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A main disadvantage of using spectral methods for nonlinear conservation laws lies in the formation
of Gibbs phenomenon, once spontaneous shock discontinuities appear in the solution. The global
nature of spectral methods then pollutes the unstable Gibbs oscillations over all the computational
domain, and the lack of entropy dissipation prevents convergences in these cases. In this paper, we
discuss the spectral viscosity method, which is based on high frequency-dependent vanishing viscosity
regularization of the classical spectral methods. We show that this method enforces the convergence of
nonlinear spectral approximations without sacrificing their overall spectral accuracy.

1. Introduction

We consider the 2w-periodic one-dimensional system of conservation laws

ou , o)

ot ax ’ (1.12)

with prescribed initial conditions, u(x, t = 0) = u,(x). We recall [1] that solutions of (1.1a) may
develop spontaneous jump discontinuities (shock waves) and hence the class of weak solutions
must be admitted. Moreover, since there are many possible weak solutions, the system (1.1a)
is augmented with an entropy condition which requires

aU(u) + dF(u) <0,
at ax

(1.1b)

Here, U(u) and F(u) = [“(U’(w), f'(w) dw) are any entropy function and the corresponding
entropy—flux pair associated with (1.1a), so that a strict inequality in (1.1b) reflects the
existence of physically relevant shock waves in the entropy solution of (1.1a), (1.1b).

We want to solve the 2w-periodic initial-value problem, (1.1a), (1.1b) by (pseudo-) spectral
methods. To this end, we use an N-trigonometric polynomial
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N

uy(x, t)= > () e™,

in order to approximate the spectral or ¢dospectral projection of the exact solution, u(x, ).
Let Syu and ¢,u denote, respectively, the spectral-Fourier and the ydospectral-Fourier
projections of u(x, ¢), and let P,u stand for either one of these two projections. Then, starting
with u(x, 0) = Pyu,(x), the standard Fourier method [2] lets u,(x, t) evolve at a later time
according to the (2N + 1)-dimensional approximate model

3t [uN] + [PNf(uN)] (1.2)

We can rewrite this approximation in the equivalent form

2 [und * o ()] = = [Euy], Buy=(I- Py)f(uy). (13)

The expression inside the right brackets is the local error (due to spatial discretization). The
approximation (1.2)—or equivalently (1.3)—is consistent with the conservation law (1.1) in
the sense that its local error does not exceed

1
”EuN” = ”(I— PN)f(uN)” < Const, - N ”uN”Hl . (1.4)

In fact, the usual spectral estimates [3] tell us that the approximation (1.2) is arbitrarily
high-order (or spectrally) accurate approximation of the conservation law (1.1a). Namely, for
any s =1 there exists a constant, Const_, such that

|| Euy|| < Const, - N™°||upl| 5s - (1.5)

The consistency condition (1.4) guarantees that as N1«, the approximation (1.2) ap-
proaches the conservation law (1.1a). Nevertheless, its approximate solution, u,(x, t), need
not approximate the exact entropy solution, u(x, t). The following example shows what could
g0o wrong.

EXAMPLE (4, Section 2]. The ¢dospectral approximation of the periodic scalar conservation
law,

ou , (") _

o e O (1.6)
reads

2 [un] + o [y ™= (1.7)

Let us sum (1.7) against ¢, e“Y at the 2N + 1 equidistant collocation points, x, = v Ax,
Ax=2w/(2N +1):

2N
up(x u d u
a IZO € N D) Ax = vgo (/IN < N 5; [ll’Ne N]|x=xv .Ax
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Since the trapezoidal rule agrees with exact integration of the 2N-trigonometric polynomial on
the right, we obtain

211’1
= ZC“N(X ')Ax—_o nd

2 o
G2 > = [ e )] dx =0,

Thus, we find that the total amount of exponential entropy is conserved in time:

2 2w

by €50 dy = s W e“M 9 dx (1.8)

Now assume that u,(x, ) converges (possibly weakly) to the discontinuous entropy solution,
i(x, 1), of (1.6). This means that ¥, e“¥*" " tends (weakly, at least) to ¢“**". Consequently,
(1.8) would imply the global entropy conservation of [;" ¢“*” dx in time, Wthh would be
incompatible with the entropy condition (1.1b) if u(x, ¢) should contain shock discontinuities.
This contradiction shows that u,(x, t) cannot converge to the (discontinuous) entropy solution
of the conservation law (1.6).

The last example demonstrates a consistent (and in fact, spectrally accurate) approximation
of the conservation law (1.1a). Nevertheless, convergence fails in this case due to the
(exponential) entropy conservation expressed in (1.8). In other words, the essential ingredient
behind the failure of convergence demonstrated above is the lack of entropy dissipation which
is inconsistent with the augmenting entropy condition (1.1b).

One of the main disadvantages of using spectral methods for nonlinear conservation laws
lies in the formation of Gibbs phenomena, once spontaneous shock discontinuities appear in
the solution. The global nature of spectral methods then pollutes the unstable Gibbs
oscillations over all the computational domain and the lack of entropy dissipation prevents the
convergence of spectral approximations in these cases. The spectral viscosity (SV) method,
proposed in [5], attempts to stabilize the Gibbs oscillations, and consequently to guarantee the
convergence of spectral methods, without sacrificing their overall spectral accuracy. This is
achieved by appending a given spectral method with a spectrally small amount of vanishing
viscosity which is activated only for modes with high wavenumbers. In this paper, we shall
focus our attention on semi-discrete approximations to periodic conservation laws. We shall
use this periodic framework to demonstrate the stability and convergence behavior of the
spectral viscosity method.

2. The spectral viscosity method

It is well-known [1] that the entropy solution of (1.1) is the one identified with the small
viscosity limit of the regularized problem

2+ == 0. 2], o, @1)

With the vanishing viscosity method [6] we replace the exact derivatives in (2.1) by their
discrete counterpart. The viscous regularization on the right of (2.1) is responsible for the
entropy dissipation of the resulting approximation. It depends on the viscosity coefficient, Q,,
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which is yet to be determined, and on the viscosity amplitude which is of the order of the
vanishing grid size, ¢ ~Ax. The modern high-resolution finite difference methods, e.g. [7],
employ essentially nonlinear viscosity coefficients, Q,, satisfying a.e. £¢Q_ ~ (Ax)’, which yield
s-order accurate approximations ot (1.1). Convergence 1s then established by compactness
estimates together with entropy dissipation arguments, e.g., [8].

In order to respect spectral accuracy, however, a more delicate viscous regularization is
required. To this end, the spectral viscosity (SV) method makes use of viscous regularization

g 11 1\ P B alac ¢l 4‘.......
of (1.1), which takes the form

ad du,, |
2+ [Puflag)] = 6 = | 0y » 2] (2.2)

Here Q,(x, t) is a (possibly nonlinear) viscosity kernel which is activated only on high modes,
say with wavenumbers |k| = m,,,

Qi )= 2 Qur)e™. (2.3)

my<ik|<N

This kind of spectral viscosity can be efficiently implemented in the Fourier rather than in the
physical space, i.e.,

o] =e, 3 KO080 ™. (2.4)

my<|k|<N

It depends on two free parameters: the viscosity amplitude, € = ¢, and the effective size of
the inviscid spectrum, m = m,,. The spectral viscosity should be small enough so that it retains
the spectral accuracy of the overall approximation as m, 1>, and at the same time, it should
be sufficiently large to enforce the correct amount of entropy dissipation that is missing
otherwise (with ey = 0).

The SV method was introduced in {5], where compensaied compaciness argumenis were
used to show convergence in the special case of the scalar Burgers’ equation. The ¢ onvergence
PRy Y S TN amm ndla wszrng thaw Awédamdad 3 Q tn sernliida ganaeral cralae ae

roof of the SV method was then extended in |_-f, 7, LUJ, 10 inCiuac goncrai sCaiar and certain
X2 ystems of conservation laws. In the next sections, we outline the practical considerations

vnluad in tha imnlamantatinn Af tha UV mathad and wa nnrn a hird’c eve ‘npul of the
LIYUIVLU 11l UV BUPIVIIVIIIGHUIL UL WV 2 7 bEviivG, aliu ww gBiy @ viiu S vyw AWYY UL v

before-mentioned convergence results. Finally, we provide numerical evidence which shows
how post-processing of the SV solutions enables to recover with spectral accuracy the

pointwise values of the exact entropy solution.

5

3. Convergence of the SV method
The modified equation associated with the SV method (2.2) takes the form
8 lugl+ 2 -2 E (3.1a)
EY; [un] ax [fun)]= ax [Euy]. .

The local error in this case, Eu,, consists of two contributions: the discretization error we had
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before in (1.3), and the additional viscosity error introduced on the right of (2.2), i.e.,

ou
Euy=(I— Py)f(uy) + eyQy* 6; . (3.1b)
Integrating (3.1) against u, over the 2w-period we obtain

I P VRPN
2 dt)e WD \ax » 74~/

—~
W
o

S’

Thus, the quantity on the right represents the amount of (quadratic) entropy dissipation rate.
The counterexample discussed in Section 1 tells us that the control of such quantity is

o | [N S

necessary for convergence. This Dnngb us to the follow ing definition.

DEFINITION A Qantiom 21 Tha ocuweceosrimeoats e PATR + 1
DEFINITION {4, Section 3}. The approximation (3.1a) is consistent with the

condition, if there exist constants, Const >0 and ¢,,0, such that

2
1
+ "uN”2 y ENF N (3.3)

e ) <-conn-o| 2
—(‘-—&—,Eu —Const - sN” ox

i

Using compensated compactness arguments, the main results of [4, Section 6] asserts that
this kind of consistency together with L”-stability implies convergence. We shall use this
framework to prove the convergence of the SV method.

The special form of the local error, Eu,, in (3.1b) reveals that the entropy consistency
requirement (3.3) is fulfilled, if a sufficiently large amount of SV regularization, £,Q,, is
present, Indeed, taking into account the a priori estimate (1.4) and using Parseval’s relation,
we conclude that entropy consistency is achieved with SV kernels satisfying

Qk(t) = Const — (3.4)

= f
o

Can we use such viscosity kernels w1th0ut sacrificing spectral accuracy? Using a vanishing

T e

viscosity amplitude of order, say, &y > %, we find by (3 4), that the viscosity coefficients,
Q,(t), should be activated only for high modes with wavenumbers |k| = m,,, where

m,~NF, B<}. (3.5a)

The resulting SV method then takes the form

gr MES x[PNf(u,_,)]=—~}-: > KO (Da () e™ . (3.5b)

my<|k|<N

e Lmmnne 4l Py

.ll. uuu:rb irom the standara F

added on the right of (3.5b

a3 S Ny PPy k P .

16T I he specirally small amount of viscosity
ndeed, the contribution of this kind of viscosity to the local
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which retains the (formal) overall spectral accuracy of the Fourier method
[l Euyll < Const, - N™ [luyl| s (3.6)

Thus, by augmenting the Fourier method with a spectrally small amount of viscosity, we are
able to enforce a sufficient amount of entropy dissipation so that the entropy consistency
requirement (3.3) is met. Moreover, in the next section we show that this kind of spectral
viscosity guarantees that our approximation, u,(x, t), remains uniformly bounded

lun(x, Ol < M(2) . (3.7)

Consequently, the (entropy) consistency and L “-stability imply that the SV method converges
for a wide class of scalar conservation laws as well as certain 2 X 2 conservative systems [4, 10].

4. Decay and convergence rates

In order to gain a better insight into the role of spectral viscosity, it is instructive to study
the decay rate of the Fourier coefficients, #,(¢) and F.(6) = f.(un(2)). This program was carried
out in [9] for the special case of Burgers’ equation, and in [10] for the general scalar problem.
An iterative argument outlined in [9, 10], shows that the presence of SV separates the
computed spectrum into three different regions.

1. Wavenumbers in the ‘inviscid’ region |k| < m,. The corresponding amplitudes, &, () and
fk(t), are then governed by the underlying nonlinear conservation law.

2. Wavenumbers outside the ‘inviscid’ region, m, <|k| < N. Here we find that due to
nonlinear interaction with the spectral viscosity, the corresponding amplitude dissipates
at rate

, NY
240] + 1l < Const, (5] e, my<lk<N. (4.12)

N

In particular, we have here a transition to a third distinctive region, namely

3. Wavenumbers located at the highest portion of the spectrum, say N < |k| < N. Then, by
(4.1a), the corresponding amplitudes are negligibly small, i.e., with vanishing viscosity
amplitude of order &, = N~ **, we have

4,.()+|f.(t)|<Const_ - N 72» eV  g<l IN<|k|<N. (4.1b
k k K}

We conclude that the presence of spectral viscosity enforces a spectral decay of the
discretization error:

I(Z — Py)f(uy)|| < Const, - N™O 7% +e™™, B<}. (4.2)

We observe that the spectral decay of the discretization error is valid independently whether
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the underlying solution is smooth or not [9, Section 3; 10, Section 3]. This shows that the SV
solution is essentially governed by the equation

O g+ 2 ()= o 2 [ 00e 2] (43)

This equation is closely related to the standard viscous regularization (2.1). We note,
however, that unlike (2.1), the viscosity regularization in (4.3) is nonlocal due to the finite
support of the convoluted kernel Q,/(x, t).

20
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Fig. 1. The SV method for Burgers’ equation.
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Fig. 2. The spectral Fourier method for Burgers’ equation.

One can use now the viscous equation (4.3) in order to obtain a uniform bound on the SV
solution. Integrated against pu’?~'(x, t) over the 2m-period, (4.3) yields
ouy
dx

d 9
ar lunllr < en ax [1- Q] s (4.4)

Standard trigonometric estimates can be used to upper bound the right-hand side of (4.4),
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Fig. 3. The pseudo-SV method with smooth viscosity kernel before post-processing.

ouy

o Z,,<Const- |luy|l,»- 4.5)

En

d
a [I_ QN]

Indeed, the inequality (4.5) is just an L?-version of the entropy consistency estimate stated in
(3.3), consult [4, Section 5]. Hence, by combining (4.4) and (4.5) and carefully iterating on
the L?-norms of uy(x, t), we derive the L”-bound of u,(x, t) promised earlier.
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Fig. 4. The pseudo-SV method with smooth viscosity kernel after post-processing.

Furthermore, Schochet {10] used the viscous equation (4.3) in order to conclude an almost
optimal L,-convergence rate of the SV method, namely

lluy — ull,:<Const-N#, B<}. (4.6)

Figures 1 and 2 compare the behavior of the spectral-Fourier method with and without
spectral viscosity in the case of Burgers’ equation, which is subject to the initial condition
u,(x) = sin x. The resulting ODE system for the Fourier coefficients,
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Table 1

Pointwise errors of the post-processed pseudo-SV ap-
proximation compared with the exact entropy solution
of Burgers’ equation

lup(x, ) — u(x, )] at t=1.5

x N=16 N=32

0.314 57-107° 23-107*

0.628 39-107° 2.8-107*

0.942 72-10°° 2.7-107*

1.25 1.2-107% 2.8-107¢

1.57 1.4-1072 2.8-107*

1.88 1.7-1072 3.0-107*

2.19 2.0-1072 3.6-107°

2.51 2.1-1072 43-107*
d - 1 . E - - _ 2 A A <
5 B+ 5 ik 2 a,0a,0)=—ekQui (), |kI<N, .7

p+g=k

was integrated up to time ¢ = 1.5, using the fourth-order Runge—Kutta method. The method
was complemented with viscosity coefficients O, =1 only for wavenumbers |k|= m, where
m, ~2N'"% Figure 1 shows that the SV solution converges strongly (but not uniformly) to the
exact entropy solution, in sharp contrast to the oscillatory behavior of the viscosity free
Fourier method in Fig. 2. Improved results were obtained in Fig. 3, by using C” viscosity
coefficients, Qk, connecting wavenumbers in the inviscid region, |k| <m,, and the highest
wavenumbers, |k|~ N. This kind of smoothly varying SV prevents the propagation of the
Gibbs phenomenon into the whole computational domain that can be noticed in Fig. 2,
consult [5]. Moreover, Fig. 4 shows this SV solution after it was post-processed by the
spectrally accurate smoothing procedure discussed in [11}. Finally, in Table 1, we quote from
[12] the pointwise errors of the post-processed SV solution for the Burgers’ equation. The
results indicate the spectral convergence rate obtained by the post-processed SV solution in
the shock-free zones of the entropy solution.
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