
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 80 (1990) 197-208 
NORTH-HOLLAND 

SHOCK CAPTURING BY THE SPECTRAL VISCOSITY METHOD* 

Eitan TADMOR 
School of Mathematical Science, Tel-Aviv University, Israel and Institute for Computer Applications in 

Science and Engineering, Hampton, VA 23665, U.S.A. 

Received 26 June 1989 
Revised manuscript received December 1989 

A main disadvantage of using spectral methods for nonlinear conservation laws lies in the formation 
of Gibbs phenomenon, once spontaneous shock discontinuities appear in the solution. The global 
nature of spectral methods then pollutes the unstable Gibbs oscillations over all the computational 
domain, and the lack of entropy dissipation prevents convergences in these cases. In this paper, we 
discuss the spectral viscosity method, which is based on high frequency-dependent vanishing viscosity 
regularization of the classical spectral methods. We show that this method enforces the convergence of 
nonlinear spectral approximations without sacrificing their overall spectral accuracy. 

1. Introduction 

We consider the 2n-periodic one-dimensional system of conservation laws 

(l.la) 

with prescribed initial conditions, U(X, t = 0) = U&X). We recall [l] that solutions of (l.la) may 
develop spontaneous jump discontinuities (shock waves) and hence the class of weak solutions 
must be admitted. Moreover, since there are many possible weak solutions, the system (l.la) 
is augmented with an entropy condition which requires 

w4 + aw4 (0 - - 

at ax - * (l.lb) 

Here, U(U) and F(U) = I”( U’(w), f’(w) d w ) are any entropy function and the corresponding 
entropy-flux pair associated with (l.la), so that a strict inequality in (l.lb) reflects the 
existence of physically relevant shock waves in the entropy solution of (1. la), (1. lb). 

We want to solve the 27r-periodic initial-value problem, (l.la), (l.lb) by (pseudo-) spectral 
methods. To this end, we use an N-trigonometric polynomial 
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N 

uN(x, t) = 2 tik(t) eikx , 
k=-N 

in order to approximate the spectral or $dospectral projection of the exact solution, U(X, t). 
Let S,u and IG;vu denote, respectively, the spectral-Fourier and the I(rdospectral-Fourier 
projections of u(x, t), and let PNu stand for either one of these two projections. Then, starting 
with uN(x, 0) = PNuo(x), the standard Fourier method [2] lets u,(x, t) evolve at a later time 
according to the (2N + l)-dimensional approximate model 

$ [UN] + & [PN.f(uN)l= 0. (1.2) 

We can rewrite this approximation in the equivalent form 

-& bNI + ; [f(‘N)l = $ iEUNI 7 E”N = (I- PN)f(UN) * (1.3) 

The expression inside the right brackets is the local error (due to spatial discretization). The 
approximation (1.2)-or equivalently (1.3)-is consistent with the conservation law (1.1) in 
the sense that its local error does not exceed 

lIEuNIl = ll<z- pN)f("N)II s Constl ’ i IIUNIIH1 . (1.4) 

In fact, the usual spectral estimates [3] tell us that the approximation (1.2) is arbitrarily 
high-order (or spectrally) accurate approximation of the conservation law (l.la). Namely, for 
any s 3 1 there exists a constant, Const,, such that 

IIEu,II < Const, - N-S(I~NIIHS . (1.5) 

The consistency condition (1.4) guarantees that as Nta, the approximation (1.2) ap- 
proaches the conservation law (1. la). Nevertheless, its approximate solution, uN(x, t), need 
not approximate the exact entropy solution, U(X, t). The following example shows what could 
go wrong. 

EXAMPLE [4, Section 21. The @dospectral approximation of the periodic 
law, 

reads 

$ [u,] + $ [t+bN eUN] = 0. 

Let us sum (1.7) against (bxl eUN at the 2N + 1 equidistant collocation 
Ax = 21rl(2N + 1): 

scalar conservation 

(I-6) 

(1.7) 

points, X, = v Ax, 

$ ! e"N(xv, ‘) 

Y 0 

Ax = - g a,$N eUN -& [&,, eYN]lx=x, ‘Ax. 
v=o 
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Since the trapezoidal rule agrees with exact integration of the 2N-trigonometric polynomial on 
the right, we obtain 

Thus, we find that the total amount of exponential entropy is conserved in time: 

I 
:’ (CI, e”N(x. ‘) dx = 

I 

fT & e”N(x, O) dx . 
(1.8) 

Now assume that uN(x, t) converges (possibly weakly) to the discontinuous entropy solution, 
U(x, t), of (1.6). This means that & eUN@, ‘) tends (weakly, at least) to e”(XT? Consequently, 
(1.8) would imply the global entropy conservation of ]i” e”(x* ‘) dx in time, which would be 
incompatible with the entropy condition (l.lb) if U(x, t) should contain shock discontinuities. 
This contradiction shows that U&X, t) cannot converge to the (discontinuous) entropy solution 
of the conservation law (1.6). 

The last example demonstrates a consistent (and in fact, spectrally accurate) approximation 
of the conservation law (1. la). Nevertheless, convergence fails in this case due to the 
(exponential) entropy conservation expressed in (1.8). In other words, the essential ingredient 
behind the failure of convergence demonstrated above is the lack of entropy dissipation which 
is inconsistent with the augmenting entropy condition (l.lb). 

One of the main disadvantages of using spectral methods for nonlinear conservation laws 
lies in the formation of Gibbs phenomena, once spontaneous shock discontinuities appear in 
the solution. The global nature of spectral methods then pollutes the unstable Gibbs 
oscillations over all the computational domain and the lack of entropy dissipation prevents the 
convergence of spectral approximations in these cases. The spectral viscosity (SV) method, 
proposed in [5], attempts to stabilize the Gibbs oscillations, and consequently to guarantee the 
convergence of spectral methods, without sacrificing their overall spectral accuracy. This is 
achieved by appending a given spectral method with a spectrally small amount of vanishing 
viscosity which is activated only for modes with high wavenumbers. In this paper, we shall 
focus our attention on semi-discrete approximations to periodic conservation laws. We shall 
use this periodic framework to demonstrate the stability and convergence behavior of the 
spectral viscosity method. 

2. The spectral viscosity method 

It is well-known [l] that the entropy solution of (1.1) is the one identified with the small 
viscosity limit of the regularized problem 

$ b,l+ -& [fWl= E 5 [Q, $1 9 40. Gw 

With the vanishing viscosity method [6] we replace the exact derivatives in (2.1) by their 
discrete counterpart. The viscous regularization on the right of (2.1) is responsible for the 
entropy dissipation of the resulting approximation. It depends on the viscosity coefficient, Q,, 
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which is yet to be determined, and on the viscosity amplitude which is of the order of the 
vanishing grid size, E - Ax. The modern high-resolution finite difference methods, e.g. [7], 
employ essentially nonlinear viscosity coefficients, Q,, satisfying a.e. EQ, - (Ax)“, which yield 
s-order accurate approximations of (1.1). Convergence is then established by compactness 
estimates together with entropy dissipation arguments, e.g., [S]. 

In order to respect spectral accuracy, however, a more delicate viscous regularization is 
required. To this end, the spectral viscosity (SV) method makes use of viscous regularization 
of (l.l), which takes the form 

(2.2) 

Here Q,(x, t) is a (possibly nonlinear) viscosity kernel which is activated only on high modes, 
say with wavenumbers ]kj 2 mN, 

Q&x, t) = c ok(t) eikx . (2.3) 
m,,,slklrN 

This kind of spectral viscosity can be efficiently implemented in the Fourier rather than in the 
physical space, i.e., 

(2.4) 

It depends on two free parameters: the viscosity amplitude, E = Ed, and the effective size of 
the inviscid spectrum, m = mN. The spectral viscosity should be small enough so that it retains 
the spectral accuracy of the overall approximation as mNTw, and at the same time, it should 
be sufficiently large to enforce the correct amount of entropy dissipation that is missing 
otherwise (with cN = 0). 

The SV method was introduced in [5], where compensated compactness arguments were 
used to show convergence in the special case of the scalar Burgers’ equation. The convergence 
proof of the SV method was then extended in [4,9, lo], to include general scalar and certain 
2 x 2 systems of conservation laws. In the next sections, we outline the practical considerations 
involved in the implementation of the SV method, and we give a bird’s eye view of the 
before-mentioned convergence results. Finally, we provide numerical evidence which shows 
how post-processing of the SV solutions enables to recover with spectral accuracy the 
pointwise values of the exact entropy solution. 

3. Convergence of the SV method 

The modified equation associated with the SV method (2.2) takes the form 

(3.la) 

The local error in this case, EUN, consists of two contributions: the discretization error we had 
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before in (1.3), and the additional viscosity error introduced on the right of (2.2), i.e., 

Eu, = (I- PN)f(UN) + ENQN * 2 . 
Integrating (3.1) against uN over the 2a-period we obtain 

1 d ‘= -- 
2 dt I o 

Z&(X, t) dx = -($, E”,). 

(3Sb) 

V-2) 

Thus, the quantity on the right represents the amount of (quadratic) entropy dissipation rate. 
The counterexample discussed in Section 1 tells us that the control of such quantity is 
necessary for convergence. This brings us to the following definition. 

DEZYMTION [4, Section 31. The approximation (3.la) is consistent with the entropy 
condition, if there exist constants, Const > 0 and E&O, such that 

(3.3) 

Using compensated compactness arguments, the main results of [4, Section 61 asserts that 
this kind of consistency together with L”-stability implies convergence. We shall use this 
framework to prove the convergence of the SV method. 

The special form of the local error, Eu,, in (3.lb) reveals that the entropy consistency 
requirement (3.3) is fulfilled, if a sufficiently large amount of SV regularization, E~Q~, is 
present, Indeed, taking into account the a priori estimate (1.4) and using Parseval’s relation, 
we conclude that entropy consistency is achieved with SV kernels satisfying 

ok(t) 3 Const - 3 . 

N 
(3.4) 

Can we use such viscosity kernels without sacrificing spectral accuracy? Using a vanishing 
v@cosity amplitude of order, say, &N B k, we find by (3.4), that the viscosity coefficients, 
Q,(t), should be activated only for high modes with wavenumbers ]k] 3 mN, where 

(3Sa) 

The resulting SV method then takes the form 

(3Sb) 

It differs from the standard Fourier method (1.2) by the spectrally small amount of viscosity 
added on the right of (3Sb). Indeed, the contribution of this kind of viscosity to the local 
error in (3.lb) does not exceed 

/I &N&N 
II 

SConst, *m,S]fti]]HS , 
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which retains the (formal) overall spectral accuracy of the Fourier method 

Thus, by augmenting the Fourier method with a spectrally small amount of viscosity, we are 
able to enforce a sufficient amount of entropy dissipation so that the entropy consistency 
requirement (3.3) is met. Moreover, in the next section we show that this kind of spectral 
viscosity guarantees that our approximation, u,Jx, t), remains uniformly bounded 

Consequently, the (entropy) consistency and L”-stability imply that the SV method converges 
for a wide class of scalar conservation laws as well as certain 2 x 2 conservative systems [4, lo]. 

4. Decay and convergence rates 

In order to gain a better insight into the role of spectra! viscosity, it is instructive to study 
the decay rate of the Fourier coefficients, Gk(t) andf,(t) =ffk(uN(t)). This program was carried 
out in [9] for the special case of Burgers’ equation, and in [lo] for the general scalar problem. 
An iterative argument outlined in [9, lo], shows that the presence of SV separates the 
computed spectrum into three different regions. 

1. Wavenumbers in the ‘inviscid’ region Ik] c mN. The corresponding amplitudes, 6, (t ) and 
fk(t), are then governed by the underlying nonlinear conservation law. 

2. Wavenumbers outside the ‘inviscid’ region, mN < Ik] < N. Here we find that due to 
nonlinear interaction with the spectral viscosity, the corresponding amplitude dissipates 
at rate 

l~~(t)l+li*(t)lsConst,.(~)‘+e-Nf, mN~Jk(~N. 

N 

(4.la) 

In particular, we have here a transition to a third distinctive region, namely 
3. Wavenumbers located at the highest portion of the spectrum, say $N G Ik( G N. Then, by 

(4.la), the corresponding amplitudes are negligibly small, i.e., with vanishing viscosity 
amplitude of order eN b N-“, we have 

I~k(t)+If~(t)l~Const,.N-‘1-28)“+e-Nt, p<$, $NSlkjSN. (4.lb) 

We conclude that the presence of spectral viscosity enforces a spectral decay of the 
discretization error: 

[[(I - PN)f(uN)II S Const, - N-(1-2P)s + epNr , P < 4 . (4.2) 

We observe that the spectral decay of the discretization error is valid independently whether 



E. T&rwr, Shock capturing by the spectral vifcosity method 203 

the underlying solution is smooth or not [9, Section 3; 10, Section 31. This shows that the SV 
solution is essentially governed by the equation 

$ bNl ’ & [f(uN)l = 'N & [ QN * $1 . (4.3) 

This equation is closely related to the standard viscous regularization (2.1). We note, 
however, that unlike (2.1), the viscosity regularization in (4.3) is nonlocal due to the finite 
support of the convoluted kernel Q,(x, t). 

L.” 
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Fig. 1. The SV method for Burgers’ equation. 
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Fig. 2. The spectral Fourier method for Burgers’ equation. 

One can use now the viscous equation (4.3) in order to obtain a uniform bound on the SV 
solution. Integrated against pu, P-1(x, t) over the 2n-period, (4.3) yields 

$ IIuJI~p s &Nil; [I- Qd $llLp - (44 

trigonometric estimates can be used to upper bound the right-hand side of (4.4), Standard 
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Fig. 3. The pseudo&V method with smooth viscosity kernel before post-processing. 

(4.5) 

Indeed, the inequality (4.5) is just an LP-version of the entropy consistency estimate stated in 
(3.3), consult [4, Section 51. Hence, by combining (4.4) and (4.5) and carefully iterating on 
the LP-norms of uN(x, t), we derive the L”-bound of uN(x, t) promised earlier. 
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Fig. 4. The pseudo-SV method with smooth viscosity kernel after post-processing. 

Furthermore, Schochet [lo] used the viscous equation (4.3) in order to conclude an almost 
optimal L,-convergence rate of the SV method, namely 

II% - 41 <Const.ZV+, PC f . (4.6) 

Figures 1 and 2 compare the behavior of the spectral-Fourier method with and without 
spectral viscosity in the case of Burgers’ equation, which is subject to the initial condition 
uO(x) = sin x. The resulting ODE system for the Fourier coefficients, 
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Table 1 
Pointwise errors of the post-processed pseudo-SV ap- 
proximation compared with the exact entropy solution 
of Burgers’ equation 

]UN(X, t) - u(x, t)l at t = 1.5 

X N=16 N=32 

0.314 5.7 * 1o-3 
0.628 3.9 - lo-3 
0.942 7.2 * 1O-3 
1.25 1.2.10-* 
1.57 1.4. 1o-2 
1.88 1.7 * 1o-2 
2.19 2.0 * 1o-2 
2.51 2*1.10-* 

2.3. 1O-4 
2.3 * 1o-4 
2.7. 1O-4 
2.8. 1o-4 
2.8. 1O-4 
3.0. 1o-4 
3.6. 1O-4 
4.3 ’ 1o-4 

Ikl s N , W) 

was integrated up to time t = 1.5, using the fourth-order Runge-Kutta method. The method 
was complemented with viscosity coefficients ek = 1 only for wavenumbers ]k] 3 mN where 
mN - 2N”2. Figure 1 shows that the SV solution converges strongly (but not unifo~ly) to the 
exact entropy solution, in sharp contrast to the oscillatory behavior of the viscosity free 
Fourier method in Fig. 2. Improved results were obtained in Fig. 3, by using C” viscosity 
coefficients, Qk, connecting wavenumbers in the inviscid region, ]k] < mN, and the highest 
wavenumbe~, ]k] - N. This kind of smoothly varying SV prevents the propagation of the 
Gibbs phenomenon into the whole computational domain that can be noticed in Fig. 2, 
consult [5]. Moreover, Fig. 4 shows this SV solution after it was post-processed by the 
spectrally accurate smoothing procedure discussed in [ll]. Finally, in Table 1, we quote from 
1121 the pointwise errors of the post-processed SV solution for the Burgers’ equation. The 
results indicate the spectral convergence rate obtained by the post-processed SV solution in 
the shock-free zones of the entropy solution. 
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