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Abstract

In this paper we construct, analyze and implement a new procedure for the spectral approximations of nonlinear
conservation laws. It is well known that using spectral methods for nonlinear conservation laws will result in
the formation of the Gibbs phenomenon once spontaneous shock discontinuities appear in the solution. These
spurious oscillations will in turn lead to loss of resolution and render the standard spectral approximations unstable.
The Spectral Viscosity (SV-) method (Tadmor, 1989) was developed to stabilize the spectral method by adding a
spectrally small amount of high-frequencies diffusion carried out in the dual space. The resulting SV-approximation
is stable without sacrificing spectral accuracy. The SV-method recovers a spectrally accurate approximation to the
projectionof the entropy solution; the exact projection, however, is at best a first order approximation to the exact
solution as a result of the formation of the shock discontinuities. The issue of spectralresolution is addressed
by post-processing the SV-solution to remove the spurious oscillations at the discontinuities, as well as increase
the first-order—O(1/N) accuracy away from the shock discontinuities. Successful post-processing methods have
been developed to eliminate the Gibbs phenomenon and recover spectral accuracy for the SV-approximation.
However, such reconstruction methods require a priori knowledge of the locations of the shock discontinuities.
Therefore, the detection of these discontinuities is essential to obtain an overall spectrally accurate solution. To
this end, we employ the recently constructedenhanced edge detectorsbased on appropriate concentration factors
(Gelb and Tadmor, 1999). Once the edges of these discontinuities are identified, we can utilize a post-processing
reconstruction method, and show that the post-processed SV-solution recovers the exact entropy solution with
remarkably high-resolution. We apply our new numerical method, the Enhanced SV-method, to two numerical
examples, the scalar periodic Burgers’ equation and the one-dimensional system of Euler equations of gas
dynamics. Both approximations exhibit high accuracy and resolution to the exact entropy solution. 2000 IMACS.
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1. Introduction

In this paper we are interested in recovering the solutions to the initial boundary value problems
associated with the nonlinear conservation law,

∂

∂t
u(x, t)+ ∂

∂x
f
(
u(x, t)

)= 0, (x, t) ∈ [−1,1] × [0,∞), (1.1)

subject to prescribed initial values at timet = 0 and augmented with the necessary boundary conditions
at x = ±1. Because of their success in obtaining highly accurate results for smooth linear problems,
we would like to employ (pseudo-)spectral methods to (1.1). Unfortunately, applying (pseudo-)spectral
methods to nonlinear conservation laws yields disastrous, unstable results when shock discontinuities are
formed [24,25]. A series of papers written to address this problem [5,18,24,25,27,. . .] have resulted
in the successful development of the spectral viscosity (SV-)method. The SV-method is based on
high-frequencies dissipation which stabilizes the (otherwise unstable) pseudo-spectral methodwithout
sacrificing the underlying spectral accuracy. However, due to the presence of shocks in the underlying
entropy solution, the SV-method retains onlyformalspectral accuracy. More specifically, the SV-solution
approximates theprojectionof the exact solution, and it is the exact projection which experiences a loss
of accuracy due to spurious Gibbs oscillations. Hence, the SV-solution must be post-processed in order
to recover its content of better accuracy. Although high accuracy can be achieved away from the shock
discontinuities using spectrally accurate filters, e.g., [11,18,19], the results of such post-processing in the
neighborhoods of shocks still suffer from smearing effects and/or spurious Gibbs oscillations.

We therefore propose a new method in Section 5, the enhanced SV-method, which is a fully automated
numerical method offering stability, high accuracy, and high resolution at the shock locations. There are
three major ingredients in the enhanced SV-method:

1. The SV-method [18,24,25,27]. This step provides astablespectral approximation of (1.1). The
computed SV-solution,uN(x, T ), retains enough information of the exact solution so that post-
processing is required only at the final time step,t = T . The SV-method is reviewed in Section 2.

2. Enhanced Edge Detection [8,9]. This step identifies the locations and amplitudes of the edges—
jump discontinuities, rarefactions tips. . . in the computed SV-solution,uN(x, T ). Here we recover
thehigh resolutionof the approximation at the shock discontinuities—a critical step for effective
post-processing discussed below. The procedure of edge detection is outlined in Section 3.

3. The Gegenbauer post-processing method [12]. We post-process the computed SV-solution at the
final time, uN(x, T ). Once the locations (and amplitudes) of the various edges are known, this
(one-sided) post-processing enables us to recover the exact solution with high resolutionup to the
discontinuities. We summarize the idea in Section 4.

Numerical results for the enhanced SV-method for the scalar periodic inviscid Burgers’ equation as
well as the one-dimensional system for the Euler equations of gas dynamics are provided in Section 6.

2. The Spectral Viscosity (SV) method

As stated in the introduction, we will use the spectral viscosity (SV-) method to stabilize the nonlinear
spectral approximation of (1.1). The SV-method was introduced in [24] for the Fourier spectral method
and has been subsequently extended to multidimensional problems and was developed to include
both Legendre and Chebyshev cases, e.g., [1,5,16–18,20,21,25,27]. The idea of the SV-method is to
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add a spectrally accurate vanishing viscosity to augment the spectral approximation of the nonlinear
conservation laws. The spectral viscosity, added only to the high wave numbers, is strong enough to
stabilize the solution yet small enough to retain formal spectral accuracy.

2.1. The periodic case

We wish to solve the periodic conservation law

∂

∂t
u(x, t)+ ∂

∂x
f
(
u(x, t)

)= 0, u(x,0)= u0(x) (2.1)

by employing theN -degree trigonometric polynomial,

uN(x, t)=
N∑

k=−N
ûk(t)e

ikx, (2.2)

to approximate the Fourier projection of the exact entropy solution,SNu. Here ûk(t) represent either
spectral or pseudo-spectral coefficients.

In the classical spectral method, we start withuN(x,0) = SNu0(x) and letuN(x, t) evolve according
to the approximate equation

∂

∂t
uN + ∂

∂x

[
SN
(
f (uN)

)]= 0. (2.3)

As explained in [24,25], the convergence ofuN towards the entropy solution of (2.1) may fail, even with
additional smoothing. Instead, in the SV-method, (2.3) is augmented with high frequencies viscosity
regularization

∂

∂t
uN + ∂

∂x

[
SN
(
f (uN)

)]= εN ∑
m<|k|6N

(ik)2sQ̂k(t)ûk(t)e
ikx. (2.4)

The spectral viscosity on the right involves the following three ingredients:
• The viscosity amplitude of orderεN ∼N1−2s . Here,s denote the order of the super-viscosity, related

to vanishing diffusion of order 2s. The choice ofs = 1 refers to the usual second-order vanishing
viscosity;s > 1 (introduced in [27]) is related to super-viscosity.
• The effective size of theinviscidspectrum,m=mN ,

m≡mN ∼Nθ, θ <
2s − 1

2s
;

Thus, related to the usual second-order viscosity (s = 1) for example, one finds∼√N viscous-free
modes. A larger choice ofs yields a corresponding increase of the spectrally accurate viscous-free
spectrum (consult (2.5) below).
• The SV smoothing factors,̂Qk(t), which are activated only on high wavenumbers,|k| > mN ,

satisfying

1−
(
m

|k|
)(2s−1)/θ

6 Q̂k(t)6 1, |k|>mN.
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The SV-method can be viewed as a compromise between the stable viscosity approximation which is
restricted to first order accuracy (corresponding toθ = 0), and the spectrally accurate yet unstable spectral
method (2.3) (corresponding toθ = 1). The additional SV on the right of (2.4) is small enough to retain
theformal spectral accuracy of the underlying spectral approximation, i.e., the following estimate holds:∥∥∥∥εN ∂s

∂xs

[
Q(x, t) ∗ ∂

suN

∂xs

]∥∥∥∥
H−p(x)

6Const·N−θ(p−2s)‖uN‖L2(x), ∀p > 2s. (2.5)

At the same time, this SV is shown in [24,25,27] to be large enough so that it enforces a sufficient amount
of entropy dissipation, and hence, by compensated compactness arguments, to prevent the unstable
spurious Gibbs’ oscillations.

2.2. The non-periodic case

In order to handle the boundary conditions, a weak formulation of the spectral viscosity regularization
is required for the non-periodic case [18]. The corresponding SV-method in this context can be
summarized as follows.

SupposePN denotes the space of algebraic polynomials of degree6N , and let(Lk)k>0 denote (for
example) the orthogonal family of Legendre polynomials. Also let{ξj }Nj=0 denote the Legendre Gauss–
Lobatto points with the corresponding discrete weights{ωj }Nj=0. The uniquePN -interpolant given by

IN(φ)(x)=
N∑
k=0

φ̂kLk(x), IN(φ)(ξj )= φ(ξj ), j = 0, . . . ,N, (2.6)

whereφ̂k are the discrete Legendre coefficients,φ̂k = (φ,Lk)N/||Lk||2N , associated with the correspond-
ing Gauss–Lobatto quadrature weights, satisfying(φ,ψ)N :=∑φ(ξj )ψ(ξj )ωj .

We seek a solution of the formuN(x, t) =∑N
k=0 ûk(t)Lk(x) ∈ P N to approximate (1.1). Specifically

we are interested in implementing the Legendre SV-method as a discrete collocation method correspond-
ing to the Gauss–Lobatto quadrature points{ξj}Nj=0 and weight function{ωj }Nj=0:

∂

∂t
uN(ξi, t)+ ∂

∂x
INf (uN)(ξi, t)=−εN ∂

∂x
Q

(
∂

∂x
uN

)
(ξi, t), 16 i 6N − 1,

∂

∂t
uN(+1, t)+ ∂

∂x
INf (uN)(+1, t)=−εN ∂

∂x
Q

(
∂

∂x
uN

)
(+1, t)− εN

ωN
Q

(
∂

∂x
uN

)
(+1, t). (2.7)

Assuming thatx =+1 is an outflow boundary, the second term on the right prevents the creation of an
(outflow) boundary layer. This, together with the prescribed inflow boundary values (say, atx = −1),
furnish a complete statement of the SV-method.

Here the spectral viscosity operatorQ is defined by

Qφ =
N∑
k=0

Q̂kφ̂kLk, ∀φ =
∞∑
k=0

φ̂kLk. (2.8)

As before, the SV operator in (2.8) leaves an increasing portion of the spectrum viscous-free—Q̂k = 0
for the firstmN modes (typically, we setmN ∼

√
N ), while introducing high-frequencies dissipation of

orderQ̂k > 1− (mN/k)4 for k >mN .
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(a) (b)

Fig. 1. The solution to the periodic inviscid Burgers’ equation with periodic boundary conditions at timeT = 1
using (a) the Fourier spectral approximation and (b) the Fourier SV-approximation forN = 64.

2.3. Numerical examples

To demonstrate the stability of the SV-method, we consider the inviscid Burgers’ equation

∂

∂t
u(x, t)+ ∂

∂x

(
u2(x, t)

2

)
= 0, (2.9)

in two different constructions:
1. The periodic casewhere(x, t) ∈ [−π,π ]× [0,∞), u(x,0)= sinx, andu(−π, t)= g(t)= u(π, t).
2. The non-periodic casewhere(x, t) ∈ [−1,1]×[0,∞), u(x,0)= 1

2 sinπx+1, andu(−1, t)= g(t)
(with g(t)= u(1, t)).

The results of the Fourier and Legendre SV-approximations are shown in Figs. 1 and 2.
It is indeed clear from Figs. 1 and 2 that the SV-method provides a stable approximation for the

inviscid Burgers’ equation. However, overall spectral accuracy cannot be realized at this stage since
the underlying solutionu(x, T ) contains shocks. Consequently, theexactprojections,SNu(x, T ) and
INu(x, T ) suffer from spurious Gibbs oscillations, which in turn are reflected in the SV solution depicted
in Figs. 1 and 2.

In essence the problem is now reduced to reconstructing the piecewise smooth exact solutionf (x) :=
u(x, T ), by extracting information from its approximate spectral projection,SN [f ](x). The computed
SV-solution is a highly accurate realization of the exact projection, i.e.,uN(x, t) ∼ SN [f ](x). It is well
known that whileSN [f ](x) achieves spectral convergence for sufficiently smoothf ’s, the accuracy is
destroyed iff contains discontinuities, with the global accuracy deteriorating to first order and O(1)
Gibbs oscillations prevailing in the neighborhoods of the discontinuities. Therefore, a post-processing
method must be applied to the final SV-approximationSN [f ](x) for superior accuracy to be acquired.
The mollifier proposed in [11] (in the periodic case) and in [18] (in the Legendre case), yield spectrally
accurate results away from the discontinuities, but the results are smeared and/or oscillate over the
shock discontinuities. This is for the solitary reason that theedgesof f (x) could not be computed
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(a) (b)

Fig. 2. The solution to the periodic inviscid Burgers’ equation with periodic boundary conditions at timeT = 1.5
using (a) the Legendre spectral approximation and (b) the Legendre SV-approximation forN = 64.

from the approximationSN [f ](x). A spectrally accurate solutionup to the discontinuities (i.e., without
smearing/oscillations) critically depends upon accurately locating the edges off (x) from the information
provided bySN [f ](x). Such an edge detection method has been recently developed [8,9] and is reviewed
in Section 3.

3. Detection of shock locations

Detection of edges is critical for the effective post-processing ofSN [f ](x), and hence for realizing the
high-resolution content in the SV approximation of (1.1). Furthermore, accurate edge detection enables
us to propose a fully automated approximation method (consult Section 5), broadening the scope of
solvable nonlinear conservation laws. The enhanced version of the edge detection method introduced
in [9] provides us with a simple way of finding the location and amplitude of one or more jump
discontinuities of piecewise smoothf ’s.

3.1. Concentration factors

The main idea of edge detection stems from the fact that the support of the conjugate Fourier partial
sumS̃N [f ](x) :=∑N

k=1ak sinkx − bk coskx approaches the singular support off (x) asN→∞ [3,30].
We refer to this as theconcentrationproperty. The approach, developed in [8], is based on the so-called
‘concentration’ factorsσ = σ (k/N) which are built into the conjugate Fourier sum, thus creating a
generalized conjugate Fourier sum of the form

S̃σN [f ](x)=
N∑
k=1

σ

(
k

N

)
(ak sinkx − bk coskx).
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Admissible concentration factorsσ (k/N) accelerates the logarithmically slow concentration property of
the conjugate Fourier partial sum̃SN [f ](x), yielding faster convergence to the singular support off (x).
This is the content of

Theorem 3.1 (Admissible concentration factors [8, Theorem 3.1]).Let the concentration factorsσ (·) be
non-decreasing functions inC2[0,1] satisfying

1∫
1/N

σ (x)

x
dx −→

N→∞−π.

Then the generalized conjugate sumS̃σN [f ] ‘concentrate’ near the jumps off ,

S̃σN [f ](x) −→
N→∞[f ](x), [f ](x) := f (x+)− f (x−),

with the convergence rate

∣∣S̃σN [f ](x)∣∣6Const
(

logN

N
+
∣∣∣∣σ( 1

N

)∣∣∣∣) (3.1)

for x’s away from the jump discontinuities.

A similar procedure—involving concentration factors and conjugate sums, applies to discrete
projections,IN(f )—consult [8, Theorem 4.1].

3.2. Example of an admissible concentration factor

As an example, consider the family of concentration factorsσ r(ξ) := −πrξ r ; for oddr ’s, this family
of concentration factors amounts to differentiated Fourier partial sums:

Ĩσ2p+1

N [f ](x)=−π(2p+ 1)

N2p+1

N∑
k=1

k2p+1(ak sinkx − bk coskx)

= (−1)p
π(2p+ 1)

N2p+1

d2p+1

dx2p+1
IN(f )(x), (3.2)

where the derivative of non-integerp is defined by the left-hand side of (3.2). The casep = 0 goes back
to Fejer; consult [14] and the references therein. This leads to

(−1)p
π(2p+ 1)

N2p+1
I (2p+1)
N (f )(x)→[f ](x), (3.3)

which enables the extension to the Legendre and Chebyshev (pseudo-)spectral methods (with the proper
weight function and scaling variables) [9].
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(a) (b)

Fig. 3. Detection of discontinuous edges offa(x) (a) andfb(x) (b) using the concentration method based on the
generalized conjugate Fourier partial sumS̃σN [f ](x) with p = 0 in (3.2) forN = 20,40 and 80 modes.

3.3. Numerical examples of the concentration method

To illustrate the concentration method, we consider the following two examples on[−π,π ]:

fa(x) :=


sin

x + π
2

, −π 6 x < 0,

sin
3x − π

2
, 0< x 6 π ,

fb(x) :=


cos
(
x − x

2
sgn
(
|x| − π

2

))
, x < 0,

cos
(

5

2
x + xsgn

(
|x| − π

2

))
, x > 0,

and apply the concentration method to the Fourier partial sum,IN(f )(x), to locate the edges offa(x)
andfb(x). Fig. 3 shows the detection of these jump discontinuities.

3.4. Enhancement of the concentration method

A method to improve the convergence property of the ‘concentration’ method was introduced in [9].
The results in (3.1) (and therefore (3.3)) areenhancedby amplifying the scales. Specifically, we start
by amplifying the concentration property stated in Theorem 3.1. Thus, if{αj } denote the location of the
jump discontinuities and noting thatσ r(1/N)∼N−r , then (3.1) yields(

S̃σN [f ](x)
)q→ {

([f ](αj ))q if x = αj ,
(logN/N)q if x 6= αj . (3.4)

Next, we equilibrate: a more pronounced separation of scales is readily accomplished by defining

T :=Nq/2(S̃σN [f ](x))q→
{
Nq/2([f ](αj ))q if x = αj ,
O(N−q/2) if x 6= αj . (3.5)
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(a) (b)

Fig. 4. Detection of discontinuous edges using the ‘concentrated’ Legendre partial sum(π/N)I ′N(f )(x) (a) and
the enhancement (b) for the functionfa(x) with N = 40.

The “enhanced” edge detection method is then computed as

S̃eN [f ](x)=
{
S̃σN [f ](x) if T > Jcrit,
0 if T < Jcrit.

(3.6)

HereJcrit is an O(1) threshold parameter which signifies the critical (minimal) amplitude necessary for
the jump discontinuities we would like to detect as admissible jumps—jumps with smaller amplitudes
are ignored. The edgesx = {αj }Jj=1 are then simply determined as the locations corresponding to the
nonzero values of (3.6). The separation of scales in (3.5) is the key to actuallypinpointing the jump
discontinuities, as shown in Figs. 4 and 5 for the Legendre pseudo-spectral case.

We emphasize that it is this enhancement of the concentration method that allows us to apply a post-
processing method to the SV-solution, as explained in Section 4.

4. An effective post-processing method

Since the underlying exact solution,f (x) = u(x, T ), is only piecewise smooth, its spectral
projections,SN [f ](x), IN [f ](x), yield poor results. First order convergence is obtained away from
the discontinuities and O(1) spurious Gibbs oscillations are exhibited at the discontinuities. The removal
of the Gibbs phenomenon has been the subject of several papers, e.g., [2,7,11,12]. Here we use the
Gegenbauer post-processing method [12] which effectively eliminates the Gibbs’ phenomenon and
recovers piecewise smooth functions with spectral accuracy in the maximum norm for each smooth
intervalup tothe points of discontinuity.
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(a) (b)

Fig. 5. Detection of discontinuous edges using the ‘concentrated’ Legendre partial sum(π/N)I ′N(f )(x) (a) and
the enhancement (b) for the functionfb(x) with N = 40.

4.1. The Gegenbauer post-processing method

Let us recall the Gegenbauer partial sum expansion for a smooth functionf (x), x ∈ [−1,1],

fm(x)=
m∑
l=0

f̂ λ
l C

λ
l (x)→ f (x), (4.1)

wheref̂ λ
l are the Gegenbauer coefficients defined by

f̂ λ
l =

1

hλl

1∫
−1

(
1− x2)λ−1/2

Cλl (x)f (x)dx. (4.2)

The Gegenbauer polynomials are orthogonal under the weight function(1− x2)λ−1/2 implying:

1∫
−1

(
1− x2)λ−1/2

Cλk (x)C
λ
n(x)dx = δk,nhλn, hλn = π1/2Cλn(1)

0(λ+ 1/2)

0(λ)(n+ λ) .

The Gegenbauer post-processing method requires two ingredients: (1) the (pseudo-)spectral approxi-
mationSN [f ](x) and (2) the intervals of smoothness,Ij+1/2= [αj ,αj+1], as obtained in Section 3. The
idea is to first approximate the Gegenbauer coefficients (4.2) from information extracted fromSN [f ](x),
and then to use these approximated coefficients to construct the Gegenbauer partial sum expansion (4.1)
in each smooth intervalIj+1/2. More specifically, the Gegenbauer coefficientsf̂ λ

l are approximated for
x ∈ Ij+1/2 by
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ĝλl =
1

hλl

1∫
−1

(
1− ξ2)λ−1/2

Cλl (ξ)SN [f ]
(
x(ξ)

)
dξ

∼ π

N

N∑
j=0

Cλl (ξj )SN [f ](x(ξj ))(1− ξ2
j )
λ

cj
, cj =

{
1 if j = 1, . . . ,N − 1,
2 if j = 0,N , (4.3)

where we have defined the local variableξ ∈ [−1,1] with Gauss–Lobatto pointsξj andN as a constant
large enough to satisfy the Gauss–Lobatto quadrature rule.

The coefficientŝgλl are now used in the partial Gegenbauer sum to approximate the original function
f (x) as

gλm
(
x(ξ)

)= m∑
l=0

ĝλl C
λ
l (ξ). (4.4)

It has been shown [12] thatgλm(x(ξ)) converges exponentially tof (x) in the maximum norm provided
the parametersm,λ∼N .

4.2. Numerical examples

To illustrate the effectiveness of Gegenbauer post-processing, consider the two examples given in
Section 3:

fa(x) :=


sin

x + π
2

, −π 6 x < 0,

sin
3x − π

2
, 0< x 6 π ,

fb(x) :=


cos

(
x − x

2
sgn
(
|x| − π

2

))
, x < 0,

cos

(
5

2
x + xsgn

(
|x| − π

2

))
, x > 0.

In both cases, information is extracted from the Fourier pseudo-spectral approximationSN [f ](x)
with the jump locations determined by the enhanced edge detection method in Section 3. The Gibbs
phenomenon is clearly depicted in Fig. 6, where no post-processing has been used, while Fig. 7 shows
the reconstruction of the piecewise smooth functions using the Gegenbauer post-processing method.

It is necessary to point out that in our case, the SV-solutionuN(x, t) serves as highly accurate
approximation of the exact projection,uN(x, T )∼ SN [f ](x). Only partial theoretical justifications in this
direction can be found, e.g., [21,27]. Nevertheless, numerical results indicate that exponential accuracy
can be achieved by applying the Gegenbauer post-processing method to the SV-solutionuN(x, T ) [22].
The same inference can be made for the shock location (edge detection) method in Section 3, i.e.,
the theoretical results are limited to locating the jump discontinuities of a piecewise smoothf (x), but
numerical evidence strongly advocates applying the enhanced edge detection method to the SV-solution
uN(x, T ).

5. The enhanced SV-method

Equipped with the results from the previous sections, we are now ready to implement a fully automated
numerical method, the enhanced SV-method, that yields high accuracy to the conservation law (1.1) and
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(a) (b)

Fig. 6. Fourier partial sum,S40[f ](x), of f = fa(x) (a) andf = fb(x) (b).

(a) (b)

Fig. 7. Reconstruction of a piecewise continuous functions,f = fa(x) (a) andf = fb(x) (b), after post-processing
with the Gegenbauer method.

strongly resolves the shock discontinuities. We emphasize that only the first step, the SV-approximation,
is time-implemented. Subsequent steps are only performed once, at the final timeT . The steps of the
enhanced SV-method are:

1. Compute the SV-approximationuN(x, T )= uN(x), x ∈ [−1,1].
2. Locate the shock discontinuities by employing the ‘concentration’ method

(−1)p
π(2p+ 1)

N2p+1

d2p+1

dx2p+1
IN(uN)(x),
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whereIN(uN)(x) is determined from the pseudo-spectral coefficients

ûk =
N∑
j=0

uN(xj )Lk(xj )ωk

with respect to the weight functionωk and Lobatto collocation pointsxj .
3. Determine the intervals of smoothnessIj+1/2= [αj ,αj+1], j = 0, . . . , J − 1, α0=−1 andαJ = 1,

from the ‘enhanced’ edge detection method (3.6)

S̃eN [uN ](x)=
{
S̃σN [uN ](x) if T > Jcrit,
0 if T < Jcrit.

This process can be employed repeatedly to find the discontinuities of(dl/dxl)uN(x) and to
determine intervals ofCl-smoothnessI ljl+1/2 = [αljl , αljl+1], jl = 0, . . . , Jl − 1, with αl0 = −1 and
αlJl = 1. More specifically:
(a) After the shock locationsx = {αj }J−1

j=0 are determined,uN(x) is differentiated in eachC0–
smooth intervalIj+1/2. The concentration method and enhanced edge detection method
are performed in eachC0-smooth interval to locate the discontinuitiesx = {βk}K−1

k=0 of
(d/dx)IN(uN)(x).

(b) The shock locations{αj }J−1
j=0 and the contact discontinuity locations{βk}K−1

k=0 are arranged

in increasing order to form{α1
j1
}J1−1
j1=0, J1 = K + J to determine eachC1-smooth interval

I 1
j1+1/2= [α1

j1
, α1

j1+1].
(c) This process is repeated to obtain theCl-smooth intervalsI ljl+1/2= [αljl , αljl+1].

4. Approximate the Gegenbauer coefficients inside each intervalI ljl+1/2:

ĝλµ =
π

N

N∑
j=0

Cλµ(ξj )SN [f ](x(ξj ))(1− ξ2
j )
λ

cj
, cj =

{
1 if j = 1, . . . ,N − 1,
2 if j = 0,N .

5. Use these coefficients to apply the Gegenbauer reconstruction method in each intervalI ljl+1/2:

gλm
(
x(ξ)

)= m∑
µ=0

ĝλµC
λ
µ(ξ)→ u(x).

6. Numerical examples

Presented here are numerical simulations of the enhanced SV-method to the scalar periodic inviscid
Burgers’ equation, and to the Euler equations of gas dynamics. The parameters for the periodic and non-
periodic SV-method,εN andmN , were taken, respectively, as in [18,24]. Although the parameters for the
Gegenbauer reconstruction were not formally optimized, an effort was made to obtain the best overall
accuracy. For the inviscid Burgers’ equation the best numerical results were achieved usingλ = 1 and
m= 3 for each piecewise smooth subinterval, although similar results were obtained using anyλ ∈ [1,8].
We usedλ= 1 andm= 3 for each variable in the Euler equations.
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(a) (b)

Fig. 8. (a) The solution to the inviscid Burgers’ equation with periodic boundary conditions at timeT = 1 using
the Legendre SV-approximation withN = 64. (b) Edge detection using the Legendre concentration method.

(a) (b)

Fig. 9. (a) The application of the enhanced edge detection to the results in Fig. 8. (b) The numerical solution to the
inviscid Burgers’ equation using the enhanced SV-approximation method.

Example 6.1 (Periodic inviscid Burgers’ equation).

∂

∂t
u(x, t)+ ∂

∂x

(
u2(x, t)

2

)
= 0.

1. For the enhanced Fourier SV-method:(x, t) ∈ [−π,π ] × [0,∞), with the initial conditions
u(x,0)= sinx, and the prescribed boundary conditions,u(−π, t)= u(π, t).

2. For the enhanced Legendre SV-method:(x, t) ∈ [−1,1] × [0,∞), with the initial conditions
u(x,0)= 1

2 sinπx + 1 and the prescribed boundary conditionsu(−1, t) = g(t) (whereg(t) :=
u(1, t))).
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Table 1
Maximum errors for the periodic scalar inviscid Burgers’ equation
using both the Fourier and Legendre enhanced SV-methods for
N = 8,16,32,64

N 8 16 32 64

Fourier 0.260 0.148 6.5E−02 1.1E−02

Legendre 0.118 6.2E−02 3.7E−02 6.5E−03

Figs. 8 and 9 show the results for the regular Legendre SV-method and the enhanced Legendre SV-method
for the periodic inviscid Burgers’ equation. In particular, we quote in Table 1 themaximumerrors as an
indication to the high-resolution of the enhanced SV results.

Next, we turn to demonstrate the performance of the enhanced Legendre SV-method for one-
dimensional system of Euler equations of gas dynamics. In this example we must use the enhanced
edge detection procedure to locate the discontinuities in the first derivative as well. This allows us to
obtain very high resolution and eliminate the “smearing” effect of the post-processing method caused by
the contact discontinuities.

Example 6.2 (Euler equations of gas dynamics).

∂

∂t
u(x, t)+ ∂

∂x
f
(
u(x, t)

)= 0, u=


ρ

ρv

E

 , f (u)=


ρv

ρv2+ p
v(E + p)

 ,
whereρ denotes the density of the gas,m = ρv its momentum,E its energy per unit volume and
p = (γ − 1) · (E − 1

2ρv
2) its (polytropic) pressure,γ = 1.4. The Riemann shock tube problem [23]

has initial conditions

u(x,0)=
{
ul = (1.0,0.0,2.5)T, x < 0,
ur = (0.125,0.0,0.25)T, x > 0.

Example 6.2 is simulated by the enhanced Legendre SV-method and the Adam–Bashforth timestepping
with N = 128 and1t = 10−5. Fig. 10 shows how the enhanced edge detection method locates the
shock discontinuities for density,ρ, in Example 6.2, while Fig. 11 displays the location of contact
discontinuities. We observe the high resolution attained by the enhanced SV-method; this high-resolution
could not be realized without the enhanced edge detection of Section 3.4.

The profiles for the enhanced Legendre SV-solutions of density (ρ), velocity (v), and pressure (p) are
shown in Figs. 12–14.

7. Conclusion

The enhanced SV-method provides a stable and accurate way to approximate a broad class of one-
dimensional conservation laws. The key to the improvement of the enhanced SV-method over the
original SV-method [18,24] is the enhanced edge detection method [9] which “pinpoints” the shock



18 A. Gelb, E. Tadmor / Applied Numerical Mathematics 33 (2000) 3–21

(a) (b)

Fig. 10. Detection of the shock discontinuities using the ‘concentrated’ method (a) and the enhanced edge detection
method (b).

(a) (b)

Fig. 11. Detection of the contact discontinuities using the ‘concentrated’ method (a) and the enhanced edge
detection method (b).

discontinuities formed by the nonlinear conservation laws. Since the SV-approximation retains enough
information, the enhanced edge detection and post-processing methods must be performed only once at
the final time step, adding minimal cost to the original SV-method. Although there is no formal proof of
spectral accuracy, the numerical experiments strongly indicate that high accuracy and high resolution at
the shock discontinuities are both attainable. We emphasize that the enhanced SV-approximation for one-
dimensional systems is a simple, fully automated, and comprehensive method that requires no solving of
Riemann invariants. Some remarks are in order:
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(a) (b)

Fig. 12. Density profile using the Legendre SV-method (a) and the enhanced version (b).

(a) (b)

Fig. 13. Velocity profile using the Legendre SV-method (a) and the enhanced version (b).

1. Efficiency. A fast Legendre transform is available [6], improving the speed of the Legendre SV-
method considerably.

2. Time discretization. A fourth order Runge–Kutta scheme was implemented as well as the Adam–
Bashforth method but did not alter the final results.

3. Spectral accuracy. The theoretical justification for applying the Gegenbauer post-processing
solution to the SV-approximation remains an open question. Such justification may prove that the
results of the enhanced SV-method are in fact exponentially accurate. In this context, we refer
to [26], and in particular the recent approach presented in [28], for pointwise error estimates of
piecewise-smooth solutions.
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(a) (b)

Fig. 14. Pressure profile using the Legendre SV-method (a) and the enhanced version (b).

4. Contact discontinuities. The resolution of the contact discontinuity—a particularly difficult linear-
like field to be detected by high-resolution finite-difference schemes, is detected here by the density
field. Its recovery without spurious oscillations in the pressure field is particularly impressive.

5. High-resolution and optimal parameterization. Although the figures presented clearly demonstrate
the high resolution content of the enhanced SV method, there are still spurious spikes which could
be noticed, particularly at the tips of the rarefactions. Also, we should emphasize that we have
not optimized the various parameters, particularly those parameters involved in the Gegenbauer
reconstruction. Such optimization could have further improved the results of the less accurate
density field, for example. These as well as other improvements are left for future work.
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