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ANALYSIS OF THE SPECTRAL VANISHING VISCOSITY METHOD FOR
PERIODIC CONSERVATION LAWS*

YVON MADAYt Anp EITAN TADMOR:

Abstract. The convergence of the spectral vanishing method for both the spectral and pseudospectral
discretizations of the inviscid Burgers’ equation is analyzed. It is proved that this kind of vanishing viscosity
is responsible for a spectral decay of those Fourier coefficients located toward the end of the computed
spectrum; consequently, the discretization error is shown to be spectrally small, independently of whether
or not the underlying solution is smooth. This in turn implies that the numerical solution remains uniformly
bounded and convergence follows by compensated compactness arguments.
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Introduction. In this paper, we extend the analysis of the spectral vanishing
viscosity method for stabilizing spectral approximations of nonlinear conservation
laws. Spectral vanishing viscosity was introduced in [3], where L™-bounded spectral-
Galerkin approximations are shown to converge strongly in L7,.(x, t) to the exact
entropy solutions of such conservation laws.

The analysis is performed on the 27 -periodic inviscid Burgers’ equation

:} o (u(x, t))

: — H+—|——) =
(L.1) 2 un 0+ () <o,
submitted to the additional entropy condition

8 [u(x, t)) 3 <u3(x, t))

1.2 ——=)+—(—=])=0

(12) at( 2 89X 3 ’

which singles out the unique “physically relevant” weak solution of (1.1). Both the
spectral-Galerkin and pseudospectral-collocation methods for (1.1), (1.2) are treated,
and to this end we proceed as follows.

Denote by Syu(x, t) the spectral-Fourier projection of u(x, t),

27

(1.3) Snu(x, )= % d(k 1) e™,  d(k1) =2_17;' J u(x, t) e ™ dx,

lkl=N 0

and let Iyu(x, t) denote the pseudospectral-Fourier projection of u(x, t), which inter-
polate u(x, t) at the 2N +1 equidistant collocation points x, = vh, h=27/(2N +1),
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»=0,-,2N,
) h 2N .
(1.4) Iv(x, )= Y d(kt)e™, d(k=z—-3 u(x,,1)e ™
[KI=N 27 2o

These two projection operators differ by aliasing error—that is, we have

(1.5) Iy=SN+AN

where the aliasing projection Ay is given by [2]

(1.6) Anu(x, t)= Y [Z d(k+j2N+1), t)] e,
ki=N Lj=o

Throughout this paper, we use
(1.7) Py=Sy+a Ay

as a concise notation for the two kinds of Fourier projections: those having either
a =0, corresponding to the spectral projection, or a =1, which corresponds to the
pseudospectral interpolation.

We approximate the Fourier projection of the exact solution Pyu(x,t), by an
N-trigonometric polynomial uy(x, t),
(1.8) un(x, )= ¥ (1) ™,

lkl=N

which is determined by the approximate evolution equation
d 5] 1 0 a
1.9 — L t)+— | Py ua ,t)= ——( — ,t).
(1.9) at un(x, t) ax( NzuN(x ) Eax QNax un(x, 1)

The expression on the right-hand side of (1.9) represents the spectral vanishing viscosity
term. Here Qy is the spectral viscosity operator defined as a convolution with a
symmetric viscosity kernel Qn(x),

(1.10) oNf);uN(x,t)aQN<x>*aiuN<x,r), On(x)= 3 O(k) ™.
X |k|=N

In the spectral case where a =0, (1.9) amounts to

a a 1 0 0
—un(x, )+— | Sy=un(x, t) | =e— x)*—un(x, t) |,
o ~(x, 1) ax[ N n( )] ax[QN( ) o N )]
consisting of a nonlinear system of ordinary differential equations for the Fourier
coefficients i, (¢) that are coupled through the standard spectral convolution treatment
of the nonlinear term. The interpretation of scheme (1.9) in the pseudospectral case,
where a =1, leads us to

—e-uN(x,,, t)+—‘?—[IN—lui,(x, t)] :e—a—[QN(x)*—a—uN(x, t)] , 0=sv=2N,
ot ax 2 Ix=x, ax 9x Ix=x,
and consists in a complete statement of a standard collocation method with a pseudo-
spectral treatment of the nonlinear term.

In both the spectral and pseudospectral cases, the spectral viscosity operator can
be efficiently implemented in the Fourier rather than the physical space, i.e.,

ei(oNg";um, r)) Ee;’; [QNu) *a—‘l-um, r)] =—er Y KOk (1) e

k=N
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An essential feature of our spectral viscosity operator Qu is that it should operate
only on the high portion of the spectrum to retain the formal spectral accuracy of the
method. Hence we make the following assumption.

AssumpTiOoN 1. There exists a constant m = m(N) <%N, such that

O(k)=0, k| <m,
0=Q0(k)=1, m=|k|=2m,
(k) =1, 2m<|k|=N.

Then, with QN =1 —R,,, we can rewrite (1.9) as

0 [e) 1 0 [s]
1.11 — +—| Pv=ux(x,t))=e—|(I-R,)— t
( ) ot un(x, t) 8x< N2“N(xa )) Eax [( ’")ax un(x, )]

where the corresponding kernel R,,(x),
(1.12) R.(x)= T R(k)e™,

|k|=2m
is a trigonometric polynomial of degree less than or equal to 2m, with Fourier coefficients
R(k)=1, |k| < m,

(1.13) A
0=R(k)=1, m=|k|=2m.

To guarantee the uniform boundedness of our approximation u(x, t), we need to
control the size of this kernel; we therefore make the following assumption.
AssumpTiON II. There exists a constant such that

(1.14) IR ()|l '(x)= Const.log m.

We remark that the assumption of a logarithmic upper bound for the size of R, (x) is
plausible, since typical applications involve R(k) that decrease monotonically to zero
and (1.14) is automatically fulfilled in such cases (see Appendix A). To obtain, with
the help of Assumption II, the promised uniform bound on uy(x,t), we need
L*-bounded initial data, ux(x, 0). For technical reasons we shall need a slightly
stronger assumption.

AssumpTioN III. There exists a constant such that

lun(x, t=0)] 10 = |k|§N |t (t = 0)] = Const,.

The spectral viscosity term on the right of (1.11) depends on two free parameters:
the viscosity amplitude £¢=¢e(N) and the effective size of the inviscid spectrum
m=m(N). These two parameters should be chosen to ensure the convergence of the
method. In [3] it is proved that in the absence of such a viscosity term ¢ =0, strong
as well as weak convergence to the exact entropy solution fails.

The main result of this paper asserts the following theorem.

THeEOREM 1.1. Consider the Fourier approximation (1.11) of either spectral or
pseudospectral type. Let the spectral viscosity in (1.12)-(1.14) be parameterized with
(&, m) as follows:

1
m* - [ Ru (1w’

Then un(x, t) converges boundedly almost everywhere to the unique entropy solution of
the conservation law (1.1).

1
(1.15) e=e(m)~a m=m(N)~ Const. N?, 0<ﬂ<:1'
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Let us examine, for example, the viscosity operator Qn =1 —S,,. Here R, (x)
coincides with Dirichlet kernel D,,(x), where [5, Chap. II]

D(x)= ¥ e,.kxEsin(m+%)x

4
R D, (- ~—log m,
2 2 sin %x " i ( )" L'(x) - g

so that Assumption II is fulfilled and Theorem 1.1 yields the following corollary.
CoRroOLLARY 1.2. Consider the Fourier approximation

(1.16) %uN(x N+- (PN wA(x, t))=gaix[(1—sm)aixuN(x, z)],

with
log N’

(1.17) ¢ =¢&(N)~Const. m=m(N)~Const. N°, 0<g <i.
Then un(x, t) converges boundedly almost everywhere to the unique entropy solution of
the conservation law (1.1).

The spectral portion of this result (a =0) is derived in [3, Thm. 4.1] under the
assumption that the numerical solution ux(x,t) remains uniformly bounded. The
extension of Corollary 1.2 includes the pseudospectral approximation (a =1), and in
addition, because of the slightly more stringent parametrization than that of [3, Thm.
4.1], contains a proof of the previously assumed L™-bound.

In the last example the viscosity symbols é(k) are discontinuous at |k| = m. It is
suggested in [3] that the use of viscosity operators Qn with smoothly varying symbols
would be advantageous for the spectral viscosity method in (1.9). As our second and
final example we consider the simplest viscosity operator of this type, namely

Q(k)=0, k| <m,

k
[k —m , m=|k|=2m,

Q(k) =

Ok)=1, 2m<|k|= N.

This kind of spectral viscosity is intimately related to the Fejér operator F,, =
(1/m) - ka;(; Sy if we let K,,(x) denote the corresponding Fejér kernel [3, Chap. III]

k in 3mx\°
K.(x)= ¥ (l_l}l) =2<sm- ,,:x) 1K ()l 21y =

|k|=m 2 sin 3x

then for Qn = I —R,, we have R, (x) =2K,,,(x) — K,,(x). Hence the kernel associated
with

is L'-uniformly bounded:
1R ()1 22 = 20 Kom () 166 + 1 K (]| 1) = 3,

so that Assumption II is fulfilled and Theorem 1.1 yields the following corollary.
CoroLLARY 1.3. Consider the Fourier approximation

(1.18) —uN(x 0+ x(PN-zluN(x t))_8£[<1—l 2"'z's,<) u, (, z)]



858 Y. MADAY AND E. TADMOR

with
(1.19) e=¢g(N)~Const. N"** m=m(N)~Const. N®, 0<p<j.

Then un(x, t) converges boundedly almost everywhere to the unique entropy solution of
the conservation law (1.1).

The paper is organized as follows. In § 2 we derive some basic L*-type a priori
energy estimates. In § 3 these estimates are used to study the spectral decay rate of
the Fourier coefficients. This enables us to obtain an L™ a priori estimate on the
numerical solution in § 4. Finally, on the basis of the a priori estimates prepared in
§§ 2-4, Theorem 1.1 is proved in § 5 along the lines of [3], using compensated
compactness arguments.

2. L’-type a priori estimates. We consider the approximate Fourier method (1.9),
which we rewrite as

3 3 (1 F) 1 F) F)
2.1 Zun+— v ) == (T=-Py)Zu% |+e— = =I+IL
(2.1) at "N T ox (2 u”) ax [( N)z u”] ©ox [QNax uN]

To prove the convergence of this method we need some a priori estimates on its
solution. To this end, we multiply (2.1) by uy:

9 (1 ,),0 (1 ] 1 3 3
5(5u§>+a—x(§u3\/)=uNa—x[(1—PN)§u§vj|+8MN3;[QNa—xuN]

(2.2)
=TI+1V,

and integrate over a 2w-period: the integral of the second term on the left vanishes
by periodicity, and after integration by parts for the second term on the right we are
left with

1d S E)
__”uN(',t)”iz(x)-'_sJ —un(x, t)Qn—un(x, t) dx
o 0X 0x

2dt
2 3 1

Using (1.7) and the fact that I — Sy is orthogonal to our N-space, we find that the
right-hand side of (2.3) equals

JZW a[(l P)luz]d JH B[A 1 2]dx
Un— - = x=—a- Un— —u
Nax N2 N o Nax N2 N

0
T
a3 i ip(Angid)

IlpI=N p

(2.3)

and by the aliasing relation (1.6), this does not exceed

2

i 9 1 a la|N

un— | (I-P —uz]dx=— iph i i, =—— ii,| |4, |4,
J; Nax [( N)2 N 2|p+q+rIZ=2N+1 P P 2 |p+q+r|Z=2N+l| p|| qll |

In view of |p+q+r|=2N+1, at least two of the three indices |p|= N, |q|= N, and
|r|= N are greater in absolute value than N/2, and hence
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2w
9 1 4|al
un— | (I=P —uz]dxé— i i, ||, _
[Tz u-roda]a=t x el ol
4|a| 1/2
<

1/2
7[ Y pal X qzlﬁqlz] [ ) ) |ﬁt(2N+l)—(p+q)|2]
N/2=|p|=N N/2=[q|=N N/2=|p|=N N/2=|q|=N

Consequently, since é(p) =Q(q)=1 for |pl, |gl= N/2, the expression on the right of
(2.3) can be upper-bounded by

2

4a|
N2

’ ”uN(', t)”Lz(x)-

2 a[ 1 ] 3
2.4 —|(I-Px)zuy | dx= —un(-,t
(2.4a) L uNax ( N)2uN X QNax un (-, 1) .

A

Moreover, since 0= Q(k) =1, for the second term on the left of (2.3) we have

2 9 9 “ R
€ I —un(x, )Qn—un(x, t)dx=¢ Y K Q(k)|d(t)]
o 0Xx 0x |k|=N

(2.4b)

2
=€

d
Ov—_un(-, 1)
ox LZ(X)
Inserting this together with (2.4a) into (2.3), we end up with

2

4la|

—WZ' =0.

L*(x)

1d ]
(2.5) EEHUN(‘,I)”%_Z()()"‘[G ”uN(',t)”LZ(x):I : QNa—xuN(',t)

Thus, as long as

4a 2
(2.6) 8—W||uw(',t)||ﬁ(x>>5,
we obtain
d 2 9 2 <
2.7) Et— lun (-, 0| Lz(x)+8”QNa_x un (-, 1l 12 =0.

In particular, (2.7) implies that for un(x, 1) =¥ =~ #(t) ™* we have our first L*-type
a priori estimate

(28) ”uN(,t)”iZ(x)z Z |ﬁk(t)|2§E?), E():”uN(',t=0)||L2(x)§COnSt0.

|k|=N

Hence (2.6), (2.7), and consequently (2.8) prevail for all time provided (2.6) is valid
at t =0, i.e., we require that in the pseudospectral case, where a =1, we have

(2.9) e(N)>8E,- N2,

Indeed, Assumption II tells us that this requirement is fulfilled, at least for sufficiently
large N, for

(2.10) & > Const. logN>8 “E,- N7Y2 28 <5

Furthermore, temporal integration of (2.7) then gives us the second a priori estimate
] 2 R

(2.11) oS QN_uN =& J Z kZIQ(k)ﬁk(t)lz dté]g, JOECOHStO.
9x Llpe(x0) ¢ m<ikl=N
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3. The decay rate of the Fourier coefficients. Our Fourier approximation (2.1)

(3.1) aituN'i_aix(%uiI)=£[(1_PN)%“%]+8£;[QN£’JN:|,
consists of two kinds of errors. The first term, I =(8/9x)[(I — Py )3u’N], represents the
discretization error, which includes spectral truncation errors (8/9x)[(I — Sy )3ux] as
well as additional aliasing errors —a- (3/9x)[An3u’] in the pseudospectral case. In
this section, we borrow from Kreiss [1], to show that, due to the second error term of
spectral vanishing viscosity, II=€(3/9x)[ Qn(3/3x)un], there is spectral decay of the
Fourier coefficients |, (t)|, |k|>3N, and therefore, the discretization error is spectrally

small.
We begin by taking the I—S,, projection of (1.9). For k> m we have, by

Assumption I, (I —S,;)Qn =1 — S, and hence

d d 1

3 [(I =Sy )un]+ (I —Sa) P [PNE U%I:I
(3.2)

d d
=€_[(1"‘Szk)_uN], m<k=N.
0x ox
Multiplying by (I — S, )un and integrating by parts over a 2-period, we find that
1 d 1 2m 3
S (I = Sau)un(-, t)”iZ(x):E L (I“Szk)a un - (I = Syi) Pauiy dx
(3.3)
d
_8“(I_SZk) a un (-, t)||iz(x).

The first integral on the right does not exceed

1% E]
5 (I_S2k)a_xuN'(I—SZk)PNu?\I dx
0

3.4)
(I = Sao) Prui (-, ] 2y

1 0
=5“(I—S2k)£ un(-,t)

L (x)

To estimate the second term of the last product, we use the following lemma,
whose proof is postponed to the end of this section.

LEmMA 3.1. Let fy=fn(x) and gn = gn(x) be two N-trigonometric polynomials.
Then for any 0<2k < N we have

||(I = S)Pn (ngN)” L3 (x)

(3.5)
*llgnll 2 -
L°(x)

Lz(x)]

'(I—soaixf,v

2 )
é\/_El:”fN“Lz(x)' (I_Sk)g;gN
Lemma 3.1 with fy(+) =gn(+)=un(-, t) implies

<I—Sk>§uN<‘,t>

4
(3.6) [|[(I=Sa) Paun(-, 1) Lz(x)éﬁ lun (-, Ol L2 -

L(x)
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Equipped with (3.4), (3.6), and (2.8), we return to (3.3) to find that

2

d 9
E (I = Sa)un(-, t)HZLZ(x)é“E (I“Szk)a un(-, 1)

N | =

L*(x)

(3.7)

+ un(-, 1)

L? ’
(x)

(I“Sk)aixuN(', t)

—E
\/E 0
which brings us to the following theorem.

THEOREM 3.2. For any integer s = 0 there exists a constant C; = Const. (s, E,), such
that for sufficiently large N, N >2°- 4m, we have

1 ’ 1 ’ —4-87-eN%t
(38) ”(I—SN/Z)uN(" t)” L2(x) = CS : [(ﬁ) +(1 +ﬁ> ¢ ]

Proof. Let E,(t) abbreviate the quantity

L(x)

(3.9) E ()= |(I-=S)un(-, )| 12x)-

In view of the inverse inequalities

= NEZk(t)a

L*(x)

0
. ZkEzk(t)gu(I“Szk) un(-, 1)
0x

it follows from (3.7) that E,(t) satisfies

2E,- N?

d
- Ezk(t) = _4€k2E2k(t) +

(3.10) r

Temporal integration yields that for any 0 < t,<t we have

2E,- N* [ 2 2
(3.11) E(t)==—"+— e UTIE (1) dr+ e %0 L B (1),
\/E T=1gy
and therefore
: EO —4ek2(t—t,)
(3.12) Ezk(t)—z Jk- k2 © max E(1)+e o+ Exi(to).
The a priori estimate (2.8) implies that

max E, (7)< max E,(7)=E,,
o=r=t o=r=t

and in view of (3.12) we have
2

E,- p-tekt
(3.13), Ezk(t)_zJ_ ot By, k>m.

If we choose t,=1/2 in (3.12) we find that

EO ) N2 —2ek2t t
(3.14) Ezk(t)ém‘ max E(7)+e “Ex =), k> m,
vk -

t/2=7=t 2
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and following Kreiss [1], we can use this to improve our estimate (3.13). Namely, for
k>2m we can use (3.13), to upper-bound the terms max, E,(7) and E,,(t/2) on the
right of (3.14), and obtain the improved bound

8E, - N?\? 8E,- N? ol 2
EZk(t)<<—8\/Tc-‘ k2) - Ey+ l+m e 2 Lt E,, k>2m.
Now we can repeat this process, and by induction we obtain that for k> 2°- m we have
8°E, Nz)”‘ ( 8°E, - NZ)S I
15 E H=|——- CE4 | 1+———— 4-87%-gk?t | .
(3 ) 2k() <€\/E‘k2 0 5\/7(--1(2 e EO

Verification of the induction step is left to the Appendices. Finally, (3.15) implies that
for sufficiently large k= N/4>2°- m we have

(I = Sn/2)un(-, ] 1260 = En,2(t)

32 M 8S M EO s+l ( 32 * SS * Eo)s _4.R-5. 2
=l — CE 1+ //—————= 4-87eNu  p
( eVN ) ° N )€ o

and (3.8) follows.
Our parameterization in (1.14), (1.15) implies that for sufficiently large N we have

2-28
1
4-87°-eN2t=Const. —————— 1= N*>.1  0<2B8<-=
- ons 18 log N . B 5
as well as
1 log N 1 1
- NéCOHSt.mé']‘V—;, 0<7<'2""2B,

and Theorem 3.2 leads to the following corollary.
CoROLLARY 3.3. For any integer s =0 there exists a constant C, such that

(3.16) 1T = Sny2)un (-, Ol 20 =G (N_S+e_N3/2"),
Corollary 3.3 indicates the spectral decay of the Fourier coefficients |i#(k)| with

wavenumbers |k| = 3N, which ini turn implies a similar decay for the discretization error
I on the right of (3.1). For the latter we have

(3.17) ”(I_PN)%VZN(‘, t)”iZ(x)E ||(I"SN)%U%~J(', t)”iz(x)-i_az”AN%u%\l('a t)”sz(x)'

The Fourier coefficients of the two expressions on the right are given, respectively, by

/12\ 1 A
((1—sN>5uN(-,t))k=5 400, k>N

ptq—k=

/\

1 1 N "

(Ag(0) =3 = gwam, k=N

2 k 2 |p+q—k|=2N+1

In both cases, either |p|> N/2 or |q|> N/2; hence each one of these coefficients can

be upper-bounded in a standard fashion to yield

2 2
+a’

L(x)

1

(I—SN)%u%w,t)

L*(x)

A

e xaor]| s jaor]

N=lk|=2N |plI=N/2

=4E;- N- (T =Sn/2)un(-, t)||iz(x);
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by (3.17) this is the same as
(3.18) (I =Pn)zun (-, Ol 120 =2Eo - VN - [|[(I = Sny2)un (5 O] 1206 -

Corollary 3.3, together with (3.18), shows that due to the presence of the spectral
viscosity term II on the right of (2.1), the discretization error I decays to zero at a
spectral rate independently whether or not the underlying solution is smooth. We state
this as our next corollary.

CoROLLARY 3.4. For any integer s =0 there exists a constant C, such that for
sufficiently large N we have

(3.19) [ I=[I-Py)3A(, D2 =C,- VN - (N +e N0 s=o.
We close this section with the promised proof.
Proof of Lemma 3.1. Starting with the identity
Snen=InT =S )gn + T =S )fn Sign + Sifn - Sign
and subtracting from this (I — S,,) Px[Sifn - Sign]= (I = S5)[Sifn - Skgn]1=0, we can
write
(I = S2) Pn(fngn) =T = S5 ) Py [ fn (T = Si)gn + (T = Si)fnv - Sign]-

The quantity inside the right brackets is a trigonometric polynomial of degree less than
or equal to 2N,-and hence, by the Parseval relation, its L*(x) norm dominates the
L*(x) norm of its Py projection, i.e.,

(1 = S21) P (fngNI 2y S NIPNE- - - T 2
= /ANUT=S)gn + T =S)fn - Signll 2o
The norm on the right of (3.20) is upper-bounded by
/N (T = Si)gn + (T =Si)fn - Signll L2
= [l 2eo - 1= S)gnll coeo Tl gnll 2o - 1= Sfn | o -

Finally, for hy equal to either fy or gy, we have

||(I_Sk)hN||L°°(x)é Z ”;pl

|pl>k

L) L] <Gl
= - . h <—=|(I-S)—h
|,,|§>:kp2 lmz>kp| 7 vk ( k)ax Y
and (3.5) follows from (3.20)-(3.22).

4. L™ a priori estimate. The classical energy method can be used to show that
the solution of (2.1) remains uniformly bounded during a small finite time. The method
reflects the fact that for sufficiently smooth initial data, say with (3>/0x*)un(x, t =0)
that are L>-bounded, the process of shock formation takes a finite time, during which
(8/8x)un(x, t) remains uniformly bounded and a few Sobolev norms could be a priori
estimated during that time.

For brief initial time intervals, we can do better with regard to the smoothness of
the initial data, as Lemma 4.1 shows.

LeEMMA 4.1. Consider the Fourier approximation (1.11)-(1.14) with initial data
un(x, t =0) such that Assumption 111 holds, i.e., .

(4.1) Y |d(t=0)| = Const,.

|k|=N

(3.20)

(3.21)

(3.22)

L¥(x)
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Then for t <1/ N we have

1
42 S0l =2 =0l = Consy N
(4.2) lun (5 Ol =0 |< L i )l 8 Consty * N

Proof. The Fourier transform of (1.9) reads:

(4.3) —q‘ﬁk(t)+ik[ Y a,(nid,(t)ta- x ﬁ,,(t)ﬁq(t)]=—akzé(k)ﬁk(t).

dt ptq=k |p+q—k|=2N+1

Multiply the real (respectively, imaginary) part of this by sgn (Re #,(#)) (respectively,
sgn (Im #,(¢))) and sum over all k’s: since the right-hand side is negative, after summing

both parts we obtain

d
; !uk(t)l<(1+|al) 2N- Z Iup(t)l'glﬁk—p(t)l
(4.4)

=an-( 3 mk(rn) .
|k|I=N
Integration in time yields

1
A © X (=0,
1=4Nt- ¥ < (1= 0)] IkI§N| ¢ |

flunC:, O = (x)— ’uk(t)i——

and (4.2) follows.

To obtain an L™ bound for later time, we shall carefully iterate on the L”(x)
norms of un(x,t). To this end, we multiply (2.1) by pu® ' and integrate over the
2ar-period, obtaining

d + xX=2m
E““N(‘,’)“f"(xﬁp uli(x, D355

2 ) 1 2 3 3
=p-j uﬁ"'a—x[(I—PN)Eui\,] dx+p-J’ uﬁ,"e(;;[QNg;uN] dx.
0 0

By Corollary 3.4, the discretization error is negligibly small. Using (3.19) and the fact
that (I - Py )su’ is a trigonometric polynomial of degree less than or equal to 2N, we
have for any s=0

(4.5)

=V2N - ”_a_ [(I—PN)lui,(‘, t)]
ax 2

9 1,
5;[(1‘1’»/)5"»/( ,l)]

L"(x) L3(x)

(4.6) 2 -5 —N¥2.¢
=CN?> (N +e ).

Therefore, by the Holder inequality, the first integral on the right of (4.5) does not exceed

27 9 1
p J u”N_la-;[(I—PN)Eu?v] dx

0

(4.7) =p- ulCL 0l vo| =

[(I PN) uN( )]

L"(x)

. N, 11
Sp-Jun (Ol - Cor (N4 N7 N0, s,
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The second integral on the right of (4.5), with Qn =1 — R,,, equals

29 9 P
: Lle—|(I~R,)—u ]d
p J Un Eax[( )ax N | X

0

2m du 2 27 02

=—gp(p-1)- J uk? (—ﬂ) dx—ep- J ul' — (R,uy) dx.

o ax 0 ox

The first term on the right-hand side is negative for any even integer p = 2; for the
second term we use the Holder inequality as before, obtaining

2 a2

uf! Xl (Ruun) dx = epllun (-, DI E7) -

02
2 (Rnun)

(4.8a) ep- J

0 L (x)

Now, since R,,un = R,,,(x) * un(x, t) is a trigonometric polynomial of degree less than
or equal to 2m (see (1.12)), we can estimate the L”(x) norm of its derivatives as follows
[5, Chap. X]:

82

— (R, u
Py (Rnun)

=2m)* - |Ru(-) * un (-, )] 1re)

L"(x)
=4m?|| Ry ()l ey Nun (-, Ol 0y -

Using (4.8a) and (4.8b) we conclude that the second integral on the right of (4.5) is
upper-bounded by

(4.8b)

2w B 9 (9
@) p [ Turte 2 ouclun | axsap em IRAC o s 0
0

We recall that, according to our parameterization (1.15), em” - | R,.(- )| .'(x)= . Hence,
equipped with (4.7) and (4.9), we return to (4.5) to find that

_ d
plun(-, Ol 2r " flun (-, Ol Lre)

=pllun (-, O] friol4a Jlun (-, Ol o+ Cor (NP4 N2 e N0,

or, after division by the common factor of p|lux (-, t)|| 7,
d . _N3/2.
- ”uN(', t)||,_n(x)§4a . ”uN(', t)”L"(x)+ Cs . (N2 ’ +N2 e N I).
dt

Finally, we integrate in time, obtaining by Gronwall’s inequality that for any 0=, =1,
fun (-, O] ro = et

un -, t)llreo+ Cor (NP7 - (1= 1) +V/N - e N )],
If we let p even tend to infinity, then (4.10) with t,=t,(N)=1/(8 Const, - N) gives us
(4.11) Jlun (-, Ol i=co=e** - [llun (-, to)| L=+ Cs(N*7* - t+V N e‘C"“S"‘m)]

and together with Lemma 4.1 we conclude with the desired L™ bound.
THueOREM 4.2. Consider the Fourier approximation (1.11)-(1.14). Then for any s =0
there exist constants a >0 and C, such that

(4.12)

(4.10)

||uN(',t)||L"(x):<—‘(’4ar'[4' Z Iﬁk(t:O)E+Cs+2'(N_s'I+ ]\T e*(‘onsl.wN)]'
N

|k|=
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Remarks. (1) We observe that the exponential time growth in (4.12) does not
exceed 4a, where @ ~em” - | R,.(*)]|| .'(x)= Const.

(2) The a priori L”(x) estimate derived in (4.10) is valid for arbitrary L*>-bounded
initial data. We note, however, that the resulting L™ bound in such case is not uniform
with respect to the initial time t,. That is, with arbitrary L*-bounded initial data, the
solution [Jun (-, t)| ;=) may still grow by a factor of O(v'N). The point made in
Lemma 4.1 is that, with slightly strengthened regularity assumption on the initial data,

Y |#(t=0)|=Const,,
|k|I=N
this growth is bounded for a brief time interval of length ~1/ N, after which the spectral
viscosity becomes effective and guarantees the L™ bound later.

5. Convergence to the entropy solution. We follow [3], using compensated compact-
ness arguments to conclude that uy (x, t) converges to the entropy solution of (1.1), (1.2).

Proof of Theorem 1.1. Consider the four terms on the right-hand side of (2.1) and
(2.2). Using (3.18) together with (2.11) along the lines of [3, Lemma 3.1], we find that
term I satisfies

Ol r—pl ..
I=(~)x[(1 PN)2uN(,t):|

(51) . 1 Hge(x,1) 1
=\(I-Px)=ui (-, t =4E, Jy ————— 0
l( N) 2 un(-,t) e 0°Jo 2 (N) - Nm

Also, by the a priori estimate (2.11) we have

e o]

ax ax

H joc(x,1)

(5'2)

Q —Uu
Nax N

=€

éVE(N)'JON_’O-

Lipe(x,1)

Thus, in view of (5.1) and (5.2), terms I and II on the right of (2.1) belong to the
compact of Hi(x, t).

Next we note that since Qn + R,, =1 we have
9
9x

F)
U
ax N

+ve

Lie(x,0)

=Ve

Lige(x,1)

\/:9— (RmuN)

0
OnT-un
ox Lie(x,0)
The first term on the right is bounded by Jy; the second one—being the derivative of
a trigonometric polynomial of degree less than or equal to 2m—does not exceed
Ve - 2m- |lun|| 2. = Const. Consequently,
IS}

—uy
ax

= Const.
Le(x,0)

(5.3) Ve

Equipped with (5.3) we now turn to consider the right-hand side of (2.2). For the third
term in (2.2),

E) 1
I = un [(I—PN) 5 u%v]

(5.4a) .
J 5 d
=— — - — e - (I—-P,
ax [”N(l PN)zule ax un - ( N)

1
Eui, =111, + 111,



THE SPECTRAL VISCOSITY METHOD FOR CONSERVATION LAWS 867

by Theorem 4.2 and estimate (5.1) we have

0 1
I, =— I—-Py) = u?
1 ax[”N( N)2uN]

Hige(x0
1 2
(5.4b) = uN(I‘—PN)_uN
2 Line(x.0)
1 2
é””N(',t)”L‘”(x)' '(I_PN)EuN N — 0,
Lio(xn N7
and together with (5.3) we also have
] 1
ML=—uy' (I —Py)=u3
H 2 ax ~e( ~N) 5 un e

1

L(x,0) Ve
! 0

- 50
e(N) VN Nowx

(5.4¢) =Ve (I—PN)%u?v

9
ax ™

Lie(x.1)
=Const - 4EyJ, -
Finally, for the fourth term in (2.2),

J d
Iv= — —
EuN6x (QNax UN)
(5.5a)
ax ax

we have by (2.8), (2.11), and the uniform bound in Theorem 4.2,

d d d d
=& — [uNQN_‘uN] —e—un' Qn—un =1V, +1V,,
ox 0x

(5.5b)

d d
IVi=e— —
1 £6x [uNQN ax uN]

while 1V,= —¢[Qn 3/dx unT*+e(I — Qn) 3/dx un - Qn 3/3x un satisfies

élluN(',t)”Lm(x)-\/g(N).JON__WZO’

Higt(x,1)

2
ITVall Lty =€

]
—u
QN&x N

Lio(x,0)

+Ve Ve

Lie(x,1)
éj(2)+\/_€_ * 2m : E() * J0§C0nst.

Therefore, (5.4), (5.5) together with Murat’s Lemma [4] imply that the terms III and
IV are also in the compact of Hw(x, t). In summary, we have shown that the right-hand
sides of (2.1), (2.2) lie in the compact of H,.(x, t), and, according to Theorem 4.2,
that |un (-, t)|| L=, is bounded (in fact, |ux || L7,y With p> 6 will do for our purpose).
Hence we can apply the div-curl lemma [4] to the left-hand sides of (2.1), (2.2) and
obtain that (a subsequence of) un(x, t) converges strongly in L% (x, t) to a weak limit
solution #(x, t).

Moreover, we claim that this limit is the entropy solution of (1.1). To verify this
claim we show that the right-hand side of (2.2), IIT+1V, tends weakly to a negative
measure. Indeed, by (5.4) and (5.5b) the terms III and 1V, tend weakly to zero, and
hence it remains to show that the term IV,,

[e] [e] 0 0
IV,=—e—un - OQvn—un=—e(Qn+R,) - un' Qv Un, OvtR, =1,
ax ox ax ax

ad 0
Rm——u ——Uu
ax N QN&X N

Lipe(x,0)
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tends weakly to a negative measure. To this end we proceed as in [3, § 4] and rewrite
1V, in the form
(5.6) IV l:Qau:I2 a[a(Ru)Qu]Jr az(Ru)Qu
. =—g — —e— | — (R, . — (R : .
2 Nax N ax | ax N NUN 3ax2 N NUN

Denote the three terms on the right of (5.6) by IV,,, IV,,, and 1V,;, respectively. By
(2.11); IV,, tends weakly to a negative measure

2
(5.7a) w lim [Ivzlz—s[QN—a—uN] ]go.
N - ax

If we integrate the second term, IV,,, against any Cjy test function ¢(x, t), we find

0 0
J J’ l// IV22dxdt§8J J a-‘xd‘/'_“(RmuN) . QNuN dx dt
X t x t
Y
=¥ 6— ”—(R uy) ”QN“N" Li(x,1)s
XN Lgexn Lie(x,0)

and since R,uy is a trigonometric polynomial of degree less than or equal to 2m, this
is less than

2m- (lun |2z 0
Lige(x,1)

J’ J Y- IV, dxdi=e- 2—1'/1

X
(5.7b)

= Const. 0.

—
m(N) N>
Finally, for the third term

2 2

0 d
IV23—£ 2(R un) - QN(“N_u)+£ 2(R un) * QN =1V, + 1V,

we have

2

IV231—5 0 (R uy) - On(uy —it)

Lioce(,1)

(5.7¢) e 4m’ - | Ryun || oo * lun =il 2
=Const. [|un =i 12,x0— 0,

and since eR,,uy - Qnil tends weakly to zero, so does the term IV,;,,

82
(5.7d) w lim [IV232— ET 2 (R uN) QNu]

N -0

From (5.7a)-(5.7d) we conclude that term IV, in (5.6)—and therefore the right-hand
side of (2.2)—tends weakly to a negative measure. Thus by taking the weak limit of
(2.2) we recover (1.2) for our limit solution #(x, t). Consequently, the strong L}, limit
of un(x, t)=1ii(x, t) is the unique entropy solution of (1.1) as asserted.

Appendix A. The L'-logarithmic bound of monotone viscosity kernels. We consider
symmetric viscosity kernels of the form

On(x)= 3 Qk)e™+ ¥ o™,

|k|=2m 2m<|k|=N
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with monotonically increasing Fourier coefficients. Then the kernels that correspond
to R, =1 — Qu are symmetric polynomials of degree less than or equal to 2m,

(A1) R.(x)=2- Y R(k) cos kx

|k|=2m
whose Fourier coefficients are monotonically decreasing (compare (1.13)),
(A2) 1= R(k)|=0.

Such kernels satisfy Assumption II, as shown by Lemma Al.
LEMMA Al. There exists a constant such that

(A3) ”Rm()” L'(x)éConst. lOg m.

Proof. The result follows if we can show that R,,(x) is majorized by Const. m and
Const. 1/|x|. If so, we have

1
IRm( ) i) = J' Const. m - dx+J Const. — dx
Ix|=1/m 1/ m=|x|=w |x|
2 e
(A4) =—Const. m+2 - Const. log |x||xZ7/
m

= Const. log m.
Since 0= Ii(k)é 1 we have

IR.(x)|=2- Y |R(K)|=4m,

|k|=2m

furthermore, summation by parts yields

50 i) a1
sin (k+l>x
2

and since R(k) are assumed to decrease monotonically, we have

x
in=- R,
sin 5 (x)

=4+ Y  |R(k+1)-R(k)|-

1=|k|=2m—-1

>

6 1
R =—=Const. —
[Ron ()] sin x/2] ons

x|’
which completes the proof.

Appendix B. The decay rate of the Fourier coefficients revisited. In § 3, we concluded
that the quantities E,(t)=|(I—Sy)un(-, )| 2 satisfy, for k>m, the recursive
inequality (3.14):

EO ) N2 —2¢ek2t t
=0 - ekt | i
(B1) EZk(t)_ZE\/E‘kZ ’/l;l'l;);tEk(T)"'e Ey 5)
Here we complete the details for the solution of these recurrence relations, and obtain
that for k>2°- m we have

8SE . N2 s+1 8SE . N2 s P
(B2) EZk(t)é(:\/—%'_k?) .EO+<1+_8_\/LF:_F) e B
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i.e., (3.15) holds. For s =0, (B2) is reduced to (3.13); now assume that (B2) is valid
for any k>2°- m. In particular, for k>2*"' - m we can use (B2) with k replaced by
k/2>2%- m, and obtain that

8S+1E0' N2 s+1 8s+1E0N2 s —orn) ,
s\ ——— . 2 oY ), 4870 ek
B9 ex, Ek“)‘( vk - K ) E°+(1+ \/Fk> ¢ Fo-

Furthermore, we have

t $SE N2\ 8E. - N2\ * .
(B4) EZk(E)é(:J_];O-_P) . E0+(1+_;/_;(_:_k_2_) Ce 8 O k2 E,.

Using (B3) and (B4) to upper-bound the right-hand side of (B1), we find
E . N2 8s+1E . N2 s+1
E(t)s— z'( > 2 ) " Eo
2evk - k evk -k
N EN* ( +8”’E0N2>s s
2evk - k? evk - k? °

85E N2 s+1
+ —2ek?t . ( ( ) - E
¢ evk - k? 0

) 8°E,N”\* N

+ —2£k2t.(1+ 0 ) 'e—4-8 'Ekl.E .
¢ eV K °

The first of the four terms on the right is less than (8°*'E, - N?/evk - k*)*** - E,; the

sum of the remaining three terms does not exceed

1+8S+1E0'N2 s+1 48O o2y E
evk - k? e e

- m we have

and hence for k>2°*!

85+1E . N2 s+2 8s+1E . N2 s+1 .
E2k(t)§(——\/7qk—2> . E0+(1+ \/EO k2 ) e-4.g G+D.gk2p EO,
€ . £ .

which completes the induction proof of (B2).
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