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ABSTRACT

We study the approximate solution of nonlinear conservation
laws by spectral methods. We show that spectral viscosity approx-
imations of such equations are total-variation bounded. Moreover,
they are upper-Lipschitz continuous, in agreement with Oleinik’s
E-entropy condition. It follows that the spectral viscosity approx-
imations converge to the corresponding inviscid entropy solution

and we prove convergence rate estimates.
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1. THE SPECTRAL APPROXIMATION

We are concerned here with spectral approximations of the scalar,

genuinely nonlinear conservation law

(1.1a) -gt-u(z,t) + (,%f(u(z, t))=0, f'">a>0.

To single out a unique physically relevant weak solution, (1.1a) is

augmented with the entropy condition

ouv? @ “
s+ 5 FW <0, Fw)= ["ef()de.

(1.18)

Let Syu and ¥nu denote, respectively, the spectral-Fourier and
the 1dospectral-Fourier projections of u(z,t), and let Pyu stands
for either one of these two projections. In order to solve the 27-
periodic initial-value problem (1.1a),(1.1b) by (pseudo-) spectral
methods, we use an N-trigonometric polynomial

N

un(z,t) = > d(t)e™

k=—-N

to approximate Pyu. Starting with uy(z,0) = Pyue(z), the stan-
dard Fourier method, e.g., [Kr-Ol],[Go-Or],[CHQZ], lets un(z,1)

evolves according to the (2N + 1)-dimensional approximate model

0 0
(1.2) EUN + %-ny(’ulv) =0.

Although the spectral method (1.2) is spectrally accurate approx-
imation of the conservation law (1.1), i.e., its local error does not

exceed

(1.3) (I —Pn)f(un)||zz-s < Const- N~*||uy||z2, for any s >0,
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the spectral solution, uy(z,t), need not approximate the corre-
sponding entropy solution, u(z,t). The following example shows

what could go wrong.

Counterexample: [Tal]. The spectral-Fourier approximation

of the scalar equation (1.1a) reads

(1.4) gt-uN(:c,t) + %SNf(uN(m,t)) = 0.

Multiplying this by un(z,t) and integrating over the 2x-period, we
obtain that uy—being orthogonal to '%(I— Sn)f(un(z,t)), satisfies

s30T uk(e,t)de = — [§"un(e,t) 2 f(un(z,t))dz =

= —F(up(z,t))]z=2" = 0.

Thus, the total quadratic entropy is conserved in time

1 2% 1 27
(1.5) 5 /0 uh(e, t)do = /0 wd(z,0)dz,

which in turn yields the existence of a weak L*(z)-limit u(z,t) =
wlimy_,0 un(z,t). Yet, U(z,t) cannot be the entropy solution of a
nonlinear equation (1.1a). Otherwise, Sy f(un(z,t)) and therefore
f(un(z,t)) should tend in the weak distribution sense to f(u(z, t));
consequently, since f(u) is nonlinear, U(z,t) = slimy_,0o un(z,t),
which by (1.5) should satisfy -lz-fg’rﬂz(m,t)dz = % 72 (z,0)de.
But this is incompatible with the entropy condition (1.1b) if w(z, t)
contains shock discontinuities.O

The last example shows that the spectral method lacks entropy
dissipation, which is inconsistent with the augmenting entropy con-
dition (1.1Db).

One of the main disadvantages of using spectral methods for
nonlinear conservation laws lies in the formation of Gibbs phenom-

ena, once spontaneous shock discontinuities appear in the solution.
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The global nature of spectral methods then pollutes the unstable
Gibbs oscillations overall the computational domain and the lack of
entropy dissipation prevents the convergence of spectral approxima-
tions in these cases. In the next Section we discuss the convergence
of the Spectral Viscosity method, which attempts to stabilize the
Gibbs oscillations and consequently to guarantee the convergence
of spectral methods, without sacrificing their overall spectral accu-

racy.

2. THE SPECTRAL VISCOSITY APPROXIMATION

We consider the Spectral Viscosity (SV) approximation
0 0 0 0
(2.1) muN(w,t) + a—mPNf(uN(:z:,t)) = eNa—zQN * é—a—:uN(az,t),

subject to initial conditions
(2.2) un(z,0) = Pnuo(z).

The left-hand side of (2.1) is the standard spectral approximation
of (1.1). It is augmented, on the right-hand side of (2.1), by spec-
tral viscosity with vanishing amplitude ey | 0. Here Qn(z,t) =
EIIZI=m~ Qk(t)e"’cz is a viscosity kernel activated only on high-frequencies,
say with wavenumbers |k| > my, which can be conveniently imple-

mented in the Fourier space as
£ iQ .2 (z,t) = — i K2Q(t) i (t)e™®
Wap O ge(E ) = e 30 BQuB(0e™.

We consider real symmetric viscosity kernels, @ n(z, t), with smoothly

increasing Fourier coefficients, Qj, = Qlk|(t), which satisfy

q
(2.3), Qu(t)=>1- (%lﬁ) y |k| 2 mpy, for some fixed ¢ > 2,
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and we let the spectral viscosity parameters, (ey, my), lie in the
range

my < Const-—Jy—:——- 0 <1.

(2.4) EN ™ 108N’

1
N®’
Remark that this choice of spectral viscosity parameters is small
enough to retain the formal spectral accuracy of the overall approx-

imation, since
0 _e,
HENQN*%UN(',t)”H—' < Const. N~ ¢*||uy(+,%)||z2, for anys > 0.

At the same time, it is sufficiently large to enforce the correct
amount of entropy dissipation that is missing otherwise, when either
en = 0 or my = N. Indeed, it was shown in [Tal],[Ma-Ta],[Ta2]
that the SV approximation (2.1)-(2.4) has a bounded entropy pro-

duction in the sense that
0 2
(2.5) eNHa—muN(z,t)HL?“(z’t) < Const.

This together with an L*-bound, e.g., [Ma-Ta),[Sc],[Ta2], imply the
convergence of the SV approximation (2.1) - (2.4) by compensated
compactness arguments.

In the next sections we shall deal with the convergence of the SV
approximation by compactness arguments. Specifically, we show
that the total-variation of the SV approximation is bounded uni-
formly w.r.t N. Moreover, the SV solutions are shown to be upper-
Lipschitz continuous, in agreement with Oleinik’s E-entropy con-
dition. We conclude that the SV approximation converges to the

entropy solution of (1.1) and we estimate the convergence rate.
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3. A TOTAL-VARIATION BOUND

The presence of spectral viscosity on the right of (2.1) is respon-
sible for a rapid decay of the Fourier coefficients located toward the
end of the computed spectrum. This spectral decay result was
proved in [M'a-Ta] for the special case of Burgers’ equation where

f(u) = 3u?, using an argument of [Kr]. The general case was ana-
lyzed in [Sc], where it was shown that the following spectral decay

estimate,
(3.1) I — Pn)f(un(-t))l| < Const, - [N=*0=9 4 N="e~MY],

holds, [Sc, Theorem 1]. Here, s > 0, is restricted only by the degree
of smoothness of f(-), and r > 0 is determined by the smoothness
of the initial conditions ug.

The last estimate shows that after a brief initial time interval (de-
pending on how smooth ug is), the discretization error (I—Py) f(un)
becomes spectrally small, independently whether or not the under-
lying entropy solution is smooth. We conclude that modulo the
spectrally small error (3.1) which we ignore, the SV approximation

is governed by the viscosity equation,

0 0 0
(3.2) auN(m,t) + af(uN(m,t)) QN * uN(:z: 1)
Therefore, it is enough to concentrate on total-varlatlon and

error estimates for (3.2), which we rewrite in the equivalent form
(3.3a) sun(z,t) + Zf(un(z,t)) =

enZrun(e, t) — en & Ry(z, t) * Zun(z, 1),

where
(3.3b)
k|<mN
Ry (z,t) Ri(t)e™®, Ry(t) = . | '
w{2) EN HB, Balt) {1—Qk<t) 4] = m
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Equation (3.3a) closely resembles the usual viscosity approximation
of (1.1a), apart from the ‘residual’ kernel Ry(z,t) on its RHS. The
following lemma collects several a priori estimates taken from [Ta4],
which show that Ry(z,t) is ‘sufficiently small’.

LEMMA 3.1. Consider the SV kernel Qn(z,t) subject to the SV
parameterization (2.3),—(2.4). Then Ry(z,t) = Dn(z)—Qn(z,1t)
satisfies

”8::'RN( )”L1 ”%.7:—:1' (')t)“L°° S
(3.4),

< Const - mylogmy, s<gq.

Equipped with Lemma 3.1 one can show that the SV approxima-
tion (2.1) has a total-variation bounded solution. Indeed, apart
from a spectrally small truncation error (3.1) which is ignored, one
may proceed with a total-variation estimate of (3.3a) in a stan-
dard fashion: we differentiate (3.3a) w.r.t. =, integrate against
sgn[Zun(z,t)], and in view of (3.4); we obtain

#llunC ey < enllZRaC, )l llun(t)llsv <
< Consty : |lun(-,t||sv, Consty ~ exrn?logmn.

taking into account (2.4), we find that Consty < O (i?:;'ﬁ)’ and we

conclude

COROLLARY 3.2. The SV approzimation (2.1)-(2.4) is essen-
tially non-oscillatory, in the sense that the increase of its initial

total-variation is o(1),

(3.5) lun(-, t)||sv <

14 O(l—géﬂ (-, 0)lov-
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4. CONVERGENCE RATE ESTIMATES

We say that {un(z,t)} are Lip*-stable, if there exists a constant
(independent of N), such that the following estimate is fulfilled?:

(4.1) lun(:yt)||Lip+ < Constr, 0<t<T.

Recall that the entropy solution of the nonlinear conservation
law (1.1) with f” > a > 0 is identified by Oleinik’s a priori
estimate e.g., [La],[Ta3],

4.2 u(, t)|| s S———-————-——— t20.
(42) ot Ol < oot — o

In particular, the entropy solution of (1.1) is Lip*-stable, as

long as its initial conditions uo are Lip*-bounded.

We want to show that the SV approximation (2.1) is Lip*-
stable.
First remark that the BV boundedness of the SV solution, (3.5),
does not exclude the possibility of small high-frequencies oscilla-
tions. (By conservation, Lip*-stability implies BV-stability but not
vice-versa). Such ’unphysical’ oscillations violate the Lip*-stability
condition (4.1). In order to prevent such unstable oscillations, we
therefore need to slightly increase the amount of spectral viscosity.
We do this without sacrificing formal spectral accuracy, requiring
the spectral viscosity parameters to lie in the range (2.3), — (2.4)
with ¢ > 3.

As before, we ignore the spectrally small error (3.1) and turn to

2We let llcipy  lI@lloip+ and ||l sy den‘ote respectively,
¢ Y11, esssupgy, [—(—)—f—(ﬂ] and supy ¢_f°:f' ;

esssup,,;gy
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consider the viscosity equation (3.3a). A straightforward estimate

of the latter, carried out in [Ta4] yields

d
(4.3a)  Zllun( izt + ellun( Dz < enllun(, )i
where according to (3.4);

o? 3 L

Integration of (4.3) then yields the desired Lip*-stability, which we
state as

LEMMA 4.1. The SV solution of (2.1)—(2.2),(2.3), — (2.4) with

q > 3 satisfies the a priori estimate

e‘Nt
”uN("t)”Lip"’ s [lun(: 0)“1,-p++'_(ecNt~1) <

(4.4)
cnt l 0
IIUN("O)";"P"’ +at’? CN )

in close agreement with (4.2). Thus the SV approzimation (2.1)-
(2.4) is Lip*-stable.

Next, we recall the main result of [Ne-Ta] which deals with the

convergence rate of Lip™-approximations.
THEOREM 4.2. Let {uy(z,t), 0 < ¢t < T} be a family of
Lip*-stable approzimate solutions of the conservation law (1.1),

with Lip*-bounded initial conditions. Assume that {uy(z,t)} are
Lip - consistent of order e, i.e.,

0 0
lun(z,0)~uo(2)l|zip + [l Z7un(:, )+ 5= f (un(:, 1))llip < Constr-e.

Then the following error estimates hold

un(-,t) = u(, £)|lw-sp < Constr- €%, 1<p<oo, s=0,1,
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lun(e, £) — u(z, £)| < Consty - (1 + [ug(- £)|)et.
Here [uz(-yt)|ioc = ||u,(-,t)||L“(m_e§ oyek) MeQIUTES the local smooth-

ness of the entropy solution in the 0(5*)-neighborhood of z.

It remains to estimate the Lip’-size of the truncation error on
the right of (3.2). By (3.4)o, the viscosity kernel

Qn(t) = Dn(-) - RN("t)’

has an L'-norm which does not exceed Const - logN. Hence, the
SV approximation (2.1) is Lip'-consistent with the conservation law
(1.1) of order € ~ eylogN = N~logN for
(4.5)

leng:Qn * Zun( )l < enllQu( )z llun(, t)llsv <

< Const-N~%log N|luy(:,0)| v

We may use now Theorem 4.2 to conclude

THEOREM 4.3. Consider the 2w-periodic conservation law (1.1)

with smooth initial-data. Then the SV approzimation (2.1)-(2.2),(2.3),-

(2.4) with g > 3 converges to the entropy solution of (1.1), and the
following error estimates hold for 0 <t < T,

(4.6)  |un(,t) = u(:, )|lw-sr < Consty - (N~?log )5,
(47)  [un(z, t) — u(z,1)| < Constr - (1 + Jua(-, )L )N~ $log N,

Remarks.

1. According to (4.7), the pointwise convergence rate of the

SV solution in smooth regions of the entropy solution is of order
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~ N-5. Moreover, by post-processing the SV solution this con-
vergence rate can be made arbitrarily close to N~1, consult [Ta4],
[Ne-Ta). In fact, numerical experiments reported in [Ta2] show that
by post-processing the SV solution, we recover the pointwise values
in smooth regions of the entropy solution within spectral accuracy.

2. According to (4.6) with (s,p) = (0, 1), the SV approximation

1

has an L'-convergence rate of order ~ N~% in agreement with [Sc,

1

§5]. This corresponds to the usual L'-convergence rate of order ;

for monotone difference approximations, [Ku],[Sa].

3. The error estimates (4.6),(4.7) are not uniform in time.
For arbitrary Lip*-bounded initial data ue an initial layer can be
formed, after which the spectral viscosity becomes effective and
guarantees the spectral decay of the discretization error indicated
earlier. This can be avoided if we pre-process the initial data for
the SV approximation by the de la Vallee Poussin’s filter without

sacrificing the formal spectral accuracy of the approximation, e.g.,

[Sc].
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