · ‖H−1‖. Indeed

(3.2)

‖uN (t)‖ = ‖Reû(t)⊕ Imû(t)‖ ≤√‖H−1‖ · |||uN (t)|||H

≤ C(t)
√‖H−1‖ · |||uN (0)|||H

≤ C(t)
√‖H‖ · ‖H−1‖ · ‖Reû(0)⊕ Imû(0)‖

= C(t)
√
κ(H) · ‖uN (0)‖.

Here, the first and last equalities are Parseval’s identities; the second and forth in-
equalities are straightforward by the definition of a weighted norm; and the third is a
manifestation of the weightedL2-stability stated in Corollary 2.2.

The estimate (3.2) requires to upper-bound the condition number of the weighting
matrix H. We recall that the weighting matrixH is the direct sum of the matrices
H± given in (2.21a)-(2.21b), whoseL2-norms equal the squaredL2-norms of the
corresponding Jordan blocks,‖H±‖ ≡ ‖J±‖2, ‖H−1

± ‖ ≡ ‖J−1
± ‖2. Inserting this

into (3.2) we arrive at
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(3.3) ‖eDQt‖ := sup
uN (0)6=0

‖uN (t)‖
‖uN (0)‖ ≤ C(t)κ(J), J := J− ⊕ J+.

Thus it remains to upper bound the condition number of the Jordan blocks,J±. For
the sake of completeness we include a brief calculation of the latter. The inverse of
J± are upper-triangular Toeplitz matrices,

(3.4a)
(
J−1
±
)
jk

=

{
(∓1)j−k k ≥ j,
0 k < j,

for which we have,

(3.4b) ‖J−1
± w‖2 =

N∑
j=−N

|
∑
k≥j

(∓1)j−kwk|2 ≤
N∑

j=−N

∑
k

|wk|2
∑
k≥j

1∼ 2N2‖w‖2.

This means that‖J−1
± ‖ ≤ √2N , and together with the straightforward upper-bound,

‖J±‖ ≤ 2, the right hand side of the inequality (3.1) now follows with C2(t) =
2
√

2C(t). ut
The aboveO(N )-algebraic stability is essentially due to theO(N ) upper-bound

on the size of the inverses of Jordan blocks stated in (3.4b). Can this upper-bound
be improved? an affirmative answer to this question depends on the regularity of the
data, as shown by the estimate

‖J−1
± w‖2 =

N∑
j=−N

|
∑
k≥j

(∓1)j−kwk|2 ≤
N∑

j=−N

∑
k

|k|2α|wk|2
∑
k≥j

|k|−2α,

which yields anO(N (1−α)+ ) bound forWα-data,

‖J−1
± w‖ ≤ CN,αN

(1−α)+‖w‖Wα , ‖w‖Wα :=

(∑
k

|k|2α|wk|2
)1/2

.

Noting that the rest of the arguments in the proof of algebraic stability are invariant
with respect to theWα-norm – in particular, the weightedWα-stability stated in
Corollary 2.4, we conclude the following extension of the right inequality in (3.1).

Corollary 3.2. (WeakWα-stability estimate.)There exist constantsCs,α, s, α ≥ 0,
such that the following estimate holds

(3.5) ‖uN (·, t)‖W s ≤ CN,s,αN
(1−α)+‖uN (·, 0)‖W s+α .

HereCN,s,α =

{
Const · √logN α = 1

2, 1,≤ Cs,α otherwise.

Corollary 3.2 tells us how the smoothness of the initial data is related to the possible
algebraic growth; actually, forWα-initial data withα > 1, there is noL2-growth.
However, for arbitraryL2 data (s = α = 0) we remain with theO(N ) upper bound
(3.4b), and this bound is indeed sharp for, say,wk ∼ (−1)k. (In fact, the latter is
reminiscent of the unstable oscillatory boundary wave we shall meet later in (3.20)).
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These considerations lead us to the question whether thelinear L2-growth upper-
bound offered by the right hand side of (3.1) is sharp. To answer this question we
return to take a closer look at the real and imaginary parts of our system (2.7).
We recall that according to (2.9a) the real part,ak(t) = Reûk(t), satisfies,

d

dt
ak(t) =

k

2

[
ak−1(t)− ak+1(t)

]
, −N ≤ k ≤ N.

Summing by parts againstak(t) we find

1
2
d

dt

N∑
k=−N

a2
k(t) =

1
2

N∑
k=−N+1

ak(t)ak−1(t)− N

2
[a−(N+1)(t)a−N (t) + aN+1(t)aN (t)].

The boundary conditions (2.9b),a−(N+1)(t) − a−N (t) = aN+1(t) − aN (t) = 0, imply
that the second term on the right is positive; using Cauchy-Schwartz to upper bound
the first term yieldsddt‖a(t)‖2 ≤ ‖a(t)‖2, which in turn implies that the real part of
the system (2.7) isL2-stable

‖a(t)‖ ≤ et/2‖a(0)‖, a(t) = Reû(t).

In contrast to theL2-bounded real part, it will be shown below that the imaginary
part of our system experiences anL2 linear growth, which is responsible for the
algebraically weakL2-instability of the Fourier method.

The imaginary part of our system,b(t) = Imûk(t), satisfies the same recurrence
relations as before

(3.6a)
d

dt
bk(t) =

k

2

[
bk−1(t)− bk+1(t)

]
, −N ≤ k ≤ N,

the only difference lies in the augmenting boundary conditions which now read

(3.6b) b−(N+1)(t) = −b−N (t), bN+1(t) = −bN (t) = 0.

Trying to repeat our argument in the real case, we sum by parts againstbk(t),
(3.7)

1
2
d

dt

N∑
k=−N

b2
k(t) =

1
2

N∑
k=−N+1

bk(t)bk−1(t)− N

2
[b−(N+1)(t)b−N (t) + bN+1(t)bN (t)],

but unlike the previous case, the judicious minus sign in the augmenting boundary
conditions (3.6b) leads to thelower bound

(3.8)
d

dt
‖b(t)‖2 ≥ −‖b(t)‖2 +N [b2

−N (t) + b2
N (t)].

This lower bound indicates (but does not prove!) the possibleL2-growth of the imag-
inary part. Figure 1 confirms that unlike theL2-bounded real part, the behavior of
the imaginary part is indeed markedly different – it consists of binary oscillations
which form a growing modulated wave as|k| ↑ N . Thesebinary oscillations suggest
to considervk(t) := (−1)kbk(t), in order to gain a better insight into the growth of the
underlying modulated wave. Observe that (3.6a)-(3.6b) then recasts into the centered
difference scheme
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Fig. 1. a–d.Fourier solution ofut = (sin(x)u)x, ûk(0) = ξ2
k(π− ξk)3/20, ξk = kπ∆ξ. Imaginary part of

Fourier coefficients,Imûk(t), computed with∆t = 1
5N at a t = 0 andt = 0.1 with N = 200; b t = 0 and

t = 0.1 with N = 400; c t = 1 with N = 100; d t = 1 with N = 200

(3.9a)
d

dt
vk(t) = ξk

vk+1(t)− vk−1(t)
2∆ξ

, ξk := k∆ξ, 0≤ k ≤ N, ∆ξ :=
1

N + 1
2

,

which is augmented with first order homogeneous extrapolation at the ’right’ boundary

(3.9b) vN+1(t)− vN (t) = 0.

We note in passing that{i} The bk(t)’s, and hence thevk(t)’s, are symmetric – in
this case they have an odd extension for−N ≤ k ≤ 0; {ii} No additional boundary
condition is required at the left characteristic boundaryξ0 = 0; and finally,{iii }
Though (3.9a)-(3.9b) are independent of the frequency spacing — in fact any∆ξ =
O(1/N ) will do, yet the choice of∆ξ = (N + 1

2)−1 will greatly simplify the formulae
obtained below. These simplifications will be advantageous throughout the rest of this
section.

Clearly, the centered difference scheme (3.9a) could be viewed as a consistent
approximation to the linear wave equation

∂

∂t
v(ξ, t) = ξ

∂

∂ξ
v(ξ, t), 0≤ ξ ≤ 1.

The essential point is thatξ = 1 is an inflow boundary in this case, and that the
boundary condition (3.9b) isinflow-dependentin the sense that it is consistent with the
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interior inflow problem. Such inflow-dependent boundary condition renders the related
constant coefficient approximationunstable, that is, the mixed initial-boundary value
approximation (3.9a)-(3.9b) with ’freezed’ coefficients, fails to satisfy the resolvent-
type stability of Gustafsson, Kreiss and Sundsröm [GKS], consult [KL, Os, Ta1, Tr].
In fact, the instability induced by using such first-order extrapolation (3.9b) in an
inflow boundary leads to anL2-growth of order≥ O(

√
N ), consult [Ta1, Sect. 3].

To show that there is anO(N )-growth in this case requires a more precise study
along these lines, which brings us to theproof of the weakL2-instability. We decom-
pose the imaginary components,bk(t), as the sum of two contributions – a stable part,
sk(t), associated with the evolution of the initial data; and an unstable part,ωk(t),
which describes the unstable binary oscillations propagating from the boundaries into
the interior domain,

bk(t) ≡ sk(t) + ωk(t).

Here,s(t) := (s1(t), . . . , sN (t)) is governed by anoutflow centered difference scheme
which is complemented bystableboundary extrapolation,
(3.10)

d

dt
sk(t) + ξk

sk+1(t)− sk−1(t)
2∆ξ

= 0, 0≤ k ≤ N, ∆ξ :=
1

N + 1
2

sk(0) = bk(0),
sN+1(t) = sN (t).

As before, we exploit symmetry to confine our attention to the ’right half’ of the
problem, 0≤ k ≤ N .

A straightforwardL2-energy estimate confirms that this part of the imaginary
components isL2-stable,‖s(t)‖ ≤ e−t‖b(0)‖. In fact, the scheme (3.10) retains high-
order stability in the sense that

(3.11) ‖s(t)‖Wα =

(
N∑
k=0

|k|2α|sk(t)|2
)1/2

≤ Constα,t · ‖b(0)‖Wα , ∀α ≥ 0.

We close our discussion on the so called ”s”-part by noting that (3.10) is a second-
order accurate approximation to the initial-value problem

(3.12)


∂

∂t
s(ξ, t) = ξ

∂

∂ξ
s(ξ, t), ξ ≥ 0,

s(ξ, 0) = b(ξ), b(ξ) :=
−1

2N + 1

2N∑
ν=0

uN (xν , 0) sin(πνξ);

Observe that the initial conditionb(ξ) is nothing but a trigonometric interpolant in
the frequency′ξ-space’, which coincides with the initial value of the imaginary com-
ponents,b(ξk) = Imûk(0) ≡ bk(0). Using the explicit solution of this initial value
problem, we end up with a second order convergence statement which reads3

(3.13) sk(t) = b(ξke−t) +O(∆ξ)2, t ≥ 0.

We now turn our attention to the unstable oscillatory part,ωk(t) = (−1)N−kvk(t).
It is governed by aninflow centered difference scheme,

3 The last equality should be interpreted of course in theWα-sense, withα limited by the initial
Wα-smoothness ofbk(0).
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Fig. 2. a–c. Fourier solution ofut = (sin(x)u)x, ûk(0) ∼ i
k3 . Imaginary part of Fourier coefficients,

Imûk(t), computed att = 3 with ∆t = 1
10N anda with N = 100; b with N = 200; c with N = 800

(3.14a)


d

dt
vk(t) = ξk

vk+1(t)− vk−1(t)
2∆ξ

, 0≤ k ≤ N,

vk(0) ≡ 0,

which is coupled to the previous stable ”s”-part (3.10), through the boundary condition

(3.14b) vN+1(t)− vN (t) = sN+1(t) + sN (t).

The boundary condition (3.14b) is the first-order accurate extrapolation we met earlier
in (3.9b) – but this time, with the additional inhomogeneous boundary data. And as
before, a key ingredient in theL2-instability is the fact that such boundary treatment
is inflow-dependent.
Specifically, we claim:the inflow-dependent extrapolation on the left of(3.14b) re-
flects the boundary values on the right of(3.14b),which are ’inflowed’ into the interior
domain with an amplitude amplified by a factor of orderO(N ).
To prove this claim we proceed as follows. Forward differencing of (3.14a) implies
that rk+ 1

2
(t) := vk+1(t)− vk(t) satisfy the stable difference scheme
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Fig. 3. a,b. Fourier solution ofut = (sin(x)u)x, ûk(0) = i sin(ξk), ξk = kπ∆ξ. Imaginary part of
Fourier coefficients,Imûk(t), (− − −) computed att = 0.5 vs. sk(t) + ωk(t), (ooo), a with N = 100; b
with N = 200

(3.15)
d

dt
rk+ 1

2
(t) =

ξk+ 3
2
rk+ 3

2
(t)− ξk− 1

2
rk− 1

2
(t)

2∆ξ
−
rk+ 3

2
(t)− 2rk+ 1

2
(t) + rk− 1

2

4
,

k ≤ N − 1,
rk+ 1

2
(0) ≡ 0,

rN+ 1
2
(t) = sN+1(t) + sN (t) ≡ 2sN (t).

Clearly, this difference scheme is consistent with, and hence convergent to the solution
of the initial-boundary value problem

(3.16)


∂

∂t
r(ξ, t) =

∂

∂ξ
(ξr(ξ, t)), 0≤ ξ ≤ 1,

r(ξ, 0) ≡ 0
r(1, t) = 2sN (t).

Observe thatr(ξ, t) describes a boundary wave which is prescribed on theξN+ 1
2

=
1 boundary of the computed spectrum,r(1, t) = 2sN (t), and propagates into the
interior domain of lower frequenciesξ < 1,

(3.17) r(ξ, t) =


2
ξ
sN (t + ln ξ), t + ln ξ ≥ 0,

0, t + ln ξ ≤ 0.

We conclude that the forward differences,rk+ 1
2
(t) = vk+1(t) − vk(t), form a second-

order accurate approximation of this boundary wave,

rk+ 1
2
(t) = r(ξk+ 1

2
, t) +O(∆ξ)2, ξk+ 1

2
= (k +

1
2

)∆ξ.

Returning to the original variables,ωk(t) ≡ (−1)k
∑k−1

j=0 rj+ 1
2
(t), the latter equality

reads
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(3.18)

ωk(t) = (−1)k
k−1∑
j=0

r(ξj+ 1
2
, t) +O(k(∆ξ)2)

=
(−1)k

∆ξ
R(ξk, t) +O(∆ξ), R(ξk, t) :=

∫ ξk

e−t
r(ξ, t)dξ,

which confirms our above claim regarding the amplification of a boundary wave by
a factor ofO(1/∆ξ ∼ N ).

The a priori estimates (3.11) and (3.18) provide us with precise information on
the behavior of the imaginary components,b(t) = s(t)+ω(t): their initial value att = 0
propagate by the stable ”s”-part and reaches the boundary of the computed spectrum
at ξN+ 1

2
= 1 with the approximate boundary values of (3.13),sN (t) = b(e−t) +O(∆ξ);

the latter propagate into the interior spectrum as a boundary wave of the form (3.17),

r(ξ, t) =
2
ξ
b(

1
ξet

), whoseprimitive in (3.18) describes the unstable oscillatory ”ω”-part

of the solution. Added all together we end up with

(3.19) bk(t) = b(ξke−t) +


2(−1)k

∆ξ

∫ 1

ξ≥e−t/ξk
b(ξ)

dξ

ξ
, e−t ≤ ξk ≤ 1

0 , 0≤ ξk ≤ e−t

+O(∆ξ).

Thus, the unstable ”ω”-part contributes a wave which is modulated by binary oscilla-
tions; the amplitude of these oscillations start withO(1/∆ξ ∼ N ) amplification near
the boundary of the computed spectrum,ξN ∼ 1, and decreases as they propagate
into the interior domain of lower frequencies. Moreover, for any fixedt > 0, only
those modes with wavenumberk such that e−t < |k|/N ≤ 1, are affected by the
unstable ”ω” part. Put differently, we state this as

Corollary 3.3. For any fixed t > 0, the Fourier method(2.6) experiences a weak
instability which affects only afixed fractionof the computed spectrum. Yet, the size
of this fixed fraction,1− e−t, approaches unity exponentially fast in time.

There are two different cases to be considered, depending on the smoothness of
the initial data.

1. Smooth initial data. If the initial datauN (x, 0) are sufficiently smooth, thenbk(0) =
Imûk(0) are rapidly decaying as|k| ↑ N , and hence – by theWα-stability of the
”s”-part in (3.11), this rapid decay is retained later in time forsk(t), t > 0. This
implies that the discrete boundary wave – governed by the stable scheme (3.15),
is neglegibly small,rk+ 1

2
(t) ≈ 0, because its boundary values are, 2sN (t) ≈ 0.

We conclude that in the smooth case,‖b(t)‖ ∼ ‖b(0)‖+O(1) remains of the same
size as its initial data,‖b(0)‖.
Figure 2 demonstrates this result for a prototype case of smooth initial data
in BesovB3

∞(L∞) – in this case, initial data with cubically decaying imag-
inary components,bk(0) ∼ |k|−3. As told by (3.19), the temporal evolution
of these components should include an amplified oscillatory boundary wave,
ωk(t) ∼ (−1)kk3N−5, consult Remark 3 below. ThisO(N ) amplification is con-
firmed by thequadratic decay of the boundary amplitudes,ωN (t). Note that de-
spite this amplification, the boundary wave and hence the whole Fourier solution
remainL2 bounded in this smooth case.
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2. Nonsmooth initial data. We consider initial datauN (x, 0) with very low degree
of smoothness beyond their mereL2-integrability, e.g., forb(ξ) = N−1/2(1− ξ),
the corresponding components ofImûk(0) =N−1/2(1− k

N ), are square summable
but slowly decaying as|k| ↑ N . Sinceb(0) serves as initial data for the stable
”s”-part in (3.10), the components ofsk(t) will remain square summable for
t > 0, but will remain slowly decaying as|k| ↑ N . In particular, this means that
sN (t) = O(N−1/2) can be used to create theO(N−1/2) boundary waver(ξ, t)
dictated by (3.16). According to (3.18), the amplified primitive of this boundary
wave, (−1)kR(ξk, t)/∆ξ ∼ N1/2, will serve as the leading order term of the
unstable part. We conclude that the imaginary part‖b(t)‖ will be amplified by
a factor ofO(N ) relative to the size of its nonsmooth initial data‖b(0)‖, which
confirms the left hand side of the inequality (3.1).
Figure 3 demonstrates this result for a prototype case of nonsmooth initial data with
imaginary components given by,bk(0) = sin(ξk), that is, initial data represented
by a strongly peaked dipole atx±1, uN (xν , 0) = (2N + 1)δ|ν|,1. According to
(3.19), the evolution of these components in time yields

(3.20) bk(t) ∼ sin(ξke−t) +Constk
(−1)k

∆ξ

(
1− 1

ξke−t

)
+

+O(∆ξ).

In this case theO(N ) oscillatory boundary wave,(−1)k

∆ξ

(
1− 1

ξke−t

)
+
, is added

to theO(1)-initial conditions, sin(ξk), which is responsible for theL2-growth of
orderO(N ). This linearL2-growth is even more apparent with the ’rough’ initial
data we met earlier in Figure 1.

Remarks.
1. Smoothing. The last Theorem confirms theL2-instability indicated previously by
the lower bound (3.8),

d

dt
‖b(t)‖2 ≥ −‖b(t)‖2 +N

[
b2
−N + b2

N

]
.

By the same token, summation by parts of the imaginary part (3.7), leads to theupper
bound

d

dt
‖b(t)‖2 ≤ ‖b(t)‖2 +N

[
b2
−N + b2

N

]
,

which shows thathad the boundary values of the computed spectrum – which in this
case consist of the last single modeb±N (t), were to remain relatively small, then the
imaginary part – and consequently the whole Fourier approximation would have been
L2-stable. For example, the rather weaka priori bound will suffice

(3.21) |b±N (t)| ≤ C√
N
‖b(0)‖ =⇒ ‖b(t)‖ ≤ e(1/2+C2)t‖b(0)‖.

What we have shown (in the second part of Theorem 3.1) is that such an a priori
bound does not hold for general nonsmoothL2-initial data, where according to (3.19),
bN (t) ∼ O(N )‖b(t)‖.

We recall that there are various procedures which enforce stability of the Fourier
method, without sacrificing its high order accuracy. One possibility is to use the skew-
symmetric formulation of our problem [KO1, GO]. Another possibility is based on
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Fig. 4. a,b. Fourier solution ofut = (sin(x)u)x, û(ξ, 0) = sin(ξ). Imaginary part of Fourier coefficients,
Imûk(t) vs. kπ∆ξ, computed att = 2 a with de-aliasing (N = 80 andN = 160); b without de-aliasing
(N = 50 andN = 100)

the observation that the current instability is due to the inflow-dependent boundary
conditions (3.9b) – or equivalently (3.6b), and the origin of the latter could be traced
back to the aliasing relations (2.1b). We can therefore de-alias and hence by (3.21)
stabilize the Fourier method by settingb±N (t) ≡ 0, or more generally, ˆu±N (t) ≡ 0.
De-aliasing could be viewed as a robust form of high-frequency smoothing; in this
context we mention the various high-frequency smoothing procedures which could
be carried out either in the Fourier space as in Kreiss and Oliger [KO2] or Majda
McDonough and Osher [MMO], in the physical space as in Abarbanel Gottlieb and
Tadmor [GTa],[AGT], or could be realized as high-order spectral viscosity as in
Tadmor [Ta3]. Figure 4a shows how the de-aliasing procedure stabilize the Fourier
method which otherwise experiences the unstable linear growth in Fig. 4b. With (3.21)
in mind, we may interpret these procedures as a mean to provide the missing a priori
decaying bounds on the highest mode(s) of the computed spectrum, which in turn
guarantee the stability of the whole Fourier approximation.

2. Smoothing cont’d – even number of gridpoints. The situation described in the
previous remark is a special case of the following assertion [Ta2, p.545]:Assume
that q(x) consists of a finite number, saym modes. Then the corresponding Fourier
approximation(2.3) is L2-stable, provided the lastm modes were smoothed so that
the following a priori bound holds

N∑
|k|>N−m

|ûk(t)|2 ≤ 1
N
‖b(0)‖2.

It should be noted that our present discussion ofq(x) with m = 1 modes is a prototype
case for the behavior of the Fourier method, as long as the corresponding Fourier
approximation is based on anodd number of 2N + 1 gridpoints. Otherwise – the
case of an even number of gridpoints isL2-stable, as shown by Gottlieb, Orszag and
Turkel [GOT]. The unique feature of thisL2-stability is due to the fact that Fourier

differentiation matrix in this case,Djk = (−1)j−k
2 cot(xj−xk2 )(1− δjk) – beingeven

order antisymmetric matrix, must have zero as adouble eigenvalue, which in turn
inflicts a ’built-in’ smoothing of the last mode in this case, [Ta2, p.545], namely,

(3.22) b±N (t) ≡ 0.
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Fig. 5. a–d.Fourier solution ofut = (sin(x)u)x, u(x, 0) = sin(x). Imaginary part of Fourier coefficients,
Imûk(t), computed withN = 64 modes ata t = 1.0; b t = 2.7; c t = 3.0; d t = 5.0

Table 2 confirms the usual linear weakL2-instability already for a 2-wave coefficient.
3. Wα-initial data. Consider the case of sufficiently smooth initial data so that

the imaginary components decay of orderα,

bk(0)∼ |k|−α, α >
1
2
.

In this case, we may approximate the corresponding initial interpolantb(ξ) ∼ (∆ξ/ξ)α,
and (3.19) tells us the Fourier approximation takes the approximate form

bk(t) =
eαt

kα
+

2(−1)k

∆ξ

∫ 1

ξ≥e−t/ξk

(∆ξ)α

ξα+1
dξ +O(∆ξ)

∼ eαt

kα
+

(−1)k

Nα−1

[(
ket

N

)α
− 1

]
+

+O(∆ξ).

Observe that‖b(t)‖ ∼ CαN
3
2−α, (with Cα ∼ (e2αt − 1)/(2α + 1)), where as

‖b(0)‖Wα ∼ √
N . This lower bound is found to be in complete agreement with

theWα-stability statement of Corollary 3.2 (apart from the logN factor forα = 1) –
an enjoyable sharpness.
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Table 2. Amplification of ‖uN (t)‖ at t = 5 with even number of gridpoints. Here,∂
∂t
uN (x, t) =

∂
∂x
ψN (sin(2x)uN (x, t)), uN (x, 0) = sin(x)

2N 64 128 256 512

‖uN (t)‖
‖uN (0)‖ 366 712 1906 5152

4. Stability resolution and convergence

In the previous sections we analyzed the stability of Fourier method in terms of
two main ingredients: weightedL2-stability on the one hand, and high frequencies
instability on the other hand. In this section we show howboth of these ingredients
contribute to the actual performance of the Fourier method.

We first address the issue ofresolution. We left Sect. 3 with the impression that the
weakL2-instability is a rather ’rare occurrence’, as it is excited only in the presence
of nonsmooth initial data. But in fact, the mechanism of this weakL2-instability will
be excited whenever the Fourier method lacks enough resolution.
In this context let us first note that the solution of the underlying hyperbolic problem
may develop large spatial gradients due to the almost impinging characteristics along
the zeroes of the increasing part ofq(x). Consequently, the Fourier method might
not have enough modes to resolve these large gradients as they grow in time. This
tells us that independent whether the initial data are smooth or not, the computed
approximation will then ’see’ the underlying solution as a nonsmooth one, and this
lack of resolution will be recorded by a slower decay of the computed Fourier modes.
The latter will experience the high-frequency instability discussed earlier and this in
turn will lead to the linearL2-growth. Our prototype example ofq(x) = sin(x) is case
in point: according to Corollary 3.3, one needs here at leastN � et modes in order
to resolve the solution, for otherwise, (3.19) shows that spuriousO(N ) oscillations
will contaminate the whole computed spectrum.

We conclude that the lack of resolution manifests itself as a weakL2-instability.
This phenomenon is demonstrated in Figs. 5–9, describing the Fourier method (2.6)
subject to (the perfectly smooth ...) initial condition,u(x, 0) = sin(x). Figure 5 shows
how the Fourier method with fixed number ofN = 64 modes propagates information
regarding the steepening of the Fourier solution in physical space, from low modes
to the high ones. And, as this information is being transferred to the high modes,
their O(N ) amplification become more noticeable as time progresses in Figs. 5c–d.
Consequently, thoughN = 64 modes are sufficient to resolve the exact solution at
t ≤ 2.7, Fig. 6c–d shows that at later time,t = 3 and in particulart = 5, the under
resolved Fourier solution with 64-modes will be completely dominated by the spurious
centered spike. This loss of resolution requires more modes as time progresses. Figure
7 shows how the Fourier method is able to resolve the exact solution att = 3.5, once
’sufficiently many’ modes,N � e3.5 are used, in agreement with Corollary 3.3.
According to Figs. 8 and 9,N = 512� e4 modes are required to correctly resolve
the two strong boundary dipoles att = 4, yet att = 8 the Fourier solution will be
completely dominated by the spurious centered spike.

Assuming that the Fourier method contains sufficiently many modes dictated by
the requirement of resolution, we now turn to the second issue of this section concern-
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Fig. 6. a–d. Fourier solution ofut = (sin(x)u)x, u(x, 0) = sin(x). Computed solution,uN (·, t), with
N = 64 modes ata t = 1.0; b t = 2.7; c t = 3.0; d t = 5.0

ing the convergence of the Fourier method. Here, a straightforward approach would
be to apply the weakL2-stability estimate (3.5) to the error equation,
(4.1)
∂

∂t
eN (x, t) =

∂

∂x
(sin(x)eN (x, t)) + FN (x, t), eN (x, t) := uN (x, t)− ψNu(x, t),

whereFN (x, t) denotes the spectrally small truncation error. ThisL2-style approach
is limited due to two related reasons:

– For practical purposes one is interested of course in higher,W s-convergence
estimates. To this end one notes that spatial derivatives of the error,∂s

∂xs eN (x, t),
satisfy the same error equation as in (4.1), modulo the additional low order terms.
However, the weakL2-stability estimate isnot invariant in the presence of such
low order terms;

– Moreover, the ‘low order terms’ mentioned above are in fact not small – they
involve the L2-unbounded commutator, [ψN sin(x), ∂

∂x ], and its higher order
variants4. Indeed, this commutator equals up to unitary equivalence toReDQ,
and the latter cannot beL2-bounded in view of the weakL2-instability stated in
Theorem 3.1. In fact, it was noticed already in [KO1, p.204] that theL2-size of
this commutator is of orderO(N ).

4 Though this commutator is bounded in theweightedL2-norm – a fact that was already used in the
closing remark of Sect. 2.



On the stability of Fourier method 117

-100

-80

-60

-40

-20

0

20

40

60

80

100

-1 0 1 2 3 4 5 6 7

 (a1) physical solution at t=3.5, N=50
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Fig. 7. a–c.Fourier solution ofut = (sin(x)u)x, u(x, 0) = sin(x). Approximate solution,uN (·, t) and
imaginary part of its Fourier coefficients,Imûk(t) at t = 3.5 a with N = 50; b with N = 100; c with
N = 200
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What saves the day is theweightedL2-stability of the Fourier method. This brings
us to the following.

Theorem 4.1. (Convergence rate estimate.)Let uN (x, t) denotes theN -degree
Fourier approximation of the corresponding exact solutionu(x, t). Then the following
error estimate holds

(4.2) ‖uN (·, t)− u(·, t)‖W s ≤ Consts,αN
2−α‖u(·, 0)‖W s+α , ∀s + α >

1
2
.

Remark. The requirement from the initial data to have at leastW 1/2-regularity is
clearly necessary in order to make sense of itspointwiseinterpolant.

Proof. We consider the error equation

(4.3a)
∂

∂t
(uN (x, t)− u(x, t)) =

∂

∂x
[sin(x)(uN (x, t)− u(x, t))] + F (N )(x, t),

with the local error,F (N )(x, t), given by

(4.3b) F (N )(x, t) :=
∂

∂x
[(ψN − I) sin(x)uN (x, t)] .

Next we invoke two classical a priori estimates: aW s-stability estimate on the inho-
mogeneous hyperbolic equation (4.3a) which yields
(4.4)

‖uN (·, t)− u(·, t)‖W s ≤ eCst ·
{
‖uN (·, 0)− u(·, 0)‖W s + sup

0≤τ≤t
‖F (N )(·, τ )‖W s

}
;

and a canonical error estimate for Fourier interpolants, e.g., [Ta4, 1.2.17], stating that

(4.5) ‖(ψN − I)w(x)‖W s ≤ Cs,rN
s−r‖w(x)‖W r , ∀r ≥ max(s,

1
2

).

Now, application of (4.5) toF (N )(·, τ ) yields

‖F (N )(·, τ )‖W s ≤ ‖(ψN − I) sin(·)uN (·, τ )‖W s+1 ≤ Consts,αN
−α‖uN (·, τ )‖W s+α+1.

The weak stability statement in Corollary 3.2 allows us to upper bound the right hand
side of the last inequality in terms of the initial data,

‖F (N )(·, τ )‖W s ≤ Consts,αN
1−α‖uN (·, τ )‖W s+α

≤ Consts,αN
2−α‖uN (·, 0)‖W s+α .

Also, application of (4.5) touN (·, 0)− u(·, 0) = (ψN − I)u(·, 0) yields

‖uN (·, 0)− u(·, 0)‖W s ≤ Consts,αN
−α‖uN (·, 0)‖W s+α , s + α ≥ 1

2
.

The inequality (4.4) complemented with the last tow upper-bounds yield the desired
result (4.2). ut
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Fig. 8. a–c.Fourier solution ofut = (sin(x)u)x, u(x, 0) = sin(x). Approximate solution,uN (·, t) and
imaginary part of its Fourier coefficients,Imûk(t) at t = 4.0 a with N = 64; b with N = 128; c with
N = 512
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Fig. 9. a–c.Fourier solution ofut = (sin(x)u)x, u(x, 0) = sin(x). Approximate solution,uN (·, t), and
imaginary part of its Fourier coefficients,Imûk(t) at t = 8.0 a with N = 64; b with N = 128; c with
N = 512
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5. WeightedL2-stability revisited

In the previous sections we restricted our discussion on the stability of the Fourier
method to what was claimed to be a prototype case (2.6) – a simple sinusoidal coeffi-
cient q(x) = sin(x). In this section we will try to substantiate this claim by extending
our weighted stability analysis to include general coefficients,q(x), belonging to one
of the several large classes considered below.

As a first step we consider a general sinusoidal coefficient

(5.1)p
∂

∂t
uN (x, t) =

∂

∂x
ψN [sin(px)uN (x, t)], p = 1, 2, . . . .

Though the technical details become more tedious, the ingredients are identical to
those encountered before in the casep = 1; moreover, once weightedL2-stability is
established this could converted into an algebraicallyO(N )-weakL2-stability along
the lines of our discussion in Sects. 3 and 4.

As before, our starting point is the unitarily equivalent representation of (5.1)p in
the Fourier space, where

(5.2a)
d

dt
ûk(t) =

k

2
[ûk−p(t)− ûk+p(t)], −N ≤ k ≤ N,

is augmented by the aliased boundary values

(5.2b) û±(N+k)(t) = û∓(N−k+1)(t) ≡ û±(N−k+1)(t), k = 1, 2, . . . , p.

Next, we form thep-adic blocks (for simplicity we assume thatN is an integer
multiple of p),

(5.3) Ûk(t) :=

 ûkp−p+1(t)
...

ûkp(t)

 , −Np ≤ k ≤ Np :=
N

p
.

The introduction of thesep-adic blocks will not only greatly simplify the algebraic
manipulations, but in retrospect it will be shown to capture the main features in this
p-wave case.

Expressed in term of thesep-adic blocks, (5.2a) reads

(5.4a)
d

dt
Ûk(t) =

k

2
Dk[Ûk−1(t)− Ûk+1(t)], −Np ≤ k ≤ Np,

augmented with the boundary conditions (5.2b),

(5.4b) Û−(Np+1)(t) = K Û−Np (t), ÛNp+1(t) = K ÛNp (t).

HereDk abbreviate thep× p diagonal matrix

Dk := pIp − 1
k

 p− 1
...

0

 ,

andK denotes the anti-diagonalp× p unit matrix
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K :=

 1
...

1

 .

As before, we can decouple this system into its real and imaginary parts,Û (t) = A(t)+
B(t). The real part of the Fourier coefficients,Ak(t) := ReÛk(t) = (akp−p+1, . . . , akp),
satisfies

(5.5a)
d

dt
Ak(t) =

k

2
Dk

[
Ak−1(t)−Ak+1(t)

]
, −Np ≤ k ≤ Np,

(5.5b) A−(Np+1)(t) = KA−Np
(t), ANp+1(t) = KANp

(t).

The imaginary part of the Fourier coefficients,Bk(t) := ImÛk(t) = (bkp−p+1, . . . , bkp),
satisfies the same recurrence relations as before

(5.6a)
d

dt
Bk(t) =

k

2
Dk

[
Bk−1(t)−Bk+1(t)

]
, −Np ≤ k ≤ Np,

the only difference lies in the augmenting boundary conditions

(5.6b) B−(Np+1)(t) = −KB−Np
(t), BNp+1(t) = −KBNp

(t).

The boundary conditions (5.5b), (5.6b) suggest to introduce the local differences
of the real part,ρ−k (t) := KAk(t)−Ak+1(t), and the local averages of the imaginary
part, ρ+

k(t) := KBk(t) + Bk+1(t). Differencing consecutive terms in (5.5a) while
adding consecutive terms in (5.6a), we find (after taking into account the fact thatDk

andK commute),
(5.7a)
d

dt
ρ±k (t) =

k

2
Dkρ

±
k−1(t)− k + 1

2
Dk+1ρ

±
k+1(t)± p

2
K ρ±k (t), −Np ≤ k ≤ Np − 1.

As before, the motivation for considering this specific change of variables steams
from the side conditions in (5.5b) and (5.6b), which are now translated into zero
boundary values

(5.7b) ρ±−(Np+1)(t) = ρ±Np
(t) = 0.

Observe that (5.7a), (5.7b) amount to a fixed translation ofblock antisymmetricODE
systems forρ−(t) := (ρ−−Np

(t), . . . , ρ−Np−1(t)) and ρ+(t) := (ρ+
−Np

(t), . . . , ρ+
Np−1(t)),

that is, we have
d

dt
ρ±(t) =

1
2

(±pK ⊗ I + S )ρ±(t),

whereS denotes the block antisymmetric matrix

S =


0 SNp−1 0 . . .

−SNp−1 0
... 0

0
...

... S1
... 0 −S1 0
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⊕


0 −S1 0 . . .

S1 0
... 0

0
...

... −SNp−1
... 0 SNp−1 0

 , Sk = kDk.

This shows that upon change of variables, our problem is converted into an ODE
governed by a fixed translation of an antisymmetric matrix. This implies that

Corollary 5.1. The eigenvalues of the solution operatoreDQt associated with(5.1)p,
are of the formeλt with Reλ ∈ {0,±p

2}.
Corollary 5.1 extends the result of Tal-Ezer [TE] for the casep = 2.

Next, sinceS is antisymmetric we conclude the a prioriL2 bound

(5.8) ‖ρ±(t)‖ ≤ e±pt/2‖ρ±(0)‖.
To interpret this in terms of the original real and imaginary variables we shall need
to use theN ×N Jordan-like blocks

J±K :=


K ±Ip . . . 0

0 K
...

...
...

... ±Ip
0 . . . 0 K

 .
Assume temporarily that the initial conditions have zero average, (2.13), so that
a0(t) ≡ 0. ThenA0 and A1 are related throughA0 = NKA1, whereN is the
canonicalp× p ”north” nilpotent matrix,N := J+ − I . This enables us to invert the
relation between the local differences,ρ−(t) and the ’punctured’ vector of their real
predecessors,̃A(t) := (A−Np

(t), . . . , A−1(t), A1(t), . . . , ANp
(t)),

ρ−(t) = T−Ã(t).

Here the transformation matrixT− is given in terms ofJ−, J−K and their transpose

T− =



K -I
...

...

... -I
K -NK

−J t−
K -I

...
...
K -I


.

The last equality together with (5.8) give us the weighted stability of the ’punc-
tured’ real part,‖Ã(t)‖T t−T− ≤ e−pt/2‖Ã(0)‖T t−T− . A similar treatment applied to the

imaginary part yields‖B̃(t)‖T t+ T+
≤ ept/2‖B̃(0)‖T t+ T+

. Let us state the final result.

Theorem 5.2.Let uN (t) ≡ uN (·, t) denote the solution of the Fourier method
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Fig. 10. a,b.Fourier Solution ofut = (sin(px)u)x, ûk(0) = sin(ξk). Imaginary part of Fourier coefficients,
ûk(t), computed withN = 50 and∆t = 0.004 ata t = 1.0 (p = 2); b t = 0.5 (p = 3)

(5.9)
∂

∂t
uN (x, t) =

∂

∂x
ψN [sin(px)uN (x, t)] .

Then there exists a constant, C(t), such that the following weightedL2-stability esti-
mate holds

(5.10) |||uN (t)|||H ≤ C(t)|||uN (0)|||H .
Here |||uN (t)|||H denotes the weightedL2-norm

|||uN (t)|||H := ‖ReÛ (t)⊕ ImÛ (t)‖H ,
where the weighting matrixH := H− ⊕ H+ > 0 is given in terms ofJ±K , J± and
their transpose.

As before, we can now proceed in two complementing directions. On the one
hand, the weightedL2-stability stated in Theorem 5.2 together with the growth of
κ(T±) prove the algebraicL2-stability of the Fourier method. On the other hand, by
repeating our previous arguments for the special casep = 1 we can trace the aliasing
phenomenon as being responsible for the same weakL2-instability we had before.
Indeed, the usual energymethod shows theL2-stability of the real part in (5.5a),
(5.5b), but as before it fails for the imaginary part, due to the judicious minus sign
on the right of the aliasing boundary conditions (5.6b). The weak instability of the
imaginary part manifests itself in terms of the modulated wave,Vk(t) = (−1)kBk(t),
which experiences a linear high-frequencies growth due to the augmentinginflow-
dependentboundary conditions.

Figure 10 demonstrates this high-frequency instability in two prototype cases of
p = 2 andp = 3. Observe that in both cases, it is the correspondingp-adic block
which experiences the unstable binary oscillations, in complete agreement with our
analysis.

Remark.It is easy to detect one set of unstable modes, at least for oddp’s. Indeed, if
we setbk(t) = Imûkp+p+1

2
(t), then (5.2a) gives us

d

dt
bk(t) =

pk

2
[bk+1(t)− bk−1(t)], −Np ≤ k ≤ Np :=

N

p
+

1− p

2
,
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Fig. 11. a–d.Fourier Solution ofut = (sin(2x)u)x, u(x, 0) = sin(x). Computed solution,uN (·, t), and
imaginary part,Imûk(t), with even number of 2N = 128 modesa uN (·, t) at t = 1.2; b Imûk(t) at
t = 1.2; c uN (·, t) at t = 3.0; d Imûk(t) at t = 3.0

complemented by the unstable aliasing reflection conditions (5.2b),b±(Np+1)(t) =
−b±Np (t).

We are now in a position to extend our stability analysis of the Fourier method
in several directions. Let us briefly indicate few possible generalizations.

1. Even number of gridpoints. We can now treat the Fourier method based on an
evennumber of 2N gridpoints,xν = νπ

N , ν = 0, 1, . . . , 2N − 1. Let us consider for
example the casep = 2 quoted in Table 3.2,

∂

∂t
uN (x, t) =

∂

∂x
ψN [sin(2x)uN (x, t)].

Expressed in terms of its Fourier coefficients, this approximation reads

d

dt
ûk(t) =

k

2
[ûk−2(t)− ûk+2(t)], −N ≤ k ≤ N.

Observe that in the even case the corresponding Fourier interpolant is given by5, e.g.
[GO],

5 As usual, we let the first (and second) primes indicate halving the first (and last) terms under summation.
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Fig. 12. a,b. Fourier Solution ofut = ((sin(x) + q̂2 sin(2x))u)x at t = 1. Imaginary part of Fourier
coefficients ˆuk(t) with N = 100 anda ∆t = 0.002; q̂2 = 0.2; b ∆t = 0.0025, ˆq2 = 1/1.14159

N∑
k=−N

′′
ûk(t)eikx.

It contains the correct number of 2N waves because – as we have noted earlier in
(3.22), the last mode is necessarily ’silent’,b±N (t) ≡ 0. This implies that one-part
of the imaginary components, namely,{Imû2k}0≤k≤N/2, is L2-stable. However, the
odd-indexed imaginary components,bk(t) := Imû2k−1(t), satisfy

(5.11a)
d

dt
bk(t) =

2k − 1
2

[bk+1(t)− bk−1(t)], 1≤ k ≤ n :=
N

2

and augmented with theunstableinflow-dependent boundary conditions

(5.11b) bn+1(t) = −bn(t).

Due to this decoupling, one is led to the sameL2-growth of orderO(N ), encountered
before in (2.10a)-(2.10b). This even-odd decoupling in the Fourier space reflects the
decoupling between the even and odd gridvalues on the physical side. Similarly, we
can decouple at least one set unstable modes for the Fourier approximation of (5.1)p.
Figure 10 demonstrates this weak instability (due to lack of resolution), analogous to
the results with odd number of modes in Figs. 5–9.

2. More simple wave coefficients. So far we considered simple sinusoidal coef-
ficients. We consider the Fourier method based on even number of 2N gridpoints,
and assume without loss of generality, thatN is an integer multiple of the fixed
wave number,m = mp := N

2p . Then the grid translation,xν → xν+m implies that
sin(pxν+m) = cos(pxν), which in turn converts our stability analysis of the sinusoidal
problem (5.1)p into the corresponding cosinusoidal problem,

(5.12)p
∂

∂t
uN (x, t) =

∂

∂x
ψN [cos(px)uN (x, t)], p = 1, 2. . . . .

It should be noted that the real components are no longer stable in this case.
3. Combination of simple waves. We now consider more general variable coeffi-

cients of the form,
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 (c2) Imaginary part of Fourier coefficients at t=18.

Fig. 13. a–c.Fourier solution ofut + q(x)ux = 0, q(x) = 1− 2e−10 sin(x−π2 )2
, u(x, 0) = sin(x). Computed

solution,uN (·, t), and imaginary part,Imûk(t), with even number of 2N = 128 modes ata t = 1.2; b
t = 2.5; c t = 18
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(5.12)
∂

∂t
uN (x, t) =

∂

∂x
ψN [q(x)uN (x, t)], q(x) =

∑
p

q̂p sin(px).

The detailed stability analysis in this case becomes more complicated. Unfortunately,
one cannot adopt a straightforward ’splitting argument’ in this case. Though each
simple p-component ofq(x) is by itself weightedL2-stable, yet each makes use of
differentp-dependent weighting matrices. Instead one has to consider the behavior of
an appropriate combination of the variousp-adic blocks, along the lines of the proof
of Theorem 5.2.

We shall confine ourselves to show at least one set of unstable modes. As before,
we seek the behavior of an underlying modulated wave associated with the imaginary
part of (5.12). Expressed in terms ofvk(t) = (−1)kImûk(t), the imaginary part of
(5.12) reads

(5.13a)
d

dt
vk(t) =

k

2

∑
p

(−1)pq̂p[vk+p(t)− vk−p(t)],

augmented by the boundary conditions

(5.13b) vN+k(t) = vN−k+1(t), k = 1, 2, . . . , p.

Observing that (5.13a) is consistent with

∂

∂t
v(ξ, t) = −Cqξ

∂

∂ξ
v(ξ, t), Cq :=

∑
p

(−1)ppq̂p <∞,

we conclude that

Corollary 5.3. (WeakL2-instability.) The Fourier method(5.12) is weakly unstable
if either

∑
p(−1)ppq̂p < 0 or

∑
p pq̂p < 0.

In the first case, the imaginary components are governed by the unstableinflow-
dependentboundary conditions (5.13b); in the second case, the instability shows in
the corresponding real part. Note that

∑
p(±1)ppq̂p < 0 means thatq(x) decreases

monotonically through a simple zero at eitherx = π or x = 0.
Figure 12 shows the unstable behavior with a combination of two sinusoidal

waves. Observe that two types of unstable modes are superimposed one on top of the
other. The detailed information of this superposition is encoded in the corresponding
initial-boundary value problem (5.13a), (5.13b), which in this case involves a 5-point
stencil. Figure 13 demonstrates the increased complexity of this weakly unstable
behavior with more general coefficients.
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