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Abstract. We propose a new spectral viscosity (SV) scheme for the accurate solution of non-
linear conservation laws. It is proved that the SV solution converges to the unique entropy solution
under appropriate reasonable conditions. The proposed SV scheme is implemented directly on high
modes of the computed solution. This should be compared with the original nonperiodic SV scheme
introduced by Maday, Ould Kaber, and Tadmor in [SIAM J. Numer. Anal., 30 (1993), 321–342],
where SV is activated on the derivative of the SV solution. The new proposed SV method could
be viewed as a correction of the former, and it offers an improvement which is confirmed by our
numerical experiments. A postprocessing method is implemented to greatly enhance the accuracy of
the computed SV solution. The numerical results show the efficiency of the new method.
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1. Introduction. Spectral methods employ various orthogonal systems of in-
finitely differentiable functions to represent an approximate projection of the exact
solution sought. The resulting high accuracy of spectral algorithms was a major mo-
tivation behind their rapid development in the past three decades, e.g., see Gottlieb
and Orszag [11], Canuto et al. [4], Bernardi and Maday [3], and Guo [15]. The high
accuracy of the spectral algorithm hinges on the global smoothness of the underlying
solution.

Here we discuss spectral approximations to nonlinear conservation laws whose
solutions may develop spontaneous jump discontinuities, i.e., shock waves. In this
context, “physically relevant” entropy solutions must be admitted. Due to the pres-
ence of shock discontinuities, spectral approximations of entropy solutions experience
spurious Gibbs oscillations, which in turn lead to two related difficulties: loss of accu-
racy in the overall computational domain and, in the nonlinear case, loss of instabili-
ties. To solve both difficulties, the spectral viscosity (SV) method was introduced by
Tadmor [29] in the context of Fourier approximation to nonlinear conservation laws.
The main ingredient of the SV method is the use of high-frequencies diffusion which
stabilizes the spectral computation without sacrificing spectral accuracy. Further re-
sults on the periodic SV method can be found in [22, 30, 26, 32, 6]. A more robust
periodic (hyper-)SV based on hyperdiffusion of high frequencies was introduced in
[33]. Maday, Ould Kaber, and Tadmor [23] were the first to consider the nonperiodic
Legendre pseudospectral viscosity method for an initial-boundary value problem, and
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Ma [20, 21] recently developed the nonperiodic Chebyshev–Legendre approximation,
based on the ideas of hyper-SV. For recent applications consult [2, 17, 19, 25, 8].

In this paper we propose a new form for the nonperiodic SV method. The pro-
posed SV, presented in section 2, is implemented directly on high modes of the com-
puted solution. In the original nonperiodic SV scheme, Maday, Ould Kaber, and
Tadmor [23] advocated an SV which is activated on the derivative of the SV solution.
Here we point out a correction to [23]. Indeed, compared with the SV operator in
[23], the correction proposed here offers an improvement which is confirmed by the
numerical result in section 4.

The question of convergence addressed in section 3 below deals with the second
difficulty of spectral methods mentioned above, the issue of stability. We conclude
our introduction by referring to the first difficulty regarding loss of accuracy in the
presence of shock discontinuities. As we argued before [23, section 2.1], the SV solution
should be viewed as a more faithful approximation to the projection of the exact
solution, rather than the solution itself. The computations of Shu and Wong in [27]
confirm the high accuracy of the computed SV solution as an approximation to the
appropriate projection of the exact solution. The spectral content of SV solutions in
the context of propagating singularities in linear transport equations was proved in
Abarbanel, Gottlieb, and Tadmor [1]. Thus, the convergence rate of the SV solution
is limited to the first-order convergence rate of the oscillatory exact projections. To
accelerate their convergence, thus recovering the full content of the exact solution
with spectral accuracy, one needs to postprocess the SV solution at its final stage.
Such postprocessing filters were devised in [14, 24] away from the edges of the shocks;
consult [23, section 2.1] for the nonperiodic framework and [13, 12] for postprocessing
up to the shocks. For a recent study that combines an effective edge detector with
spectral postprocessing we refer to [7, 8, 9]. In section 4 we use the Gegenbauer
polynomial partial sum advocated in [12] to postprocess the SV solution so that
spectral accuracy can be recovered.

2. The SV scheme.

2.1. Entropy solutions of nonlinear conservation laws. We consider the
nonlinear scalar conservation law over the finite interval Λ := (−1, 1),

∂tu(x, t) + ∂xf(u(x, t)) = 0, (x, t) ∈ Λ× [0, T ],(2.1)

withH1
loc[0, T ] boundary values prescribed at the inflow boundary points along {±1}×

[0, T ],

u(±1, t) = g±(t), ±f ′(u(±1, t)) < 0, t > 0,(2.2)

and subject to H1(Λ)-initial conditions given at t = 0,

u(x, 0) = u0(x), x ∈ (−1, 1), x ∈ {±1}.(2.3)

An entropy weak solution of (2.1) is sought, i.e., a bounded measurable u(x, t),
which assumes the prescribed initial and boundary data in the proper sense and admits
the following entropy condition: For all convex entropy pairs (U, F ), U ′′(·) ≥ 0
satisfying the compatibility relation F ′(·) = U ′(·)f ′(·), there holds

∂tU(u(x, t)) + ∂xF (u(x, t)) ≤ 0, (x, t) ∈ Λ× [0, T ].(2.4)

The entropy inequality (2.4) is sufficient, in the scalar case, to single out a unique,
physically relevant solution. This so-called entropy solution could be realized by the
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vanishing viscosity limit, u = limε uε(x, t), where uε satisfies the regularized vanishing
viscosity equation

∂tu
ε(x, t) + ∂xf(u

ε(x, t)) = ε∂x(D∂xu
ε(x, t)), D > 0.

We note in passing that the regularized viscosity equation admits an equivalent weak
formulation, namely, for all φ ∈ C∞

0 (Λ× R
+
t )∫

Λ×R
+
t

uε(x, t)∂tφ(x, t) + f(uε(x, t))∂xφ(x, t) + εD∂xu
ε(x, t)∂xφ(x, t) dxdt = 0.

(2.5)

For the classical theory of such entropy solutions we refer to Lax [18] and Smoller
[28]. For the corresponding theory of initial-boundary value problems, cf. [16]
and the references therein. Tartar [34] introduced compensated compactness argu-
ments to study the existence and stability of such solutions. In this context, one
seeks a sequence of approximate weak solutions with entropy production compact in
H−1

loc (Λ × [0, T ]); an L∞ weak-star convergence of the corresponding fluxes then fol-
lows. Following Tadmor in [29, 23], we shall use compensated compactness arguments
to answer the stability question of the SV method discussed in this paper.

2.2. The discrete framework. We let PN denote the space of algebraic poly-
nomials of degree ≤ N , and we let (Lk)k≥0 denote the orthogonal family of Legendre
polynomials in this space

(Lj , Lk) =
2

2k + 1
δjk.

Here, (·, ·) and ‖ · ‖ represent the usual L2(Λ)-inner product and norm. Next we let
{ξj}Nj=0 denote the zeros of (1 − x2)L′

N (x) with ξ0 = −1 < ξ1 < · · · < ξN = 1. In
what follows we shall use the Legendre Gauss–Lobatto quadrature rule, stating that
there exist weights, ωj , such that for all φ ∈ P2N−1(Λ) we have (see, e.g., [4])

∫ 1

−1

φ(x)dx =

N∑
j=0

ωjφ(ξj).(2.6)

This suggests that we define a discrete inner product (., .)N as

(φ, ψ)N =

N∑
j=0

ωjφ(ξj)ψ(ξj),

and we let ‖ · ‖N denote the corresponding discrete norm. Indeed, this discrete norm
is equivalent to the usual L2-norm over PN (Λ):

‖φ‖ ≤ ‖φ‖N ≤
√
2 +

1

N
‖φ‖ ∀φ ∈ PN(2.7)

and, of course, due to (2.6) we obtain

(φ, ψ) = (φ, ψ)N if degφ+ degψ ≤ 2N − 1.(2.8)
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Associated with the N + 1 points of the Legendre Gauss–Lobatto quadrature rule,
{ξj}Nj=0, is a unique PN -interpolant which we denote by IN :

IN (φ)(x) ≡
N∑
k=0

(φ, Lk)N
‖Lk‖2

N

Lk(x), IN (φ)(ξj) = φ(ξj), j = 0, 1, . . . , N.

The projection IN can be viewed as an “approximate identity” in the PN -space; in
this context we recall the result of [3] which provides us with the estimate∥∥∥∥ ∂

∂x
INφ

∥∥∥∥+N · ‖φ − INφ‖ ≤ C

∥∥∥∥ ∂

∂x
φ

∥∥∥∥ .(2.9)

We note in passing that similar estimates hold for some other “approximate identities”
in the PN -space. Clearly, (2.9) applies to PN , the usual L2(Λ) projection into PN .
For instance, (2.9) remains valid if we replace INφ with JNφ:

JNφ :=

∫ x

−1

PN−1
∂

∂x
φdx.

Indeed, using standard estimates of the latter (consult [4]), we obtain∥∥∥∥ ∂

∂x
JNφ

∥∥∥∥+N · ‖φ − JNφ‖ ≤ C

∥∥∥∥ ∂

∂x
φ

∥∥∥∥ .(2.10)

Finally, using (2.8) with ψ ≡ IN−1ψ+(ψ−IN−1ψ) followed by (2.9) implies that
the error of Gauss quadrature for P2N -polynomials does not exceed

|(φ, ψ)− (φ, ψ)N | ≤ C‖ψ − IN−1ψ‖‖φ‖ ≤ C

N
‖∂xψ‖ · ‖φ‖ ∀φ, ψ ∈ PN (Λ).

(2.11)

2.3. The SV scheme. We seek an N -degree approximate solution, uN (x, t),
which approximates the interpolant of the exact entropy solution, INu(x, t). Initially,
we set uN (x, 0) = INU0(x). To evolve in time, we introduce the following SV operator,
Q. Expressed in terms of the Legendre expansion v =

∑∞
l=0 v̂lLl, the SV operator,

Q, takes the form

Qv(x) :=

N∑
l=0

q̂lv̂lLl(x), v =

∞∑
l=0

v̂lLl(x).(2.12)

Here, q̂l are the so-called viscosity coefficients,


q̂l = 0 for l ≤ m,

q̂l ≥ 1− m2

l2
for m < l ≤ N,

(2.13)

which are at our disposal. Observe that the SV operator is activated by only the
high mode numbers, ≥ m. In particular, if we let m ↑ ∞, then the SV operator
is spectrally small (in the sense that ‖Qv‖H−s ≤ cm−s‖v‖). We shall occasionally
highlight the dependence of the SV operator on this cut off of high wave numbers,
writing Q = Qm.
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Equipped with the SV operator (2.12)–(2.13), we now construct our Legendre
viscosity approximation of the initial-boundary value problem (2.1). To this end we
let uN (x, t) ∈ PN for t ≥ 0 be determined by the moment condition—a discrete
analogue of the weak formulation (2.5) requiring that for all φ ∈ PN , t > 0, we have

(∂tuN (t) + ∂xINf(uN (t)), φ)N + εN (∂xQuN (t), ∂xQφ)N
= (B (uN (t)) , φ)N ∀ φ ∈ PN .(2.14)

Here, B(·) is a penalty boundary operator,

B (uN (t)) = (λ(t)(1− x) + µ(t)(1 + x)) ∂xLN (x),

where the free pair of “Lagrange-multipliers,” (λ, µ), are chosen to match the inflow
boundary data, uN (x, t) = g±(t), prescribed at x = 1 whenever f ′(uN (1, t)) < 0 and
at x = −1 whenever f ′(uN (−1, t)) > 0. Consult [10] for the corresponding formulation
of the linear stability theory.

The SV method depends on two free parameters: the vanishing amplitude of the
viscosity ε = εN and the size of the viscosity-free spectrum m = mN . As in [23], we
choose

ε = εN ∼ cN−α, m = mN ∼ cNβ , 0 < 4β < α ≤ 1.(2.15)

In particular, an increasing portion of the spectrum of size mN ∼ Nβ remains viscous
free, thus retaining the (formal) spectral accuracy of the SV scheme (2.14) with the
underlying conservation law (2.1).

Remark. We do not claim the parameterization in (2.15) to be optimal. In partic-
ular, arguing along the lines of [33, 20, 21], one can use hyperviscosity regularization
to increase the size of the viscosity-free modes, mN , thus obtaining better resolution
of the resulting SV scheme.

We close this section by explaining how the SV method (2.14) can be implemented
as a collocation method. We first realize the SV in terms of an N -degree polynomial,
∨N , such that

(∂x(QuN ), ∂x(Qφ))N = (∨N , φ)N ∀φ ∈ PN .(2.16)

Recall that the discrete inner product (·, ·)N involves the Gauss–Lobatto weights,
W := diag(ω0, . . . , ωN ). If we letDQ denote the (N+1)×(N+1) differentiation matrix
associated with the derivative of the SV so that (DQφ)(ξj) = ∂x(Qφ)(ξj), then 0 ≤
j ≤ N for all φ’s ∈ PN . Then (2.16), expressed in terms of the corresponding N + 1
vectors, reads 〈DQuN , WDQφ〉 = 〈∨N , Wφ〉, and hence, ∨N = W−1DT

QWDQuN .

Actually, we have DQ = LDQ̃LTW , where Q̃ := diag(q̂0‖L0‖−2
N , . . . , q̂N‖LN‖−2

N ) and
L, LD are the (N + 1)× (N + 1) matrices with the elements

(L)jk = Lk(ξj), (LD)jk = (∂xLk)(ξj), j, k = 0, 1, . . . , N.

Thus, by denoting D̃ := Q̃LTDWLDQ̃, ∨N = LD̃LTWuN . Since, for 0 ≤ k ≤ l ≤ N ,
we have from (2.6) that

(LTDWLD)kl = (∂xLl, ∂xLk) = (Ll∂xLk)|x=1
x=−1 =

1

2
[1 + (−1)k+l]k(k + 1),(2.17)
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it follows that

(D̃)lk = (D̃)kl = Q̃kkQ̃ll(∂xLl, ∂xLk)

=

{
k(k + 1)γkγlq̂k q̂l, m < k ≤ l ≤ N, k + l even,
0 otherwise,

where γk := ‖Lk‖−2
N = (k+1/2) for 0 ≤ k < N and γN = N/2. Another way to reach

this expression is to put φ = Lk in (2.16) so that, for uN (x) =
∑N
l=0 ûlLl(x),

∨N (x) =
N∑
k=0

(∂x(QuN ), ∂x(QLk))

‖Lk‖2
N

Lk(x) =

N∑
k=0

N∑
l=0

(q̂l∂xLl, q̂k∂xLk)

‖Lk‖2
N

ûlLk(x)

=

N∑
k=0

N∑
l=0

Q̃kkQ̃ll(∂xLl, ∂xLk)‖Ll‖2
N ûlLk(x) =

N∑
k=0

N∑
l=0

(D̃)kl‖Ll‖2
N ûlLk(x)

= (L0(x), L1(x), . . . , LN (x))D̃LTW (uN (ξ0), uN (ξ1), . . . , uN (ξN ))
T .

Remark. To gain better insight into the SV operator we observe that the SV
operator Q is self-adjoint with respect to the discrete inner product (·, ·) and, thanks
to (2.8), one can integrate by parts. Consequently, the SV expression on the left of
(2.14) takes the form

εN (∂x(QuN ), ∂x(Qφ))N = εN∂x(QuN ) · Qφ|x=1
x=−1 − εN (Q∂2

xx(QuN ), φ)N .(2.18)

The realization of the SV operator here shows that ∨N is an approximation to
Q∂2

xx(QuN ) which takes into account the boundary terms, thus preventing spurious
boundary layers. Specifically, comparing (2.16) to (2.18), with φ = φi, φi(ξj) = δij ,
yields

∨(ξi) = −Q∂2
xx(QuN )(ξi) + ∂xQuN · Qφi|1−1.

The SV operator here is different than the original SV method introduced in [23].
Let us “test” (2.14) against φ = φi, where φi is the standard characteristic poly-

nomial of PN (Λ) satisfying φi(ξj) = δij , 0 ≤ i, j ≤ N . At the interior points we
obtain

d

dt
uN (ξi, t) +

∂

∂x
INf(uN )(ξi, t) = −εN ∨N (ξi, t), 1 ≤ i ≤ N − 1.(2.19)

For the boundary treatment we consider, for example, the case of an outflow boundary
at x = +1 and an inflow boundary at x = −1. In this case B(uN (t)) = λ(t)(1 −
x)∂xLN (x). The value of λ(t) is dictated by the prescribed inflow boundary data,
setting x = −1 at (2.14). At the outflow boundary, x = +1, the boundary term
B(uN (t)) vanishes and (2.14) realizes the equation the same way it was discretized at
the interior points in (2.19), namely,

d

dt
uN (+1, t) +

∂

∂x
INf(uN )(+1, t) = −εN ∨N (+1, t).(2.20)

We note that the last term on the right of (2.20) defined via (2.16) prevents the
creation of a boundary layer. Equations (2.19)–(2.20), together with the inflow data
prescribed at x = −1, uN (−1, t) = g−(t), furnish a complete equivalent statement of
the pseudospectral (collocation) viscosity approximation (2.14).
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3. Convergence of the SV method. To establish the necessary a priori esti-
mates for uN , we first prepare the following lemma.
Lemma 3.1. Consider the SV operator Q = Qm, (2.12) with the parameterization

in (2.13). Then for any φ ∈ PN ,

‖∂xφ‖2 ≤ 2‖∂x(Qφ)‖2 + cm4 lnN‖φ‖2,

‖∂x(Qφ)‖2 ≤ 2‖∂xφ‖2 + cm4 lnN‖φ‖2.

Remark. The lemma shows the equivalence of the H1 norm before and after
application of the SV operator, Q = Qm for moderate size of mN << N1/4. This
holds despite the fact that for m = mN ∼ cNβ ↑ ∞, the corresponding SV operator,
Qm is spectrally small.

Proof. Let φ̂l be the coefficients of the Legendre expansion of φ(x), and

Jl,N = {j | l + 1 ≤ j ≤ N, l + j odd}.

Then by the relation between the coefficients of the Legendre expansions of φ(x) and
those for ∂xφ(x) (see [4]),

∂xφ(x) =

N−1∑
l=0

φ̂
(1)
l Ll(x), φ̂

(1)
l = (2l + 1)

∑
j∈Jl,N

φ̂j .

Next set r̂l = 1− q̂l, and let R denote the corresponding low modes filter

Rφ(x) :=
N∑
l=0

r̂lφ̂lLl(x).

Clearly r̂l = 1 for l ≤ m, and r̂l ≤ m2l−2 for l > m. Since ∂xφ(x) ≡ ∂x(Qφ(x)) +
∂x(Rφ(x)), it suffices to prove that

‖∂x(Rφ)‖2 ≤ cm4 lnN‖φ‖2.

We decompose ∂x(Rφ(x)) = A1(x) +A2(x), where

A1(x) := ∂x

(
m∑
l=0

r̂lφ̂lLl(x)

)
, A2(x) := ∂x

(
N∑

l=m+1

r̂lφ̂lLl(x)

)
.

By standard inverse inequality (e.g., see [4]), ‖∂xφ‖ ≤ cN2‖φ‖ ∀φ(x) ∈ PN , and hence
‖A1‖2 ≤ cm4‖φ‖2. Further let Jl,N,m = {j | j ∈ Jl,N , j > m}. Then

‖A2‖2 =

N−1∑
l=0

(2l + 1)2


 ∑
j∈Jl,N,m

r̂j φ̂j




2

‖Ll‖2

≤ 2
N−1∑
l=0

(2l + 1)


 ∑
j∈Jl,N,m

|r̂j |2‖Lj‖−2




 ∑
j∈Jl,N,m

|φ̂j |2‖Lj‖2




≤ cm4‖φ‖2
N−1∑
l=0

(2l + 1)
∑

j∈Jl,N,m

j−3

≤ cm4‖φ‖2

(
m−2

m∑
l=0

(2l + 1) +

N−1∑
l=m+1

(2l + 1)l−2

)

≤ cm4 lnN‖φ‖2,
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and the desired estimates follow.
The following lemma is the heart of the matter.
Lemma 3.2. Consider the SV scheme (2.14) with H1[0, T ] boundary values,

(2.2), and H1 initial conditions, (2.3). Assume that the SV solution remains uni-
formly bounded,

max
0≤t≤T

‖uN (·, t)‖L∞ ≤ A∞.(3.1)

Then there exists a constant (depending on A∞) such that the following H1-bound
holds:

εN

[
‖∂tuN‖2

L2([0,T ],L2(Λ)) + ‖∂xuN‖2
L2([0,T ],L2(Λ))

]
≤ const.(3.2)

Proof. To simplify the presentation, we shall deal with the prototype case where
one boundary, say, x = −1, is an inflow boundary, while x = 1 is an outflow one.
Then

B (uN (t)) = λ(t)(1− x)∂xLN (x).

Recall that ξj are the zeros of ∂xLN (x), 1 ≤ j ≤ N − 1 so that the boundary operator
B(uN ) vanishes at all but the inflow boundary point x = −1, where it involves the
corresponding values of ω(0) = 2/N(N + 1) and ∂xLN (−1) = (−1)N+1N(N + 1)/2.
Thus

(B (uN (t)) , v)N = 2(−1)N+1λ(t)v(−1, t).
Let φ ≡ 1 in (2.14). Since INf (uN (x, t)) ∈ PN , we deduce, in view of (2.8), that

∂t (uN (t), 1) + f (uN (1, t))− f (uN (−1, t)) = 2(−1)N+1λ(t).(3.3)

Consequently,

|λ(t)| ≤ 1√
2
‖∂tuN (t)‖+max (|f(uN (1, t))|, |f(uN (−1, t))|) .(3.4)

Further, set η(t) :=
∫ t
0

λ(s) ds; then, integration of (3.3) yields for t ≤ T

|η(t)| ≤ 1√
2
‖uN (t)‖+ 1√

2
‖uN (0)‖+ t max

|z|≤A
|f(z)|, η(t) :=

∫ t

0

λ(s) ds.(3.5)

Next we recall the SV parameterization in (2.15), εN ∼ cN−α, m ∼ cNβ ,
0 < 4β < α ≤ 1. To get the desired H1-energy bound, we integrate the SV scheme
against uN . That is, we set φ = uN in (2.14). Let F (u) =

∫ u
wf ′(w)dw denote

entropy flux corresponding to the quadratic entropy, U(u) = u2/2. Using (2.11)
followed by Lemma 3.1 we find

1

2

d

dt
‖uN (t)‖2

N + F (uN (1, t))− F (uN (−1, t))
+ εN (∂x(QuN (t)), ∂x(QuN (t))) + 2(−1)Nλ(t)uN (−1, t)
= (∂xf(uN (t)), uN (t))− (∂xINf(uN (t)), uN (t))N
= − ((I − IN )f(uN (t)), ∂xuN (t))

≤ c

N
‖∂xf(uN (t))‖ · ‖∂xuN (t)‖ ≤ cA

N

(‖∂x(QuN (t))‖2 +m4 lnN‖uN (t)‖2
N

)
.
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Here and below, cA stand for various constants depending on the uniform bound
A∞ := max ‖uN‖L∞ . Thus for any t ≤ T ,

‖uN (t)‖2
N + 2

(
εN − cA

N

)∫ t

0

‖∂x(QuN (s))‖2 ds

≤ c0 + 2

∫ t

0

(
cAm4 lnN

N
‖uN (s)‖2 + 2 max

|z|≤A
|F (z)| − 2(−1)Nλ(s)g−(s)

)
ds.

By (3.5),∣∣∣∣
∫ t

0

λ(s)g−(s) ds

∣∣∣∣ =
∣∣∣∣g−(t)η(t)− g−(0)η(0)−

∫ t

0

g′
−(s)η(s) ds

∣∣∣∣
≤ |g−(t)| (‖uN (t)‖+ cA + c0) +

∫ t

0

|g′
−(s)| (‖uN (s)‖+ cA + c0) ds.

Putting together the two estimates above, we have from (3.1) and the SV parameter-
ization in (2.15) that

‖uN (t)‖2 + εN

∫ t

0

‖∂x(QuN (s))‖2 ds ≤ cA

(
‖g−‖2

H1(0,t) + t+ 1
)
+ c0.

Using Lemma 3.1 and (2.15) again, we arrive at

εN‖∂xuN‖2
L2([0,T ];L2(Λ)) ≤ cA

(
‖g‖2

H1(0,T ) + T + 1
)
+ c0.(3.6)

Next, we set φ = ∂tuN in the SV weak formulation (2.14). By (2.9), (2.7), and (3.4),

‖∂tuN (t)‖2+
εN
2

d

dt
‖∂x(QuN (t))‖2 ≤ cA‖∂xuN (t)‖2+

1

2
‖∂tuN (t)‖2+cA

∣∣∣∣ d

dt
g−(t)

∣∣∣∣
2

+cA.

Temporal integration of the above inequality followed by (3.6) implies

‖∂tuN‖2
L2([0,T ];L2(Λ)) ≤ cA

(
‖∂xuN‖2

L2((0,T );L2(Λ)) + ‖g−‖2
H1(0,T ) + 1

)
≤ cA

εN

(
‖g−‖2

H1(0,T ) + T + c0 + 1
)

.(3.7)

Inequalities (3.6) and (3.7) conclude the proof.
Equipped with the H1-bound and Lemma 3.2 we are now ready to state the main

stability result of this paper.
Theorem 3.3. Let uN be the solution of the SV scheme (2.14)–(2.15). Assume

that it remains uniformly bounded so that (3.1) holds. Then uN tends (strongly in
Lploc(Q) 1 ≤ p < ∞) to a weak solution, u, of the initial-boundary value problem
(2.1).

If, in addition, the SV amplitude is set εN ∼ N−α with α < 1, then u is the
unique entropy solution.

Remark. The uniform bound of the one-dimensional Fourier SV solution was
proved in [23, 32]. For the corresponding multidimensional proof we refer to [6].
One might expect a proof of the assumed uniform bound (3.1) to be carried out for
the current Legendre case along similar lines, but it would require more technical
arguments which are beyond the scope of this paper.
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Proof. Let Ω = Λ× [0, T ] and define (·, ·)Ω and ‖ · ‖Ω as before. Let

(v, w)Ω,N =

∫ T

0

(v(t), w(t))N dt.

We still use cA to denote, as before, a constant depending on A∞ with possible
dependence on T .

We want to show that the entropy production of uN is compact in H−1
loc (Ω). To

this end, we consider, for an arbitrary convex entropy pair (U, F ),

(∂tU(uN ) + ∂xF (uN ), w)Ω ≡
5∑
j=1

Gj (U
′(uN )φ) .(3.8)

We decompose the entropy production to the five terms on the right given by

G1(ψ) = (∂tuN + ∂xf(uN ), ψ − ψN )Ω,

G2(ψ) = (∂xf(uN )− ∂xINf(uN ), ψN )Ω,

G3(ψ) = (∂tuN + ∂xINf(uN ), ψN )Ω − (∂tuN + ∂xINf(uN ), ψN )Ω,N ,

G4(ψ) = εN (∂x(RuN ), ∂xψN )Ω + εN (∂xuN , ∂x(RψN ))Ω,

G5(ψ) = −εN (∂xuN , ∂xψN )Ω − εN (∂x(RuN ), ∂x(RψN ))Ω.

The last identity holds for arbitrary ψN ∈ PN . Following Maday, Ould Kaber,
and Tadmor [23, section 5] we specify

ψN = JNψ :=

∫ x

−1

PN−1∂yψ(y, t)dy.

This specific choice will play an essential role in the derivation of the entropy condition
below. Observe that ψN ∈ PN with ψN (−1, t) = 0. We recall that the operator
R above denotes the complement operator, Q + R = Id, associated with symbols
r̂l = 1− q̂l. We proceed with the upper bound on the five terms on the right of (3.8).

By (2.10), (3.6), and (3.7),

|G1(ψ)| ≤ cA√
εN

‖ψ − ψN‖D ≤ cA
N
√

εN
‖∂xψ‖Ω.

According to (3.6),

|G2(ψ)| = |(f(uN )− INf(uN ), ∂xψN )Ω| ≤ c

N
‖∂xf(uN )‖Ω‖∂xψN‖Ω ≤ cA

N
√

εN
‖∂xψN‖Ω.

By virtue of (2.11) and (3.7),

|G3(ψ)| = |(∂tuN , ψN )Ω − (∂tuN , ψN )Ω,N | ≤ cA
N

‖∂tuN‖Ω‖∂xψN‖ψ ≤ cA
N
√

εN
‖∂xψN‖Ω.

To proceed, we utilize Lemma 3.1, ‖∂x(Rφ)‖Ω ≤ cm2
√
lnN‖φ‖Ω. Applying this with

φ = uN , ψN we find

|G4(ψ)| ≤ εNcm2
√
lnN‖uN‖Ω‖∂xψN‖Ω + εN‖∂xuN‖ψ‖∂x(RψN )‖Ω

(3.9)

≤ cAm2
√
lnN(εN‖∂xψN‖Ω +

√
εN‖ψN‖Ω).
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Similarly

|G5(ψ)| ≤ √
εNcA‖∂xψN‖Ω + εNm4lnN‖ψN‖Ω.

The previous statements, with ψ = U ′(uN )φ, tell us that∣∣∣∣∣∣
5∑
j=1

Gj (U
′(uN )φ)

∣∣∣∣∣∣
≤ cA

(
1

N
√

εN
+ εNm2

√
lnN +

√
εN

)(‖∂xuN‖Ω‖φ‖L∞(Ω) + cA‖∂xφ‖Ω

)
≤ cA

(
‖φ‖L∞(Ω) +

(
1

N
√

εN
+ εNm2

√
lnN +

√
εN

)
‖∂xφ‖Ω

)
.

Thus, the entropy production ∂tU(uN ) + ∂xF (uN ) can be written as a sum of two
terms—the first tends to zero in H−1(Ω) and the second is bounded in L1(Ω). In
view of the Murat lemma [5], bounded sequences inW−1,p(RN )∩L1(RN ), 2 < p < ∞
form a compact subset of H−1(Ω). We conclude that the entropy production of the
SV solution is H−1-compact which, in turn, by compensated compactness arguments
[34], implies that uN converges strongly (in Lploc(Λ×R

+
t ), p < ∞) to a weak solution,

u, of the conservation law (2.1).
It remains to show that u is indeed the unique entropy solution. To verify the

entropy condition for εN ∼ cN−α, α < 1, we proceed as follows. It is easy to see that

3∑
j=1

|Gj (U
′(uN )φ)| ≤ cA

N
√

εN
‖∂x (U

′(uN )φ)N‖
Ω

≤ cA
N
√

εN

(‖∂xuN‖Ω‖φ‖L∞(Ω) + ‖uN‖L∞(Ω)‖∂xφ‖Ω

)
≤ cA

(
Nα−1‖φ‖L∞(Ω) +N

α
2 −1‖∂xφ‖Ω

) −→ 0.

By the choice of the SV parameters in (2.15), together with (3.6) and (3.10), we have

|G4 (U
′(uN )φ)| ≤ cAεNm2

√
lnN ‖∂x (U

′(uN )w)‖Ω + cA
√

εNm2
√
lnN ‖U ′(uN )φ‖Ω

≤ cA
√

εM2
√
lnN (‖φ‖Ω + ‖∂xφ‖Ω) −→ 0.

Finally, let (U ′(uN )φ)N denote our usual projection, (U ′(uN )φ)N = JN (U ′(uN )φ. It
is here that we take advantage of our special choice of projection, JN . Indeed, for
any nonnegative test function, φ(x) ≥ 0, we find
G5 (U

′(uN )φ) = −ε (∂xuN , PN−1∂x (U
′(uN )φ))Ω − εN (∂x(RuN ), ∂x (R(U

′(uN )φ)N ))Ω
= −εN (∂xuN , U ′′(uN )w∂xuN )Ω − εN (∂xuN , U ′(uN )∂xw)Ω

−εN (∂x(RuN ), ∂x (R(U
′(uN )φ)N ))Ω

≤ −εN (∂xuN , U ′(uN )∂xφ)Ω − εN (∂x(RuN ), ∂x (R(U
′(uN )φ)N ))Ω

≤ cA
√

εN‖∂xφ‖Ω + cAεNm4 lnN‖φ‖Ω −→ 0.

It follows that u satisfies the entropy inequality (2.4) in the sense of distribution,
and so it is the unique entropy solution.

Remark. Maday, Ould Kaber, and Tadmor [23] introduced the nonperiodic SV
scheme with SV of the form

ε (Q∂xuN (t), ∂xφ)N ,(3.10)
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parameterized with viscosity coefficients [23, equation (2.2)]


q̂l = 0 for l ≤ m,

q̂l ≥ 1− m4

l4
for m < l ≤ N.

(3.11)

Observe that the SV operator is applied here once to the first derivative of the SV
solution. Thus the “amount” of high-modes smoothing introduced in (3.11) is compa-
rable to the amount of SV introduced here in (2.13) which is activated twice—before
and after differentiation. The main difference between these two approaches, however,
lies in the activation of high-modes diffusion to the SV solution rather than to its first
derivative, as in (3.11).

In the proof of the main result of [23], Corollary 3.2 plays an important role,
analogous to our Lemma 3.1. According to [23, Corollary 3.2], for any φ ∈ PN , we
have

‖∂xφ‖2 ≤ ‖∂xφ‖2
Q + cm4 lnN‖φ‖2,

where ‖∂xφ‖2
Q stands for the weighted norm ‖∂xφ‖2

Q = (Q∂xφ, ∂xφ). The argument,
based on dyadic decomposition of φ, fails, however, precisely because of the additional
terms introduced by differentiation of each dyadic bloc. Indeed, let us take φ(x) =
LN (x) so that

∂xφ(x) =

N−1∑
l=0

l+N odd

(2l + 1)Ll(x),

and let q̂l = 1 for m < l ≤ N . Then on the one hand,

‖∂xφ‖2 − ‖∂xφ‖2
Q =

m∑
l=0

l+N odd

(2l + 1)2‖Ll‖2 = 2

m∑
l=0

l+N odd

(2l + 1) = O(m2);

on the other hand, however, ‖φ‖2 = (N+ 1
2 )

−1. To establish the a priori estimates (3.6)
and (3.7) therefore requires m4

N ≤ c lnN which is much stronger than the condition
imposed in [23, (2.15)]. Thus the result of the present paper is a correction and an
improvement of the result in [23].

4. Numerical results. In this section, we give some numerical results of the
scheme (2.19)–(2.20). We consider the Hopf equation (or inviscid Burgers equation)

∂tu(x, t) + ∂xu
2(x, t)/2 = 0, (x, t) ∈ Ω,

with initial values

u(0, x) = 1 +
1

2
sinπx, x ∈ [−1, 1],

and boundary conditions u(−1, t) = g(t), where the inflow data are taken from the
outflow boundary, i.e., g(t) = u(1, t).

This is the example presented in Maday, Ould Kaber, and Tadmor [23]. We
compute the same problem for the purpose of comparison. In Figure 4.1(a),(b),
we show the numerical results of the Legendre viscosity method (2.14)–(2.15) with
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Fig. 4.1. Solution of the proposed pseudospectral viscosity method (2.14) with (a) N = 64 modes
on the left and (b) N = 128 mode on the right.
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Fig. 4.2. The (preprocessed) pseudospectral viscosity solution of [23] based on SV (3.10)–(3.11),
with (a) N = 64 modes and (b) N = 128 modes.

N = 64 and N = 128 modes, respectively. The Legendre SV solution is computed
with SV parameters (ε = εN , m = mN ) taken as ε � N−1 and m = mN � N1/4.
For time discretization, we use the fourth-order Runge–Kutta scheme with time step
∆t = 10−5. These should be compared with the corresponding results of [23] displayed
in Figure 4.2.

To enhance the convergence up to the location of the shock (at x = 0) the Legen-
dre pseudospectral viscosity solution at time t = 1 is postprocessed using the Gegen-
bauer reconstruction [12], where uN (·, t = 1) is expanded in terms of Gegenbauer
polynomials Cλ

n(x) for 0 ≤ n ≤ <N in each of the smooth regions [−1, 0] and [0, 1].
Figure 4.3(a),(b) shows the corresponding results after the postprocessing, which en-
joy better resolution than those reported in [23, Figure 6.3].

The improved error decay of the postprocessed Legendre viscosity solution pre-
sented in Table 4.1 below is quantified in terms of the L1([−1,−0.2] ∪ [0.2, 1]) norm
(away from the jump). Gegenbauer postprocessing was implemented with λ = <N �
0.05N . Compared with the preprocessed results in Table 4.1, column (a), the errors in



SPECTRAL VISCOSITY METHOD FOR CONSERVATION LAWS 1267

–1 –0.5 0 0.5 1
0.4

0.6

0.8

1

1.2

1.4

1.6
(a)

–1 –0.5 0

(b)

0.5 1
0.4

0.6

0.8

1

1.2

1.4

1.6

Fig. 4.3. The SV solution in Figure 4.1 after postprocessing.

Table 4.1
L1([−1,−0.2]∪[0.2, 1]) error of the SV method, (a) without postprocessing, (b) after Gegenbauer

postprocessing.

N (a) (b)
40 2.3464e-2 3.3437e-4
80 1.1740e-2 2.5697e-5
160 5.4598e-3 6.8909e-6

the smooth part of the solution, Table 4.1, column (b), are considerably smaller after
the postprocessing. Moreover, the convergence rate of the preprocessed results is lin-
ear; after postprocessing one recovers a considerably faster error decay with increasing
N (the error decay with N = 160 hinges on the rather sensitive parameterization of
the Gegenbauer postprocessing).

REFERENCES

[1] S. Abarbanel, D. Gottlieb, and E. Tadmor, Spectral methods for discontinuous problems,
in Numerical Methods for Fluid Dynamics II, Proceedings of the 1985 Conference on Nu-
merical Methods for Fluid Dynamics, K. W. Morton and M. J. Baines, eds., Clarendon
Press, Oxford, 1986, pp. 129–153.

[2] O. Andreassen, I. Lie, and C.E. Wasberg, The spectral viscosity method applied to simula-
tion of waves in a stratified atmosphere, J. Comput. Phys., 110 (1994), pp. 257–273.

[3] C. Bernardi and Y. Maday, Approximations Spectrales des Problèmes aux Limites Ellip-
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