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LEGENDRE PSEUDOSPECTRAL VISCOSITY METHOD FOR
NONLINEAR CONSERVATION LAWS*

YVON MADAY', SIDI M. OULD KABER!, AND EITAN TADMOR}

Abstract. In this paper, the Legendre spectral viscosity (SV) method for the approximate
solution of initial boundary value problems associated with nonlinear conservation laws is studied.
The authors prove that by adding a small amount of SV, bounded solutions of the Legendre SV
method converge to the exact scalar entropy solution. The convergence proof is based on compensated
compactness arguments, and therefore applies to certain 2x 2 systems. Finally, numerical experiments
for scalar as well as the one-dimensional system of gas dynamics equations are presented, which
confirm the convergence of the Legendre SV method. Moreover, these numerical experiments indicate
that by post-processing the SV approximation, one can recover the entropy solution within spectral
accuracy.

Key words. conservation laws, Legendre polynomials, spectral viscosity, post-processing, com-
pensated compactness, convergence, spectral accuracy

AMS subject classifications. 35L65, 65M10, 65M15

1. Introduction. We are concerned here with the extension of the spectral vis-
cosity (SV) method [Tal], [MT], [Ta2], [Ta3], [CDT] to initial boundary value prob-
lems associated with the nonlinear conservation law,

(1.1) %u(a:,t) + (%f(u(w,t)) =0, (z,t) € [-1,1] x [0, 00),
which is augmented with appropriate initial values at ¢t = 0, and the necessary bound-
ary data prescribed at ¢ = +1.

We concentrate on the Legendre pseudospectral method, and we show that by
adding a spectrally small amount of SV to the high modes, one can achieve stability
(and hence convergence) without sacrificing the spectral accuracy of the underlying
Legendre approximation.

The paper is organized as follows. In §2 we present the details of the Legendre
SV method. In §3 we collect the necessary estimates concerning linear operators in
the spectral (polynomial) space which are required in the sequel. In §§4 and 5 we deal
with the scalar case: assuming the Legendre SV approximation is uniformly bounded,
we prove in §4 an a priori estimate on its gradient, which in turn is used, together
with compensated compactness arguments, to prove convergence in §5. The building
block of our proof is a “weak” representation of the truncation error provided in
Lemma 5.1, which shows that the entropy production plus entropy dissipation of the
Legendre SV method belongs to a compact subset of ngcl (z,t); using the results of
[D] (see also [C]), our proof applies therefore to certain 2 x 2 systems. Finally, we
present numerical experiments, which demonstrate the application of the Legendre
SV method for scalar equations in §6, as well as systems of conservation laws in §7.
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322 Y. MADAY, S. M. OULD KABER, AND E. TADMOR

1.1. Notation. We let IPy denote the space of algebraic polynomials of degree
< N, and we let (Lg)k>0 denote the orthogonal family of Legendre polynomials in
this space

2
1.2 L; = —>;
( ) ( ]’Lk) 2k+1 Jk
Here, (-,-) and || - || represent the usual L?[—1, 1]-inner product and norm. Next we
let {¢;}3, denote the zeros of (1 — 2?)Liy(z) with §o = -1 <& < -+ <&y =1L

In the sequel we shall use the Legendre Gauss—-Lobatto quadrature rule stating that
there exist weights, w;, such that for all ¢ € IPoy_1[—1,1] we have (see, e.g., [DR],
[CHQZ))

(1.3) / d(z)dz = S wilE;).
1 =0

This suggests to define a discrete inner product, (.,.)n

N
(B )n =D wid(€)0(E)),

=0

and we let || - || v denote the corresponding discrete norm. Indeed, this discrete norm
is equivalent with the usual L2-norm over Py[—1,1] (consult [CQ)]):

(1.4) Il < lglln < V3ol V€ P[-1,1],

and of course, due to (1.3) we obtain

(1.5) (¢,9) = (¢, )N if degd + degyp < 2N — 1.

Associated with the N + 1 points of the Legendre Gauss—Lobatto quadrature rule,
{¢; };-V:O, is a unique IPy-interpolant which we denote by Zy:

I (¢)(@) Z("f’LLﬁN L@, Iv@E) = 66)  T=0L...N

The projection Zy can be viewed as an “approximate identity” in the IPy-space; in
this context we recall the recent result of [M] which provides us with the estimate

o
a—zd’H'

We note in passing that similar estimates hold for some other “approximate identities”
in the IPy-space. For instance, (1.6) remains valid if we replace Iy¢ with Jny¢ =
J%, mn—1Z ¢dx, where my_1¢ denotes the usual L?-projection of ¢ in Py—1. Indeed,
using standard estimates of the latter (consult [CHQZ]), we obtain

(1.6) +N-|lp-Ingll <C

0
‘aIJ\@

(1.7)

15]
‘%JJ\W

0
|+ 8o - awoll <0 oo

Finally, using (1.5) with ¢ = Iy_19 + (¢ — In_19) followed by (1.6), imply that
the error of Gauss quadrature for IPyx[—1, 1]-polynomials does not exceed
0
e

(18) 1(6,9) ~ (@ )w| < Clo~Tn 1l < 5 | o019l va,v € Pul-1,1).
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2. The Legendre SV approximation. In the spectral viscosity approximation
of (1.1) we seek a IPy-polynomial of the form uy(z,t) = Eszo @k (t) Ly (), such that
for all ¢ € IPy[—1,1], we have

@1) (gt geinfun).6) = —en (Qgruw 526) -+ (Blum) oy

The approximation (2.1) involves the boundary operator, B(uy), and the SV opera-
tor, Q. Here, B(uy) is a forcing polynomial in IPy[—1, 1] of the form

Bun) = [A(®)(1 - 2) + u(t)(1 + )| Ly(z),

involving (at most) two nonzero free parameters, A(t) and u(t), which should en-
able un(z,t) to match the inflow boundary data prescribed at * = +1 whenever
+f'(un(£1,¢)) < 0. And Q denotes the spectral viscosity operator

N 00
Qp=> Qudlr Vo= diLy,

k=0 k=0

which is associated with bounded viscosity coefficients,

Qr=0, k <mp,
(2.2) o4
A N

> >1 - — .

1>0, > 1 (k) k>my

The free pair of spectral viscosity parameters (¢n, my) will be chosen later, such that
en | 0 and my T oo, in order to retain the formal spectral accuracy of (2.1) with
(1.1).

We close this section by explaining how the SV method (2.1) can be implemented
as a collocation method. Let us “test” (2.1) against ¢ = ¢;, where ¢; is the standard
characteristic polynomial of IPy[—1,1] satisfying ¢;(§;) = 6;;,0 < 4,7 < N. At the
interior points we obtain

(2.3a) uN(&u )+%1Nf(UN)(§i,t) = 8N%Q (E)%UN) (&,t), 1<i<N-1

These equations are augmented, at the outflow boundaries (say at z = +1) with
(2.3b)

Sun(+L, 0+ 5 T fun) (+1,1) = e - Q (a%uN) (+1,0-2q (—uN) (+1,1).

We note that the last term on the right of (2.3b) prevents the creation of a bound-
ary layer. Equations (2.3a), (2.3b) together with the prescribed inflow data (say at
x = —1) furnish a complete equivalent statement of the pseudospectral (collocation)
viscosity approximation (2.1).

The SV approximation (2.3a), (2.3b) enjoys formal spectral accuracy, i.e., its
truncation error decays as fast as the global smoothness of the underlying solution
permits. However, it is essential to keep in mind that this superior accuracy cannot
be realized in the presence of shock discontinuities, unless the final SV solution is
post-processed. The rest of this section is devoted to clarify this point.
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2.1. Epilogue. It is well known that spectral projections like myu, Inu, etc.,
provide highly accurate approximations of u, provided u itself is sufficiently smooth.
Indeed, these projections enjoy spectral convergence rate. This superior accuracy is
destroyed if u contains discontinuities; both myu and Zyu produce spurious O(1)
Gibbs’ oscillations which are localized in the neighborhoods of the discontinuities, and
moreover, their global accuracy is deteriorated to first order.

To accelerate the convergence rate in such cases, we follow a similar treatment in
[GT1] for the Fourier projections of discontinuous data. We introduce a mollifier of
the form

a r—y
(24 e (aiy) = p (50) Kylai),
which consists of the following two ingredients:

e p(z) is a C§°(—1,1)-localizer satisfying p(0) = 1;
o K,(z;y) is the Christoffel-Darboux kernel

P\ Lij(z)L; 1) Lpt1(2)Lp(y) — Lp+1(y) Lp(x
Kp(w;y)zg ?lL)j”g(y):(p;) +1(2) (y;_yﬂ(y) (z)

We let F*# denote the smoothing filter

1 B
(25) Folu(z) = / Ter=IN) (g y () dy,

r=-1

depending on the two fixed parameters, a,3 € (0,1). Then, the following spectral
error estimate was derived in [O]: for all s > 1 there exists a constant C; , such that
(2.6)

[u()=F* (ayu)(@)] < Cpa | N0 ] oy + N-399 max |DIu(y)
0<j<s

A similar estimate holds for Z. These estimates show (at least for 3 < 1) that except
for a small neighborhood of the discontinuities (measured by the free parameter ),
one can filter the Legendre projections, myu and Znywu, in order to recover pointwise
values of u within spectral accuracy.

Next, let u be the desired exact solution of a given problem. The purpose of a
spectral method is to compute an approximation to the projection of u rather than u
itself. Consequently, if the underlying solution of our problem is discontinuous, then
the approximation computed by a spectral method, uy, exhibits the two difficulties
of local Gibbs’ oscillations, and global, low- (i.e., first-) order accuracy.

With this in mind, we now turn to discuss the present context of nonlinear conser-
vation laws. The standard, viscous-free spectral method supports the spurious Gibbs’
oscillations which render the overall approximation unstable; consult [Tal]. The task
of the SV is therefore twofold:

1. Stability: To stabilize the standard spectral method, which is otherwise un-
stable.

2. Spectral accuracy: To retain the overall spectral accuracy of the underlying
spectral method.
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The question of stability is addressed in the following sections. We prove that SV
guarantees the H ~!-stability (and hence the convergence) of the Legendre SV ap-
proximation,

LP

loc

—limuy(z,t) = u(z,t) Vp < oo.

The question of spectral accuracy requires further clarification. As noted above, the
Legendre SV solution, un(-,t), should be considered as an accurate approximation of
Inu(-,t), rather than u(-,t) itself. Therefore, the convergence rate of the SV method
is limited by the first order convergence rate of Iyu(-,t). (Of course, this limita-
tion arises once shock-discontinuities are formed.) We recall that according to (2.6),
this first-order limitation can be avoided by filtering Zyu: the filtered interpolant,
F>B(Inu), retains a spectral convergence rate, at least in smooth regions of the dis-
continuous entropy solution u(-, t). This suggests to apply the same filtering procedure
(2.5) to un(-,t), in order to accelerate the convergence rate of the SV method.

Let {i(t)}}\_, denote the computed coefficients of the Legendre SV method. The
computation of the SV solution is based on adding spectral viscosity only to the “high”
modes—those with wavenumbers k > my. Therefore, one expects the computation of
the viscous-free coefficients, at least, 4k (t) = (un, Lx)n /|| Lkll%, k= 1,...,mn, to be
spectrally accurate approximation of the exact pseudospectral Legendre coefficients,
(u, Lk)n/||Lk||%- Assuming that indeed this is the case, then according to (2.6) one
can post-process the SV solution, un(-,t), in order to recover spectral convergence
rate in smooth regions of the entropy solutions. Thus, at the final stage of the SV
method, (2.3a),(2.3b) should be augmented with the post-processing procedure

1
(27) Foouy(et) = [ 02N @ ()dy.
z=-1

We conclude by noting that the post-processing of the SV solution plays a necessary
key role in realizing the spectral accuracy of the SV method in smooth regions of the
underlying solution. The treatment of Gibbs’ oscillations in the neighborhood of dis-
continuities requires an alternative “one-sided” filtering procedure, which is currently
under investigation, e.g., [GSV].

3. Preliminaries. We collect here a couple of a priori estimates associated with
linear operators on IPy[—1, 1], which will be needed in the sequel. We begin with the
following lemma.

LEMMA 3.1. Let R denote the “smoothing” operator

N 00
Rp=) RidpLi Vo= biLk,

k=0 k=0
and let ||[¢||% denote the weighted inner product (Ry, ). Then the following estimate
holds:
N
(31) 19'I% < CN?> klRx|- 61> V¢ € Py[-1,1].
k=1

Proof. If ¢ = Eﬁ:o SrLk, then ¢ = sz_Ol (;Aﬁchk with (%c given by

$=0k+1) Y ¢, Jn={ilk+1<j<N, j+kodd}.

jekaN
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Recalling (1.2), we find

N-1
(R¢', &)=Y Rl ||| LI
k=0
N-—
=Z(2k+1 1Y | Ikl

k=0 jeJk,N

N-1 1
<4 Qe+ DRl D G PN > W

k=0 ]eJkN ]EchN

<C

Mz

|;1211L;|% - kakl (N? — k%) <CNZZk|Rk| 8112,

k=0 k=0

Il
o

J

and (3.1) follows. 0 A
As an immediate corollary from (2.1) with Rx = 1 we obtain [CQ]

(3.2) l¢'ll < CN?|1éll V¢ € Pn[-1,1].

Another consequence of Lemma, 3.1 is the following corollary.
COROLLARY 3.2. As before, we let ||w||? denote the weighted inner product
(Qw,w). Then, the following estimate holds:
2
+ Cm4; In N|luy|?.
Q
Proof. We first note that [|(8/8z)un||® = [|(8/0z)un | + (8/0x)un||3; where,
according to (2.2), Ry = 1 — Q) satisfy

0

<|lz=—u
I o

21, kSmN,
Rp=1-0 .

<IN k>m

= k4, N-

It remains to upper bound ||(8/8z)un||%, and to this end, we decompose un(z,t) as
a dyadic sum

ZJmN
. N
un(z,t) = ZukLk+Zu’ (z,t), ul(z,t) = E Gk L, J =log, —
j=1 k>27-"1mp mn
By Lemma 3.1 we have
9 .12 _ Hmy 4 .
|| <cemmr S5 TR < 2omb 1P
k>21-1my
and the result (3.3) follows, from
(3.4)
2
a 2 6 mnN R
H%UN 25— ZukLk
k=0 R

2 J
+40Imi Y uyl? < Cmy nNjuy|?. O
j=1

mpN
Z kL

k=0

< 2C’m§1v
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4. A priori estimates. The SV approximation (2.3a)—(2.3b) amounts to a non-
linear system of ordinary differential equations (ODEs). It can be shown that under
appropriate assumptions on €y and my, this nonlinear system admits a unique solu-
tion, un(-,t), t € [0,T]; consult [MOT]. In order to focus on its essential features, we
skip the existence/uniqueness proof of such a solution, and furthermore, we make the
following assumption regarding its uniform stability.

ASSUMPTION (L°°-boundedness). There holds
(4.1) llun (5 )llzge

loc

(a,lo,71) S M < o0.

The assumption of L>°-boundedness is indeed confirmed by the numerical exper-
iments reported later in this paper. (For a proof of L>°-boundedness in a similar
situation of the periodic Fourier SV method, we refer to [MT] and [CDT] for a treat-
ment of the one- and, respectively, multi-dimensional scalar cases.)

To simplify the presentation, we shall deal here with the prototype case where
one boundary, say £ = —1, is an inflow boundary, while £ = +1 is an outflow one. In
this case, the boundary operator B(uy) takes the form

(4.22) B(un) = A(t)(1 - 2) Ly (2),

where A(t) is a free “Lagrange multiplier” parameter which enables uy (z,t) to match
the prescribed inflow boundary data

(4.2b) un(—1,t) = g(t), g € HL (t).
We begin by noting that

0 forz =¢& > -1,
(1-2)Ly(e) = i}
—-%L forx =& = —1.

Consequently, the contribution of the boundary operator B(uy) to (2.1) amounts to
(B(un), $)n = =2(=1)VA(#)¢(~1,?).
To gain a better insight on the role of A(t), we set ¢ =1 in (2.1), and obtain
d -
(v 1) + f(un)ZZ5 = =2(-1)"A@).

Thus, A(t) measures the rate of change of total mass over the whole [—1, +1] interval.
The last equality implies that

+1flooy  |floo = max |f(u)],

lul<M

(4.38) A< o | D

V2

and the following “pessimistic” upper bound on the total mass holds

1

(4.3b) ‘A(t) = /tzo A(8)ds| < Const, Const = ﬁlluN(-,t)Il + | floo-

Equipped with (4.3a), (4.3b), we now turn to derive an a priori estimate on the
gradient of the Legendre viscosity approximation uy (z,t). To this end we proceed as
follows.
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Let F(u) = [“wf'(w)dw be the entropy flux corresponding to the quadratic
entropy u®. We set ¢ = uy in (2.1) and obtain, in view of (1.5), (1.6), and Corollary
3.2,

7] 0
||UN|| +F(un)t] +en (Q—UN, —UN) +2(=1)MA(t)un(—1,8)
2 dt N oz or N

- (% f(uN),uN) - (%va(uzv),uw)

N

= (- ZTvstan) Sun )

Cl| o 0 C
sl =S|

By (1.4) and (1.5), [lun|| ~ |lunlln and (QZun, ;’—zuN)N ”azuN“Q’ and hence

2

0
—UN

ox

+my lnN||uN||2] .
Q

2

1d —|lunll% + (en — ¢ 2u
CmiInN
< = lun® + 2|Flo — 2(—=1)V A(t)g(2).

- N
Thus, abbreviating L2 (z,t) = L2 (z,[0,T]), we arrive at the desired estimate on
the gradient of the Legendre viscosity approximation.
LEMMA 4.1. Assume that the spectral viscosity parameters (en, my) satisfy

(4.5) 0len~ my < Const- N3 with 0<g<b<1.

1
Né’
Then the following estimate holds:

2 2

—upn

(4.6) ‘ -

1 1
< Const [1 + ||g||H1 (t)] < Consta.

+ ‘ 4 U
AL UN
L2 () |10t

Proof. According to (4.3b) we have

LZ (x,t)

/ 09t
t=0

< Const + |lgli3 ),

aAOLZS - [ Fo®Aw

and hence, temporal integration of (4.4) yields

2

0
”UN(‘,T)||%2(Z) ten |5 un < Const [1 + |ftio /\(t)g(t)dt|]

L} (Q(x),t)

< Const [1 + ||g||f111 (t)] .
Thanks to the last estimate together with Corollary 3.2 we have
9 2 2

EN ‘ %UN
(4.72) Lloc(®:t)

—upn

. +CeNmN1nN||“N”L2 L(@,t)

Lf, (Q(2),t)

<€N‘

< Const [1+llgllz ]
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and the first half of (4.6) follows.
Next we set ¢ = (£ )un in (2.1), obtaining

2
0 o
+ (L 1y fu ),—uN)
N (8&: NIV bt N

2.
8tN

0 52 0
= —€N <Q6—zuN’ m—UN) + <B(UN),aUN)N

) N D

sNd
2 dt

Hence, using (1.6) and (4.3a) we find

2l + | L
ot M| T 2dt oz Ml
am < | 2| [ G|+ 20 o)
0 1|8 d |
< —_ = 1= -
< Const Ba:uN +4H8tuN +4H3tUN + Const g(t)

Temporal integration of (4.7b) followed by (4.7a) imply the second half of (4.6), for

2 2

1o
oty

0
< Const [ngzv + ”g(t)“%ﬂoc(t)}

L2 (z,t) L, (z:t)

(4.7¢)

1
< Const [1+ laliZs o) = O

5. Convergence of the Legendre viscosity approximation. Equipped with
the a priori estimates of §4 we now turn to prove the convergence of (2.1) by compen—
sated compactness arguments. To this end we want to show that 2 U(un)+ 2 2 F(un)
belongs to a compact subset of H;;(z,t) for all convex entropy pairs (U(un), F(u N))-
Our main tool in this direction is the following lemma.

LEMMA 5.1. A weak representation of the truncation error of the Legendre vis-
cosity approzimation (2.1) is given by

6
6 (guvt pef).) =L@, ol n <DL,

where the following estimates hold:

(5.22) j‘;ujwn <o(—=) [16-on1+ | 35 S|

(5.20) (@) < OCenmi Vi) S on.
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(5.20 156) = —ew (5w 5on ) | < OG/Em) | 2w
T

(5.2d) Is(¢) = 2(-1)N+! / A(t)dn (—1,t)dt.
=0

Here, ¢n(-,t) is an arbitrary IPyn-polynomial at our disposal.
Proof. We proceed in three steps.
Step 1. For arbitrary ¢ € D([—1,1]) and ¢n € IPy[—1,1] we have the identity

(Frun + £ f(un),9)

=(Zun + Zf(un), ¢ — on) + (Zun + 2 flun), n)

=(Fun + £ f(un), 6 — on) + (£ flun) — ZInf(un), o)
+ (Zun + ZInf(un), dn)

=(Zun + & f(un), ¢ — ¢n)
+ (& (f = Inf)(un), ¢n)
+ [(Zun + Z2Inf(un) én) — (Zun + ZInf(un), on)N]
+ (Fyun + FHINF(un), ¢n)n = 11(9) + La(9) + Is(9) + Ja(9).

Thus, we conclude the first step noting that the truncation error of the Legendre
viscosity approximation (in its weak form) can be represented as

3
(539 (Grv + ot un).6) = 5(8) + 4o

In the second step we shall estimate {I;(¢)}2_,, and in the third step we conclude
with the desired representation of Jy(¢) as 22: 1+ I6(9).
Step 2. We begin with the first expression,

o 0
(5.40) 1(6) = (G + g/ - 6w ).
Lemma 4.1 implies that this expression does not exceed
0 o Const
) @ < || g o [gz] ] 1o - ovt < S - i,

Integration by parts shows that the second term equals

G5 10 = (10 ~IuNw). o) = = (1= Tn)sun), mon ).
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and the the inequality (1.6) followed by Lemma 4.1 implies

12001 < (7 - T, gt )| < S| 2 un)| | |
(5.5b) o
~ Const ﬁq&
= N.ex |67

The exactness of Gauss quadrature rule for [P,y _;-polynomials implies that the third
expression equals

I3(¢)= [(%UN + (%INf(UN),fﬁN) - (%UN + (%INf(UN),qﬁN) N]

= (%UN,¢N> - <%UN,¢N)N-

To upper bound this expression, we use the error estimate of the Gauss quadrature
rule for IP;ny-polynomials (consult (1.8)), and together with Lemma 4.1 we find

9 9 1] 0 o
|13(8)| = <auN,¢N) - (Euzv,@v)N\ < Constﬁ ”%@VH ”&UN

Const || 0
< N,y |0z oN “
The inequalities (5.4b), (5.5b), (5.6b) complete the proof of (5.2a).
Step 3. We are left with the fourth expression, Js(¢), which, using the Legendre
viscosity approximation (2.1), can be rewritten as
(5.7)
Ji(9) = (Zun + ZInf(un), ON) y

(5.6a)

(5.6b)

= —en (QZun, Zén) y — 21N [LoA)on (-1, t)dt
=en (RZun, Z¢n) —en (Zun, Zon) +2(-1)NF? ftio A()on(—1,t)dt

=14(¢) + Is(9) + Is(9).
Using (3.4) we find that (5.2b) holds for

€ ﬁu ﬁqﬁ
N\ 57 UN: 5z PN n

< Const - eym%VIn N|luy|| “_(fia_mqu”’

l14(9)| =

<en

oz NR or N

which completes the proof. O
For each ¢ € H}([~1,1] x [0,T]) we assign an approximant in Py[—1, 1], denoted
by ¢n, such that

68 on(-10=0 | Zon|+ 516wl < Comst-| 2.

Clearly, there are several possibilities for such assignment; for example, ¢ = Iy ¢ or
on = Jn¢ will serve our purpose; consult (1.6), (1.7).
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We now return to Lemma 5.1; we find that any assignment of such ¢y (satisfying
(5.8)) gives us

]
(5.9 Z n@1<0(5o=)] 2.
(5.9b) [14(¢)] < O(enym3%VIn N) % ,
(5.90) 1s9) = e (grun 3w )| < 0w | 29
T
(5.94) Is(¢) = —2(-1)N /_ At)on(—1,t)dt =0

We conclude that the SV approximation (2.1), (2.2) parameterized according to (4.5)
satisfies

1
Nﬁ + ENm?vvlnN-i- \/€N) — 0,
and hence, (2)uy + (at) f(un) belongs to a compact subset of H;;!(z,t). In fact,
more is true, namely, Lemma 5.1 together with Lemma 4.1 imply that for all ¢ €

H}([-1,1] x [0,T]) we have
(5.11)

(5.10) \ o —un + f(uN) \ <0 (
at loc (:t t)

5
I(gt (un) + 5 F(uN) ¢)‘ = ZIJ’(UI(UN)‘MI
j=1
< Const - (N\;E_N‘ +enmiVInN + \/Eﬁ) ”%(U'(UN)‘?)”
0
< Const- (377 + enmieVin + V&R ) - [| 2| Nl + el 1071

< Const - [||¢||Lm N ( e+ enmA VN + r) ||¢m||]

Thus, (£)U(un) + (£)F(un) can be written as a sum of two terms which belong,
respectively, to a compact subset of H ) (z,t) and a bounded set of L], (z,t), and
hence by Murat’s lemma, to a compact subset of H_!(z,t). Using the div-curl lemma
[Tx], it follows that the Legendre viscosity approximation, u (z, t), converges strongly
to a weak solution, u(z,t), of (1.1). We arrive at the following theorem.

THEOREM 5.2. Let un(z,t) be the Legendre viscosity approzimation of (2.1),
(2.2), with spectral viscosity parameters (en, my) which satisfy

(5.12) 0len~ mn < Const - N4 with0<q<6< 1.

N©’
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Then (a subsequence of) un(z,t) converges strongly (in LY , p < o0) to a weak
solution of the conservation law (1.1). Moreover, if 6 < 1, then (the whole sequence
of ) un(z,t) converges strongly to the unique entropy solution of (1.1).
Proof. We have shown that (a subsequence of ) un(z,t) converges strongly to
a weak solution, @(z,t), of (1.1). To show that @(z,t) is the entropy solution, we
choose to implement Lemma 5.1 with a particular assignment of an approximant in
Py, namely, we shall use (5.1) with ¢y = In,
(5.13)
e 0
oN =/ TN-1 <8_z¢) dz, where mp = L?[—1,1] — projectionon Pys[—1,1].
-1
At this point we note that since this choice of ¢ satisfies (5.8) (consult (1.7)), it can
be used in conjunction with Lemma 5.1 in order to show, as was done before, that
%U (un) + %F(UN) belongs to a compact subset of H !(z,t). The advantage of
using the special choice of ¢y = Jn¢ will enable us to deduce more, namely, that
%U (un) + %F (un) tends to a negative measure. To this end we proceed as follows.
Lemma 5.1 tells us that for all ¢ € H}([-1,1] x [0,T]) we have

5

3
(U + gmFun).s) = > L))+ 0 )0

¢ € Hy([-1,1] x [0,T7)).

The first three terms on the right tend to zero, for by (5.8), (5.9a) we have for all
¢ € H(}([_l’ 1] X [Ov T])a

|35 @ o

1
Z;’:l |L; (U (un)9)| < ConstNﬁ

1
< Const
< Const €N[

0 0
w6l + | 2wl

< Const | N®~1||¢|| Lo + N271

0

The fourth term tends to zero, for by (5.8), (5.9b) we have

(U (ux)o)] < Olenmie i) | - (0" (un)e)

‘ < Const-VIn N-N9~9/2

0

Finally, we are left with the fifth term, I5(U’'(un)®), and it is here that we take
advantage of our special assignment for the ¢ approximant in (5.13). Using the
orthogonality of I — my_; to the IPy_;[—1,1], we find that the fifth term tends to a
negative measure, for by the convexity of U, we have for all ¢ > 0,

(0" un))= e g, g (U ()e))

0 0 0 0
=—en <%uN, U”(UN)QZS%UN) — &N (%UNa Ul(“N)“N%d’)

0 0 0
<-en (EUN’ UI(“N)“N%d’) < O(Ven) H%¢“ — 0.
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We conclude that @(z,t) satisfies the entropy inequality 2 U (a) + 2 F(a) <0, and
the convergence of (the whole sequence of) uy(z,t) follows. ]

6. Numerical results—the scalar case. In the next two sections we present
numerical simulations of the Legendre SV method. We begin with the inviscid Burg-
ers’ equation

(6.1a) %u(m,t) + % (%ﬁ(z, t)) =0, (z,t) € [-1,1] x [0, 00),

which serves as a prototype for nonlinear scalar conservation laws. The equation is
augmented with initial values at ¢t = 0,

(6.1b) u(z,t =0) =1+ isinnaz, z € [-1,1],
and with prescribed boundary conditions at the inflow boundary z = —1,
(6.1c) u(—1,t) = g(¢).

The inflow boundary data are taken from the outflow boundary, g(t) = u(1,t), i.e., we
solve the periodic problem associated with (6.1a), (6.1b), as an initial boundary value
problem. This initial boundary value problem serves as an appropriate test case, for
it admits a nonstationary shock discontinuity which originates at . = (2 — 7)/7 at
time t, = 2/, and continues its course dictated by the Rankine-Hugoniot relation.
The Legendre SV approximation of this problem reads (consult (2.3a), (2.3b))

(6.2a) )
d 0 1 0 0
ZEUN(fiat) + aIN (EU%V) (&,t) = EN%Q (aUN) (&, t), 1<i<N-1,

together with boundary conditions
(6.2b)

‘—idEuN(l,t) + %IN (%ufv) (1,t)=€N%Q <%UN> (1,t) — Z—ZQ (%UN) (1,t),
uN(_lat)=g(t)a g(t) =uN(1at)'

The resulting nonlinear system of N + 1 ODEs for {un(&;,t)}Y, was integrated in
time using the second-order Adams—Bashforth ODE solver with time step At = 10~%
(consult [GT2] regarding the time step dictated by a CFL-like condition for such
methods). All the numerical results presented in this section were recorded at time
t=1.

The first result we present shows the necessity of including a certain amount
of SV term in the discretization of (6.1a), (6.1b) by spectral methods. Indeed, the
standard Legendre method is inconsistent with the entropy condition, and hence it
fails to converge to the entropy solution once shock discontinuities are formed; consult
[Tal], [Ta3] for a proof concerning the similar periodic case. We illustrate this fact
in Fig. 6.1(a), showing the results obtained with a plain collocation scheme, that is,
the standard pseudospectral Legendre method corresponding to (6.2a) with ey = 0.
It is clear that the numerical solution does not converge to the exact one. Moreover,
Fig. 6.1(b) shows that convergence fails even after the plain spectral solution was
post-processed according to (2.7).
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FI1G. 6.1. Solution of the standard viscous-free pseudospectral Legendre method (N = 128) (a)
before post-processing, (b) after post-processing.
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FI1G. 6.2. Solution of the Legendre SV method based on (a) N = 64 modes, (b) N = 128 modes.
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F1G. 6.3. The SV solution in Fig. 6.2 after post-processing.
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To overcome the failure of convergence, SV was added to the standard Legendre
spectral method. It was implemented with SV amplitude ey ~ N~!, which was
activated for modes k > mpy ~ 5v/N. A smooth viscosity kernel of the form

2
(620) Qk = exp{_g‘:‘n% 3 k> mn,
was used in the numerical experiments reported in this section. As advocated in
[Tal], the C®-smoothness of Qy, (as a function of k/N), improves the resolution of
the SV method. The numerical results in Figs. 6.2(a) and 6.2(b) indicate the strong
L?-convergence (p < 00) of the SV method, in contrast to the plain Legendre method.

These results confirm the stability of the Legendre SV method. However, the
convergence rate in this case is rather low. According to the arguments presented
in §2, this reflects the low- (i.e., first-) order convergence rate of Zywu, rather than
the lack of spectral accuracy of the SV solution itself. To amplify this point, we
post-process the SV solution at the final time ¢ = 1. The post-processed solution,
FoByp(-,t = 1) with (a, 3) = (0.25,0.8) was recorded in Fig. 6.3. The dramatic
improvement in the convergence rate is evident. Indeed, Fig. 6.4 shows that the post-
processed SV solution recovers the smooth parts of the exact entropy solution within
spectral accuracy.

In fact, based on these figures, we can draw the two conclusions:

e the convergence rate of the post-processed SV solution is faster than any finite
value, in agreement with the piecewise C°°-regularity of the entropy solution;

e spectral convergence rate can be observed already for quite low values of the
parameter V.

This numerical evidence supports the assumption that the SV solution, uy, serves
as an accurate approximation to the projected solution, m,,u, rather than w itself.
This assumption was proved for the linear periodic problem in [AGT], and is under
current investigation in the nonlinear case. In this context it is important to check the
optimality of the SV method, to provide further support to the above assumption. The
optimal polynomial approximation of discontinuous functions like u(-,t), is achieved
by the filtering of the “best” L2-fit projection of the eract solution, myu(-,t). In
Fig. 6.5 we present the error between the exact solution and its filtered projection.
Comparing Figs. 6.4 and 6.5, we see that the quality of results for the computed SV
solution, uy with N = 128 modes, is between that of the “optimal” results achieved
for myu(-,t) with N = 64 and N = 128! One final remark is in order. One could
have suspected that the results for the SV method would scale with my, the number
of viscous-free modes; in our case, N = 128, my ~ 50, and thus the SV computation
should have resulted in less resolution than the results obtained by the “best” L2-fit
with N = 64 modes. This is clearly not the case.

7. Numerical results—the system of gas dynamics. In this section we will
present numerical experiments which demonstrate the performance of the Legendre
SV method for systems of conservation laws. We consider the approximate solution
of the Euler equations of gas dynamics,

@) Zu@n+ L ) =0 AN >
. _/U:w, +_ uw, = ? u= pv b u) = p'U +p ?
ot oz E v(E + p)

where p denotes the density of the gas, v its velocity, m = pv its momentum, E its
energy per unit volume, and p = (y—1)-(E — $pv?) its (polytropic) pressure, v = 1.4.
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FIG. 6.5. Error plot (in a logarithmic scale) of the post-processed best L2-fit for N = 64, 128, 256.

The Legendre SV approximation of this system reads

(128) Sun(6ot) + oDl w60 = en e (gmun ) (€8, 1<i<N -1
Here, uny = Y(pn,pNUN, En) € IP3[—1,1] denotes the polynomial approximation
of the 3-vector of (density, momentum, energy), and @ abbreviates a general 3 x 3
spectral viscosity matrix, {Qi’j }kN=m v 14,5 <3, which is activated only on “high”
Legendre modes, i.e., Qi’j =0 for all k > my(¢,7). The numerical results reported
in this section were obtained using a simple scalar viscosity matrix,

0 0 0
(7.2b) Q (%UN) =" (Qa—xpN,QapNvN,Q%EN) )

with the same viscosity coefficients, Qj, as in (6.2c).
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The Legendre SV method (7.2a), (7.2b) amounts to a nonlinear system of (N +1)3
ODEs which was integrated in time using the second-order Adams-Bashforth ODE
solver.

We implemented the SV method for two test problems.

(1) The Riemann shock tube problem [S]. Our first example is the Riemann prob-
lem (7.1), subject to initial conditions

ug = (1., 0, 2.5), T <0,
(7.3) u(z,0) =
ur = $(0.125, 0, 0.25), x> 0.

The exact solution of the Riemann problem (7.1), (7.3), develops four constant
states separated by a rarefaction wave, a contact discontinuity and a shock wave
[GR], [Sm], [La]. The exact solution at t = 0.287 was recorded by the solid lines in
Figs. 7.1-7.3. The Legendre SV method, (7.2a), (7.2b), was implemented in this case
with SV parameters (ey,my) = (1/N,6v/N). The circles in Figs. 7.1-7.3 display
the numerical results of the corresponding SV approximation, which was integrated
in time by the second-order Adams-Bashforth method with time step At = 1075,
(Consult [GT2].) :

Figures 7.1(a), 7.2(a) and 7.3(a) display the computed density py, velocity vy,
and pressure py, with N = 128 Legendre modes. The numerical results in these
figures show that the presence of SV guarantees the convergence of the pseudospectral
Legendre method that is otherwise unstable. However, Gibbs’ oscillations which are
inherited from the projected solution, Zyu(-,t), are still present.

To remove these oscillations without sacrificing spectral accuracy, the SV solution
on the left side of Figs. 7.1-7.3 was post-processed using the filtering procedure (2.5),
F*B with (o, 8) = (0.2,0.85). Again, as in the scalar case, the post-processing
leads to a dramatic improvement in the quality of the computed results, revealing
the high resolution content of the SV computation. In particular, comparing the
results obtained by the post-processed SV method in Figs. 7.1(b), 7.2(b), and 7.3(b),
we find the representation of the rarefaction wave and the capturing of the contact
discontinuity to be better than the results obtained by the finite difference methods
in [S] or the high resolution schemes in [SO]. (It is worthwhile noting that these
high resolutions results of the SV computations were obtained without the costly
characteristic decompositions which are employed in the modern high resolution finite
difference approximations.)

The resolution of the shock discontinuity, however, still suffers from a smearing
of spurious Gibbs’ oscillations. As told by the error estimate (2.6), the oscillations in
the neighborhood of the discontinuities cannot be removed by the filtering procedure
(2.5). Instead, these oscillations can be avoided by using an alternative “one-sided”
filter which is currently under investigation [GSV].

(2) The shock-disturbance interaction (e.g., [SO]). Our second example models the
interaction of a sinusoidal disturbance and a shock wave due to initial conditions
(7.4)

(3.857143, 10.333333, 2.629369), z < —0.8,

(p(z,0),(z,0),p(z,0)) =

(1. + 0.2sin(57z), 0., 1.), x> —08.

The exact solution of this problem, (7.1), (7.4), consists of a density wave that will
emerge behind the shock discontinuity, and the fine structure of this density wave
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Fi1c. 7.1. Density py with N = 128 Legendre modes (a) before post-processing, (b) after post-
processing.
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Fic. 7.2. Velocity vy with N
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FiGg. 7.3. Pressure py with N = 128 Legendre modes (a) before post-processing, (b) after
post-processing.
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Fi1G. 7.4. Density pny with N = 220 Legendre modes (a) before post-processing, (b) after post-
processing.
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Fi1Gg. 7.5. Velocity vy with N = 220 Legendre modes (a) before post-processing, (b) after
post-processing.
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FIG. 7.6. Pressure py with N = 220 Legendre modes (a) before post-processing, (b) after
post-processing.
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makes the current problem a suitable test case for high-order methods. For example,
second-order MUSCL-type schemes [Le] are unable to resolve the fine structure of the
density wave unless the number of grid points is substantially increased.

The Legendre SV method was implemented in this case with SV parameters
(en,mn) = (%,8VN). Figures 7.4-7.6 display the numerical results of the SV
approximation which was integrated in time by the second-order Adams-Bashforth
method with time step At = 2.5 1076,

Figures 7.4(a), 7.5(a), and 7.6(a) show the approximated density pn, velocity vy,
and pressure py at t = 0.36, computed with N = 220 Legendre modes. These results
were post-processed by the filtering procedure (2.5), F*#, with (a,8) = (0.1,0.89).
Figures 7.4(b), 7.5(b), and 7.6(b) present the post-processed results, which show that
the velocity and pressure waves are well resolved. The density wave still contains
Gibbs’ oscillations in the neighborhood of the shock discontinuity, and its first ex-
tremum behind the shock is smeared by our smoothing filter. Here, a “one-sided”
filter would be recommended instead. A better resolution of the density profile near
the shock was obtained by a different spectral method presented in [CGH]. However,
the latter is a shock fitting like method which might not be easy to extend to higher
dimensions.

8. Concluding remarks. The numerical experiments reported in the last two
sections show that SV may serve as a robust and easily implemented “fix” to the oth-
erwise unstable Legendre method. The versatility and simplicity of the SV method
is particularly relevant for multidimensional problems which could be easily handled
without dimensional splitting. At the same time, the SV method retains spectral res-
olution, which could be realized by post-processing the SV solution with appropriate
smoothing filter. With this in mind, it would be desirable to carry out further an-
alytical and numerical work in order to explore optimal SV parameterizations and
appropriate one-sided filtering procedures.
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