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STABILITY ANALYSIS OF SPECTRAL METHODS
FOR HYPERBOLIC INITIAL-BOUNDARY VALUE SYSTEMS*

DAVID GOTTLIEB1#§, LIVIU LUSTMAN} AND EITAN TADMORTiq

Abstract. We treat a constant coefficient hyperbolic system in one space variable, with zero initial data.
Dissipative boundary conditions are imposed at the two points x = +1. This problem is discretized either
by a spectral or pseudospectral approximation in space. We demonstrate sufficient conditions under which
the spectral numerical solution is stable; moreover, these conditions have to be checked only for scalar
equations. The stability theorems take the form of explicit bounds for the norm of the solution in terms of
the boundary data. The dependence of these bounds on N, the number of points in the domain (or equivalently
the degree of the polynomials involved), is investigated for a class of standard spectral methods, including
Chebyshev and Legendre collocations.

Key words. hyperbolic systems, boundary conditions, spectral methods, stability

AMS(MOS) subject classifications. 65M10, 65N35

1. Introduction. In this paper we study the stability of spectral polynomial methods
for the approximation of initial-boundary value hyperbolic systems with constant
coefficients and dissipative boundary conditions (Assumption I). We show that any
particular spectral method is stable when applied to a system, if it satisfies certain
conditions (Assumptions II and-III) for the corresponding scalar problem.

Our treatment follows closely the approach of Kreiss [4], leading to an algebraic
condition. However, in the spectral method the requirement that the approximate
solution be a polynomial produces a different algebraic problem from the standard
finite difference discretizations.

We should also review briefly the stability results for spectral methods and
hyperbolic systems. The stability of Chebyshev approximation of the scalar problem

U, =u,, u(x=1,t)=0

was proved in [2] for the Galerkin and tau-methods, and in [7] for the collocation
method. The same proofs hold for the Legendre method; they are based on energy
estimates, showing that the norm

J’l A+ x)w(x)u’(x, t) dx

is bounded by the data. Here the weight w(x) depends on the discretization used and
equals (1—x%)""2 for Chebyshev, w(x)=1 for Legendre.
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Reyna [8] suggested a stable numerical method for strictly hyperbolic systems
with maximal dissipative boundary conditions, based on high modes smoothing. His
result applies to problems with variable coefficients. While his procedure ensures I,
stability, our constant coefficients proof requires no smoothing; instead stability is
obtained here in certain weighted /, norms.

The first results about hyperbolic systems with general dissipative boundary
conditions were reported in [5], where it is shown that the numerical solutions decay
in time, thus mimicking the differential solutions.

In the present paper we combine the above results into a general stability theory
for the stability of spectral methods. A future paper will discuss the convergence of
the spectral approximations to the exact solution.

Definitions. Consider the first order hyperbolic system of partial differential
equations

ou ?E

. —=A
(1.1a) at  ax’

-1=x=1, t=0.

Here,
u=u(x, t)=uV(x 1), -, u"(x, 1)

is the vector of unknowns and A is a fixed n X n coefficient matrix. Since by hyperbolicity
A is similar to a real diagonal matrix, we may assume without loss of generality that
it is diagonal:
a a
A I 0 1 1+1
(1.1b) A=(o ) Al = <0, A"'= >0.

AII
q a

The solution of this system is uniquely determined if we prescribe initial conditions
(1.1¢) u(x,0)=0, -1=x=1
and boundary conditions
u’(=1,t)=Lu" (-1, ) +g' (1),
(1.1d) u”’(1,)=Ru’(1, ) +g" (1), t=0.

In these formulas,
g=g()=(@"(1,g" (1)
is a given n-vector, and
(1.1¢) w =w®, .-, u®y, u = (™Y, ..y ™y

is a partition of u into its inflow and outflow components—corresponding to the
partition of A in (1.1b)—while L and R are constant reflection matrices of order
Ix(n—1) and (n—1) x I, respectively.

The system (1.1a)-(1.1e) is a well-posed problem in the sense that it satisfies an
a priori energy estimate which we now. describe. Define the spatial norm associated
with a pair of positive weight functions w(x) = (e’ (x), @™ (x)),

(1.2a) lu(x)|*= lu(x)||2 = .[—1 [’ (x)Po’(x) dx+ j_l [u™ (x)P0™ (x) dx.

Here and elsewhere in the paper we denote by |v| the Euclidean norms of a vector v;
similarly |A| = sup |Av|/]v|.
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Then, for well-posedness one must obtain the following inequality, with some
170;0:

=)

e 27" |lu(x, t)||* dt = const j e 2= |g(1)[? dt
t=0

o

(1.2b)  (m—m0) j

t=0

for all n > n,.

The parameter 7, measures the exponential time growth of the solution. We are
interested in the case where there is no growth in time, and therefore postulate the
following dissipativity requirement:

Assumption 1. There exists a constant 8 > 0 such that

(13) IR|-|L|=1-8<1.

The inequality (1.3) guarantees that waves originating at one of the boundaries are
not amplified when reflected at the other one. Consequently, there is no time growth;
in Appendix A we show that there is a weight @ such that for any >0

o

(1.4) n J e 2 |lu(x, t)||* dt = const '[ e 2|g(¢))? dt,

t=0

t=

i.e., Mo in formula (1.2b) may be taken as zero in this dissipative case.
We study polynomial spectral and pseudospectral discretizations of (1.1). In any
such approximation, one seeks a vector of N-degree polynomials

v=yn(x ) =R(x 1), -, o0 (x, 1))
such that )
ov av
(1.5a) =AM
Here, Q(x) is a diagonal matrix of the form
ql(x)lel 0 )
0 q"(x)I(n—I)x(n—I)

where q’(x), q”(x) are the N-degree polynomials that characterize the specific
(pseudo)spectral method employed, and

r=1(t)=(s",«")
is an n-vector to be determined by the set of boundary conditions (1.1d):
(1.5¢) vi(=1,t)=Lv"' (-1, t)+g'(¢t), vI(1, )= Rv' (1, t)+g" (2).

We shall call g’(x),q"(x) the forcing polynomials, since they appear as
inhomogeneous terms in the discretization of the originally homogeneous system (1.1).
Some examples are in order. ’

In the spectral Galerkin-Chebyshev method, one has

(1.5b) Q(x) =(

¢ =T+ T (D)
(1.6) ‘N
q" (x) =3To(x)+ kél Ti(x)

with Ti(x) denoting the kth Chebyshev polynomial.
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In the pseudospectral Chebyshev method, one may collocate only at the interior
extrema of Tn.,(x), yielding
(1.7) q'(x)=q"(x) = Tni(x);

or use as collection points these extrema together with the downstream boundaries,
in which case

(1.8) q'(x)=(1-x)Th(x), q"(x)=QQ+x)Tr(x).
Similarly, in the pseudospectral Legendre case one has

(1.9) q'(x)=q" (x) = P1(x)

or alternatively

(1.10) g'(x)=(1-x)PN(x),  q"(x)=(1+x)Px(x)

with P.(x) denoting the kth Legendre polynomial. These and other examples are
outlined in [2], [3].

In this paper we provide a stability study for the (pseudo)spectral method (1.5).
We define stability in terms of an a priori energy estimate analogous to the differential
one:

DEFINITION 1.1 (Stability). The approximation (1.5a)-(1.5¢) is stable if there exist
a weighting pair w(x) and constants a and 7,= 0 such that for all »> 5, we have

00

e 2=y (x, t)||* dt = const N** J. e 217 g(1)|? dt.
t=0

@

(1.11)  (n—m0) J

t=0

We note that the exponential time growth factor here, 79, need not be the same
as the one in the differential estimate (1.2b). The other constant, a, accounts for a
possible algebraically increasing dependence on the discretization parameter N.

To present our results, let us introduce into (1.5) a new variable e "'vy(x, t) and,
following the procedure of [4], Fourier-transform the resulting equations with respect
to time. Denote by ¢ the real dual variable corresponding to ¢, and by

GE i\,N(-x’ S) = g:(e_ntvN(x’ t))’
g=2(s)=F(emg(1)), s=n+if

the transforms of e "'vy and e ™g, respectively (these functions are set to zero for
t <0). The resulting equation for ¥= (¥/(x, s), ¥/ (x, 5))’ is then

(1.12)

di"

dx

is to be determined from the boundary conditions

dav’
(1.13a) st = A'—‘-i-;;+ g (x)s!, s =AT—+q" (x)z"

where the n-vector r=1(s) = (', #")’

(1.13b)  #(=1,5) = L (-1, s)+8"(s),  #7(1,s)=R¥'(1,s)+g"(s).
Using Parseval’s relation, we conclude:

LeEMMA 1.2. The approximation is stable if there exist a weighting pair w(x) and
constants a and 1,=0 such that for all s with Re s = > 1, the following holds

(1.14) (n = o) [¥n(x, 5)|I* = const N**|g(s)[".

In §§2 and 3 we discuss necessary conditions for the stability estimate (1.14).
One such condition is the obvious requirement that the (pseudo)spectral method must
be stable for a scalar problem. Another one is that the homogeneous two-point boundary
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value problem (1.13) should have no eigenvalues with Re s> 7,. In § 4 we show that
a strengthened version of these necessary conditions guarantees stability. The novelty
of our sufficient stability criterion is that it deals exclusively with the properties of the
scalar model and there is no need to consider the complicated coupling of such scalar
equations through the boundary conditions (1.5c).

In the last section we demonstrate various important cases in which our sufficient
conditions for stability are satisfied and, thus, deduce stability theorems for pseudospec-
tral discretizations of the initial-boundary value system (1.1).

2. The scalar problem. The system (1.13a) decouples into n scalar equations of
the form

dA
(2.1a) sz’i=a—v+q(x)'r, -1=x=1.
dx
Here ©= dn(x, s) and a, stand for any of the corresponding components of ¥n(x, s)
and the diagonal of A, q(x) equals either q'(x) for a <0, or ¢g"'(x) for a>0, and
7=7(s) is to be determined by boundary conditions. In the scalar case, these boundary
conditions amount to prescribing the upstream values
6N(_l9s)=g(s)9 a<09
(2.1b) .
tn (1, s)=g(s), a>0.
If formula (1.14) is valid, a similar stability estimate holds for (2.1). We make the

necessary
Assumption 11 (Scalar stability). There exist a weighting pair o’ (x), " (x) and
constants a and n,=0, such that for all s with Re s =71 > n,, we have

(2.23) (ﬂ_ﬂO)llﬁN(x’ s)llzléconSt N20‘|6N(_1’ s)|29 a<0’
(2'2b) (ﬂ"’)o)"ﬁN(x, S)"2"§Const N2¢'|6N(1’ s)|29 a>0.

3. The eigenvalue problem. Connected with (1.13) is the following eigenvalue
problem:

Let P be the space of all polynomials of degree =N. We say that bePy is an
eigenfunction of (1.13) corresponding to an eigenvalue s, if d=bn(x, s)= (", d")
is a nontrivial solution of

do d ¢II

I
(3.1a) so’ = A'-E+ g'x)x",  so'= A"E—+ q" (x)s"

with boundary conditions
(3.1b) ' (-1,5)=Ld"(-1,5), &"(1,5)=Rd’'(1,s).

In order to determine whether s #0 is an eigenvalue, we proceed as follows.
Equations (3.1a) form a system of ordinary differential equations in x, depending on
a parameter s,

(3.2) (szm —A;if’)’;)¢= Q).

This can be solved by a formal series

3.3) ¢(x)=(sI—Ai)‘_ Q(x)r= § sTF1ARQM (x)g.
dx k=0
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We note that since Q(x) consists of N-degree polynomials, the sum on the right include
only the first N +1 terms. Rewriting this in the usual partitioned form, we have

LeMMA 3.1. Let P'(x,s)=p"(x,s; A") and P"(x,s)=p"(x, s; A™) denote the
diagonal matrices

Pl(xs)= T s (g (x) (AN,
(3.42) "‘:
PU(x,5)= % s7(g" (x))(A™)~
k=0

Then the polynomial solution of (2.2a) is given by
(3.4b) &' (x,5)=P'(x,5)7",  &"(x,5)=P"(x,5)7".

Substituting this expression into the boundary conditions (3.1b), we end up with
the homogeneous linear system:

P'(-1,s) -—-LP"(-1, s))( 1’)
. =0.
(3.5) (—RP'(I, s)  P"(,s) <1
Denoting the coefficient matrix by D(s)

P'(-1,s) —LP"(—l,s))

(3.62) D(s)=(_RP’(1,s) P(1,s)

we arrive at
LeEMMA 3.2. A complex number s # 0 is an eigenvalue of (3.1), if and only if,

Det[D(s)]=0.

Suppose now that an eigenvalue s exists, with Re s = n > 7,= 0. Then the corre-
sponding eigenfunction is a nonvanishing solution to the homogeneous problem (1.13)
with g =0, in contradiction to (1.14). For future reference we state this as

LeEMMA 3.3. A necessary condition for the stability estimate (1.14) to hold is that
the eigenvalue problem (3.1) has no eigenvalues s with Re s> 1,=0, i.e.,

(3.6b) Det[D(s)]#0, Res=n5>n,=0.

4. The stability estimate. Here we present a stability theorem for hyperbolic
systems with initial and boundary value conditions.

In the previous two sections we exhibited two necessary conditions for the stability
of (1.5). The first of these, (2.2), is a property of the individual scalar equations which
constitute system (1.5a). The second one, (3.6), involves the coupling of these equations
through the boundary conditions. Thus, in principle, in order to test this second
condition, one should check the boundary determinant of D(s) for each pair of the
reflection matrices L and R. However, (3.6) is implied by a much simpler condition,
which deals with the scalar equations separately and does not depend upon L and R.
Moreover, this strengthened condition turns out to guarantee stability, as we shall
presently prove.

We make the following

Assumption II1. The polynomial solution of the scalar inflow problem:

di’

dx+q’(x), a<o0

(4.1a) st'=a
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satisfies
(4.1b) |87(1, 5)|=|8"(~1,5)], Res=n>mno=0.
Similarly, in the outflow scalar case,
an"
(4.2a) stT=a—+q"(x), a>0,
dx
we have
(4.2b) |87 (=1, s)|=|8"(1,s), Res=n>no=0.

The estimates (4.1b) and (4.2b) are discrete analogues of differential estimates, as
shown in Appendix A, cf. A.11.

We can now prove

LEMMA 4.1. Let Assumptions 1, 11, and 111 hold. Then, there exists a constant 1o = 0
such that for all s with Re s = 7> n, we have

(4.3) Det [D(s)]#0.

Proof. Consider the diagonal matrix P'(x, s) of (3.4a). Its jth diagonal element
PP (x, s) is given by

ﬁ(j)( = ¢— i_ll
N(x s)=\s 4 q" (x).

That is, we have
PR(x, )
(4.4a) Pl(x,s)= .
PR(x, 5)
where pY = p(x, s) satisfies the inflow scalar equation
dﬁ(‘i)
45 pU) =
(4.5a) sp aQ; dx

+q"(x), a;<0, 1=j=l

Similarly, the diagonal matrix
PNV(x, 5)
(4.4b) P (x,5)=
PR(x,5)

consists of solutions to the outflow scalar equations

16))

dp
AG) —
(4.5b) sp U

+q"(x), a>0, I<j=n

Fix s with Re s = 7> 1= 0. We first claim that both matrices P'(~1, 5) and P"(1,s)
are nonsingular. Indeed, if for some index j, 1Sj=1, P vanishes on the left boundary
PR(-1,9)=0,

then by the scalar stability Assumption I, see (2.2a), the solution of (4.5a) vanishes
everywhere,

18R, )1 =0.
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This, however, contradicts formula (4.5a). In the same way, one shows that P”(1, s)
is regular. Hence, the matrix D(s) can be factored (here the ratio of two diagonal
matrices is understood as the diagonal of quotients):

1 _ I o
D(s)=(P(,1’s) LI:( l,s))
—RP°(1,5) P7(1,s)
(4.6)
P (-1,s)
I - —2
_ P"(1,s) (P’(—l, s) 0 )
o P'(1,s) I 0 P"(1,s))
P'(-1,s)
Next we prove that the matrix E given by
P"(-1,s)
(4.72) E(s)= ' TP
' o P'(1,s) I
P'(-1,s)
is regular, with a uniformly bounded inverse
+|R|+|L]
(4.7b) IE_I(S)|§KEu‘6|—'—I—|, Res=n>n,=0.

It is here that we make use of Assumptions I and III. Denoting

P'(1,s) P"(-1,s)
4. R =R——""— =L —"7
(4% Py CTE P
we have, by (1.3), (4.1b) and (4.2b)
(4.9) [(I-2%L)7 é—él |(I—$@)“|§;§1.
1-|R||¥ & 1-|Z||R| ™ 6
Hence, E can be inverted:
Y | 99)((1—9‘2.?)“ 0 )
(4.10a) E7(s)= (3 S (I-%R))
and the estimate (4.7b) follows:
(4.10b) |E(s)| = (2+|RP+|LP)V2 - %glﬂ’—;'—i'—L—'.

Thus, the matrix D in (4.6) is regular, being the product of regular matrices, and the
lemma is proved.

The estimate (4.10b) is, in fact, the last ingredient needed for a stability proof for
(1.5). We can state

THEOREM 4.2 (Stability). Consider the hyperbolic system (1.1a)-(1.1e), satisfying
the dissipativity Assumption 1. Then its (pseudo)spectral approximation (1.5a)-(1.5¢c) is
stable, provided that Assumptions 11 and 111 are fulfilled.

Proof. System (1.5a) consists of ! inflow equations
) dﬁ(j)

4.11 0V = q;

(4.11a) S0 ==

+q'(x)7, 1sj=1
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and n —1 outflow ones

" dﬁ(j)
(4.11b) 569 =gq; ax

+q" (x)77, I<j=n.

By the scalar stability Assumption II, each of these scalar equations is stable. That is,
there exist a weighting pair w(x)=(@'(x), ®"'(x))’ and constants a and 7,20 such
that for all s with Re s = n > n, we have for arbitrary vectors 7

(4.12a)  (n—no)||oR(x, 5)|2r =const N>*|6Q(—1,s)?, 1=j=],
(4.12b)  (n—n0)||vP(x, 5)||2» = const N**|6¥(1, ), I<j=n.
Using the spatial norm of (1.2a),
on(x, )17 = [Fn (6, $)I1E = 188 Cx, 9IS+ 158 (x, )| o
these inequalities can be added together and rewritten in concise form
(4.13)  (n—n0)|[in(x, 5)|>=const N**[[#} (-1, s)?+[¥N(1, 5)]’], Res=n>no=0.

It remains to estimate the two squared boundary terms inside the brackets on the right.
To this end we rewrite our solution in the form (cf. (4.5) and (4.11))

(4.14) 5(x, 5)=P(x, s)7!,  ¥N(x,s)=P"(x,s)z".

Inserting this in the boundary conditions (1.5c), we find, as in (3.5), that T=1(s) is
determined uniquely by

415) [:] = D(s) [:((?)]

Using (4.14), the quantities we want to estimate can be expressed in terms of the
vector T

\‘VN(—l,s)]_[P'(—l,s) 0 ][1’]
(4.16) [ a,s) ) 0 P, s) L")
From formulas (4.6) and (4.16) we deduce
(-1, S)] - [é'(S)]
4.17 =E
@1 e Sl
and, since by (4.7b) E(s) has a uniformly bounded inverse, we end up with
(4.18) FA(=1, 5)P+FN(L, s)P=Klg(s)’,  Res=7>no20.

Thus, (4.13) and (4.18) add up to (1.14), which is the definition of stability.

We note that once factorized as in (4.6), the boundary matrix D(s) is invertible,
if and only if the matrix E(s) is. Both Assumptions I and III were introduced in order
to further guarantee that E (s) is uniformly bounded; in fact, one could assume, instead,
that an s-uniform estimate like (4.7b) holds. This corresponds to the Uniform Kreiss
Condition which characterizes the stability of difference approximations to initial-
boundary value systems. The merit of Assumption III, however, is that it deals with
the scalar problem only, rather than with the intricate coupled boundary matrix E(s).

5. The Chebyshev, Legendre, and Gegenbauer pseudospectral methods. In this sec-
tion we address ourselves to the question of the stability of the most commonly used
pseudospectral methods, namely Legendre and Chebyshev collocation. We employ the
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stability criterion stated in Theorem 4.2, i.e., we shall verify that the scalar stability
Assumptions II and III hold.
The scalar model is, of course,

(5.1) s6~=a-“%!+ q(x)7(s)
with ¥ given at x =1(—1) if a> 0 (a <0), respectively.

Our results may be stated in a more general context, involving Gegenbauer
polynomials, of which Chebyshev and Legendre polynomials are particular cases. The
Gegenbauer polynomials C%"*/? are (suitably normalized) orthogonal polynomials
with respect to the weight

(5.2) w(x)=(1-x%*

in the interval —1=x=1. Thus, the Legendre polynomial Py is a multiple of C¥?,
and the Chebyshev polynomial Ty is a multiple of C%.

We shall make extensive use of the Lobatto quadrature rule, which is valid
whenever p(x) is a polynomial of degree <2N +2:

(53) [ o an="5 opis), w0

Here, xo=1 and xn., =—1 denote the endpoints of the interval of integration and the
interior points

(5.4 1>x,>%x,> xny_ 1 >xn>—1
are the zeros of the Gegenbauer polynomial C%"*?, In particular, for the Chebyshev

method these points are the zeros of T'y.,, while for the Legendre method they are
the zeros of P'y.,—this follows from the identity

d N
(5.5) —CN=2aC%H.
dx

We consider collocating the equations at the interior points x;, 1 <j = N. Then the
forcing polynomial g(x) is proportional to C%"*? and may be normalized as
Cx (%)

(5.6) q(x) = Cr0())’

in order to have q(1) =1.
THEOREM 5.1 (Scalar stability). Let —1 < a =0; then we have for s with 0<Re s =
n<H

(5.7a) n J' (1+x)w(x)|(x, s)? dx = const A(N)|5(1, s)[%, a>0,

(5.7b) n J. (1=x)w(x)|8(x, s)]? dx =const A(N)|#(-1,s), a<O0.

Here, A(N) is a power growth bound:

N7?  —1<a<0,

(5.7¢) A(N)= {N2’ a=0 (Legendre),
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and H = H(a) may be taken independent of N. For this collocation method, the weighting
pair, as required in formu:1 (1.2a), is
(5.7d) o'=1-x)1-x»)% o"=01+x)(1-x%

¢ Proof. Let us study first the case a > 0—without loss of generality we may take
a=i. Consider the Nth degree polynomial.

(5.8) z(x, s) =D(x, s)—q(x)D(1, s).

We have

(5.9a) z(x;, s) = B(x;, ), 1=j=N,

(5.9b) z(1,5)=0,

and, in view of (5.1):

(5.9¢) sz(x;, §) =d—‘iz(xj, s)+9(1,5)q'(x;) forl=j=N.

Multiply (5.9¢) by (1+Xx;)z*(x;, s)w; and sum the real parts (terms with j=0 and
j=N+1 can be included, as their contribution vanishes)

':Lﬂ.l nw;(1+x;)|2(x;, D :2(: %wj(1+xj)(7:;|z]2) (x;, 5)

+Re ( B(Ls)- T ay(1+x)7%s, s)qsv(xj)).

(5.10)

On the left of this equality we have z(x;, s) = v(x;, s), while the sums on the right are
in fact integrals, according to formula (5.3). Thus, we obtain

(5.11) ) § (1+x,~)w,~|v()9,s)]2=J'l %(1+x)w%lz|2 dx

=
1
+Re (6(1, 5) - j (1+x)wz*q'y dx) .
-1 .

Integrating by parts the first term on the right-hand side and using the Cauchy-Schwarz
inequality on the second, we conclude that

7 L (4 5)alols, oF
=3 nelef - [ 30 dx

+Re (6(1, 5) - Il (1+x)wz*qN dx)
(5.12) -

1

= [ 1@+nonrs [ s@rnonar

-1

1 1 \2

=2-|8(1, s)A(N)
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where

(5.13) . A(N)=jl ((1+x)w(x)gn(x))? dx.

o (A+x)e(x)

Note that by adding the boundary terms to the sum on the left, it can be replaced by
the corresponding integral in (5.7) and the inequality (5.12) still holds for |n|< A(N).
Also notice that all the integrals involved are proper integrals, because of the limitations
on a. It remains to show that A(N) is bounded by some power of N. A coarse bound
can be obtained immediately, by remarking that

(5.14) max |CN(x)]=CN(1) forA>0,
and therefore |q(x)| is bounded by 1 in —1 = x = 1. By a well-known extremal property

of Chebyshev polynomials [6, Thm. 2.24], the derivatives cannot grow faster than the
corresponding derivatives of Ty, and, thus, [¢'|= N 2, Hence,

(5.15) A(N)=N*F(a), F("‘)=L (1+1x-)(2a(i_1)xx)

dx.

The more delicate estimates of (5.7c) are relegated to Appendix B. The proof of (5.7b)
follows along similar lines.

We now show that the collocation methods we have described satisfy Assump-
tion III.

THEOREM 5.2. Let ¥ be a polynomial in x which satisfies

(5.16) st(x, s)=:1%6(x, s)+q(x)

where q(x) is defined by (5.6). If d(x =1, s,) =0, then Re 5, <0. In fact, { satisfies (4.1b),
i.e., Assumption 111 holds.
Proof. In a manner similar to (5.10)-(5.12) we can deduce

A d A .
(5.17) Re so(1+x;)0;|8(x;, s0)|> = (1 +xj)wjalv|2(xj, So), 1=j=N,

1

(5.18) Resoj (l+x)w|6|2dx=j (1+x)w%l6l2dx=—j

[o2((1+ X))’ dx.

From the last formula, it is obvious that Re s, <0. Because of the symmetry of g(x),

(5.19) 9(x)=gn(x) = (-1)"gn(-x),

it is clear that #(—1, s)=(—=1)6(1, —s). Consider now the rational function of s,
Re s =0, with real coefficients

(1, —s)
.20 =—
(5.20) f9)=50
The limit of | f(s)| exists uniformly as s - c0 and equals one, while on the imaginary axis
(5.21) If(s)=1,
being the quotient of a number and its conjugate. Therefore, since
(-1, s)
=(-1)N——~2
f9) =DV ZS

is regular for Re s =0, it is bounded by one in magnitude—which is Assumption III.
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With minor modifications the same proof covers the case a <0.

Finally, we can summarize this section by applying Theorem 4.2 to the scalar
results we have obtained thus far.

THEOREM 5.3 (Stability of Gegenbauer Collocation for Systems). Consider the
hyperbolic system (1.1), satisfying Assumption 1. Discretize it by collocating at the zeros
of C%'%/?, where —1<a =0. The resulting spectral method is stable, in the sense of
Lemma 1.2, with parameters defined by (5.7¢c) and (5.7d). In particular, Chebyshev and
Legendre collocation methods are stable.

Appendix A. In this section we prove several a priori bounds for the solution of
the differential system (1.1) and its scalar counterparts.

Introducing into (1.1) the new variable e”™u(x, t) and taking the Fourier transform
with respect to time, we obtain the equations

di’
A. 6 =Ar2L
(A.1a) st o
dAII
(A.1b) st = A"F';—, ~1=x=1

with boundary conditions
@' (-1,5) = La" (-1, 5)+§'(s),
4" (1, s)=Ri&"(1, s) +8" (s).

Set w’(x)=1+ex with 0= ¢ =1 yet to be determined, and multiply (A.1a) by w'd"".
After integration by parts, we find

(A2)

1

8, )12 = 0! (x)A"(x, 5)ATE (x, )|} — e j & Alul d,
-1

where n=Re s. Since €A’ is negative, the second term on the right-hand side does
not exceed (¢/(1—¢))|A| ||6"(x, s)||2* and hence
(A3) (n—no) &' (x, $)||%r = (1+ex)d""(x, 5) A8 (x, 5)| 3=,

with no=(¢/(1-¢))|Al.

We can draw two conclusions from (A.3). First, by applying it to each of the
scalar inflow equations separately, we have for all s with Re s =7> 7,, a positive
left-hand side

0<gal(1+e)ld”(1, s)P-(1-e)dV(-1,5)], 1sjs],

that is, as ;<0

“~(1)
Uu'Q,s) u(x, )

U'(-1,s)

11— I_

T1+¢

(A4)

4P (x, s)
Second, since (1+ex)A’ is negative, the inequality (A.3) yields
(A.5) (n—mo)[l&" (x, )% = (1 - )| A"| [§" (-1, 5)|*.
We can treat similarly the outflow part of the system. Choosing o™ =1—ex, we

find that

A(1+1)

1 4o (x, s)

<2"¢ I
“1+¢€’

(A.6)

£

I U”(-1,s)
#™(x, s)

u'(,s)
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and

(A7) (n =) 8" (x, $)||%n = (1-€)|A"| [§" (1, 5).

Finally, we rewrite the boundary conditions in the form
U™ (-1, 5s)

I _L___’_._
U"(1,s) (a'(—l, s)) _(é'm) Resmno
R U ! i"(1,5) ) \g"(s)/)’ S
U'(-1,s)

As in Lemma 4.1, the matrix on the left is invertible; in view of (A.4) and (A.6) the
inverse is bounded in the norm

I —L%I,,((;lf’?s)l 1 <1+(|R|+|L|) :;8
I = s
R e =
provided ¢ is chosen so that the denominator is positive. Then we have
(A-8) 6" (=1, ) +[8" (1, 5)I* = const [|§" (s)*+ (8" ()],
and together with (A.5) and (A.7) we reach
(A9) (n=mo)ld(x, s)|*=const |§(s)]’,  Res=n>n,.

Hence, the energy estimate referred to in (1.2b) follows from Parseval’s relation, with
any 1), satisfying

(IR|ILD"*-1
2RI (L)

We conclude by noting that in the dissipative case, where |R||L| <1, one may
take no= ¢ =0, and the formulas (A.4), (A.6) then lead to

|12(j)(1, S)Iélﬁ(j)(_la S)I9 1§j§l,

[49(=1, 5)|=|d9(1,5)|, I<j=n,

€
(A.10) mo=1—l4|z |Al.

(A.11)

for Res=n>0.

Appendix B. Here we evaluate (5.13), in order to obtain the asymptotic behavior
of our estimates for large N. We shall compute

[ (Hxegh)? I [(1+x)(1 =) (CH2 ()T
B1) AN J = LA A= TRy (DF 2

(Q1+x)w)
separately for a =0, the Legendre spectral method, and for —1 < a <0. In the first
case, we integrate-by-parts

(B.2) J'l (1+x)2(P't’~l+1)2 dx:P;v+1(x)P'1’;J+1(x)(1+x)2|1—1

1
_J' Py 't/~1+1(1+x)2)'dx-
-1
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Once we obtain an integral involving P’\.,, we can use Lobatto quadrature to exploit
the fact that Py, vanishes at the interior nodes. Then use the explicit estimates

11 2m
and
wo=O(N7?)

to deduce that A(N) = O(N?>).
In the second case we proceed by first estimating

AN) = J ‘ (1+x)°+2(1—x)““[(cm/”)"(x)]’ dx
o 1=Qa+Dx L(CREY?)Y()
1/2 J ! +2 [( CN?)(x )]
= 1+x)*P=x)* | —5o | dx
min (e, 1-1ad ), U H0T O [exiya
We then substitute from the Gegenbauer differential equation

(B4) (1-x)(CF?) =2(a+1)x(CFP) —(N+1)(N+2a+2)CRLG?

(B.3)

to reach

1
AN~ (e F

(B.5) —(N+1)(N+2a+2)

“ (1=x)"(1+0)2(a+ Dx(CHY?) (CFY) dx

1
: J (1= (14 x) CRAY2(CREy dx].
-1

In this expression, the second integral vanishes by orthogonality, and the first may be
evaluated by Lobatto quadrature:

(B AN~z 200 (CRAPDCRLYD.

As (1+x)C%®/? vanishes at the nodes xj, 1=j<N+1, we can compute wo:
_ J" (1-x)*(1+x)C& I (x) dx

) 2057°2(1) ’

(B.7)

which we estimate by the means of (5.14). Finally, we obtain
(B.8) A(N)=O(N~*®)

in accordance with formula (5.7¢).
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