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THE CONVERGENCE RATE OF
APPROXIMATE SOLUTIONS FOR
NONLINEAR SCALAR CONSERVATION LAWS*

HAIM NESSYAHU!AND EITAN TADMOR!

Abstract. Let {v®(z,t)}e>0 be a family of approximate solutions for the nonlinear scalar
conservation law ut + f(u)z = 0 with C}-initial data. Assume that {v®(z,t)} are Lip*-stable in the
sense that they satisfy Oleinik’s E-entropy condition. It is shown that if these approximate solutions
are Lip'-consistent, i.e., if [[v®(-,0) — u(-,0)|lLip(z) + Ilv§ + f(v’)_-,”Lip/(z’t) = O(e), then they
converge to the entropy solution, and the convergence rate estimate |[v¢(-,t) — u(, t)|| Lip' (&) = O(e)

holds. Consequently, the familiar LP-type and new pointwise error estimates are derived.
These convergence rate results are demonstrated in the context of entropy satisfying finite-
difference and Glimm'’s schemes.

Key words. conservation laws, entropy stability, weak consistency, error estimates, post-
processing, finite-difference approximations, Glimm scheme

AMS(MOS) subject classifications. 35L65, 65M10, 65M15

1. Introduction. We are concerned here with the convergence rate of approxi-
mate solutions for the nonlinear scalar conservation law, u;+ f(u); = 0 with C3-initial
data. In this context we first recall Strang’s theorem which shows that the classical
Lax-Richtmyer linear convergence theory applies for such nonlinear problem, as long
as the underlying solution is sufficiently smooth, e.g., [RM, §5]. Since the solutions of
the nonlinear conservation law develop spontaneous shock-discontinuities at a finite
time, Strang’s result does not apply beyond this critical time. Indeed, the Fourier
method as well as other L2-conservative schemes provide simple counterexamples of
consistent approximations which fail to converge (to the discontinuous entropy solu-
tion), despite their linearized L2-stability, e.g., [Tad] and [Ta5).

In this paper we extend the linear convergence theory into the weak regime. The
extension is based on the usual two ingredients of stability and consistency. On the
one hand, the counterexamples mentioned above show that one must strengthen the
linearized L2-stability requirement. We assume that the approximate solutions are
Lip*-stable in the sense that they satisfy a one-sided Lipschitz condition, in agreement
with Oleinik’s E-condition for the entropy solution. On the other hand, the lack of
smoothness requires to weaken the consistency requirement, which is measured here
in the Lip'-(semi)norm. In §2 we prove for Lip*-stable approximate solutions, that
their Lip’-convergence rate to the entropy solution is of the same order as their Lip'-
consistency. The Lip’-convergence rate is then converted into stronger LP-convergence
rate estimates. In particular, we recover the usual L'-convergence rate of order one
half, and we obtain new pointwise error estimates that depend on the local smoothness
of the entropy solution.

In §3 we implement these error estimates for finite-difference approximations,
using a finite-element representation, which is interesting for its own sake. In §4 we
apply these error estimates for the Glimm scheme. Other applications of the current
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1506 HAIM NESSYAHU AND EITAN TADMOR

framework to spectral viscosity approximations and various viscosity regularizations
can be found in [Ta6], [ST], and [Ta7.

2. Approximate solutions. We study approximate solutions of the scalar, gen-
uinely nonlinear conservation law

(2.1) %u(x, t) + (%f(u(x, t)) =0, f’>a>0,

with compactly supported initial conditions prescribed at ¢t = 0,
(2.2) u(z,t = 0) = up(x).

Let {v®(z,t)}e>0 be a family of approximate solutions of the conservation law
(2.1), (2.2) in the following sense.
DEFINITION. A. We say that {v®(z,t)}e>0 are conservative solutions if

(2.3) Lvs(x,t)drb = /muo(:c)da:, t>0.

B. We say that {v®(z,t)}e>0 are Lip'-consistent with the conservation law (2.1),
(2.2) if the following estimates are fulfilled*:
(i) consistency with the initial conditions (2.2),

(2.42) [v°(,0) — o (@)l Lip < Ko - &,
(ii) consistency with the conservation law (2.1),
(24b) ”'Uts (.’L‘, t) + f(vs(x,t))z“Lip'(z:,[O,T]) < Kr-e.

We are interested in the convergence rate of the approximate solutions, v*(z,t), as
their small parameter € | 0. This requires an appropriate stability definition for such
approximate solutions. Recall that the entropy solution of the nonlinear conservation
law (2.1), (2.2) satisfies the a priori estimate [BO], [Ta6]

1

lluoll s + o’

(2.3) lu(, D)llzip+ <
The case |lup||Lip+ = oo is included in (2.5), and it corresponds to the exact ~ t~1
decay rate of an initial rarefaction.

DEFINITION. We say that {v®(z,t)}c>0 are Lip*-stable if there exists a constant
B > 0 (independent of ¢ and €) such that the following estimate, analogous to (2.5),
is fulfilled:

1
(2.6 ”'Ue(',t ipt+ S — y
) A T

Remarks. 1. The case of an initial rarefaction subject to the quadratic flux
flu) = %uz demonstrates that the a priori decay estimate of the exact entropy solution

*We let ||9llLip, [#llLip+ and ||¢||Lip/ denote, respectively, esssup,#y'&a%ﬂ ,
ess supszy [H2Z29] | and supy (6 — do, )/ [¥llzip, where do = [, 6.

-y uppé
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in (2.5) is sharp. A comparison of (2.6) with (2.5) shows that a necessary condition
for the convergence of {v°}esg is

(2.7) 0<f<a,

for otherwise, the decay rate of {v°(-,t)} (and hence of its ¢ — 0 limit) would be
faster than that of the exact entropy solution.

2. The case 8 > 0in (2.6) corresponds to a strict Lip*-stability in the sense that
lve ()|l Lip+ decays in time, in agreement with the decay of rarefactions indicated in
(2.5).

3. In general, any a priori bound

(2.8) |v8(:,t)|| Lip+ < Constr < oo, 0<t<T,

is a sufficient stability condition for the convergence results discussed below. In par-
ticular, we allow for 8 = 0 in (2.6), as long as the approximate initial conditions are
Lip*t-bounded. We remark that the restriction of Lip*-bounded initial data is indeed
necessary for convergence, in view of the counterexample of Roe’s scheme discussed
in §3. Unless stated otherwise, we therefore restrict our attention to the class of
Lip*-bounded (i.e., rarefaction-free) initial conditions, where

(2.9) Lg = max(||uol|zip+, [v°(, 0) | ip+) < 00

Finally, we remark that in case of strict Lip™-stability, i.e., in case (2.6) holds with
B > 0, then we can remove this restriction of Lip*-bounded initial data and our
convergence results can be extended to include general L{? -initial conditions. The
discussion of this case will be dealt elsewhere.

We begin with the following theorem, which is at the heart of matter.

THEOREM 2.1. A. Let {v®(z,t)}e>0 be a family of conservative, Lip™-stable
approzimate solutions of the conservation law (2.1), (2.2), subject to the Lip™ -bounded
initial conditions (2.9). Then the following error estimate holds:

v°(¢, T) = ul-, T)l|Lipr
(2.10a)
< Cr [[[0°(+,0) — uo()lzip + lv§ + F )l Lip(z,0,71)] 5
where

. max fll

Cr ~ (1+BL{T)", > 1.

B. In particular, if the family {ve(x,t)}e>0 s also Lip'-consistent of order O(g),
i.e., (2.4a), (2.4b) hold, then v¢(x,t) converges to the entropy solution u(z,t) and the
following convergence rate estimate holds:

(210b) “’Ue(',T) - u(~,T)||L,-p/ < Mg - g, My = (KO + KT)(]. + ﬁLg—T)n

Proof. We proceed along the lines of [Ta6]. The difference, e*(z,t) := v*(z,t) —
u(z, t), satisfies the error equation

(2.11) %ee(x, £+ %[Ee(x, £)ef (2, 1)) = F=(x, t),
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where @, (z,t) stands for the mean value

3e(z,t) = /E el @)+ (1= Ou(e ), a) = FC)

and F*(z,t) is the truncation error,
Fé(z,t) := vi(z,t) + f(v°(z,t))z-

Given an arbitrary ¢(z)eW,'™, we let {¢°(z,t)}o<:< denote the solution of the
backward transport equation

(2.12a) o; (z,t) + @ (z,t) ¢ (z,t) = 0, t<T,
corresponding to the endvalues, ¢(z), prescribed at t = T,
(2.12b) ¢°(z,T) = ¢().

Here, the following a priori estimate holds [Ta6, Thm. 2.2]:

T
(2'13) "¢€'>t)”Lip < exp ([ ”ae(’vT)”Lip'FdT) : ”¢(z)“Lip> 0<t<T.

The Lip*-stability of the entropy solution (2.5) and its approximate solutions in (2.6),
provide us with the one-sided Lipschitz upper-bound required on the right-hand side
of (2.13):

_ max f” max f"
(214) @l gt < —5 =10 C Dllzipr + el T llnap+] < T
Equipped with (2.13), (2.14) we conclude
(1+BLJT)"
Gty £ /- i
16Oy < g 166l

(2.15a)
< Crll¢(@)lLip, O0<t<T, Cr:=(1+BL{T)",

and employing (2.12a) we also have

“¢5(w7')”Lip[0,T] < |a|ooor£ta£(T”¢e("t)”L’ip(:z:)

(2.15b)
< lalooCrll¢(@)llzips  laloo = max|f].

Of course, (2.12) is just the adjoint problem of the error equation (2.11) which gives
us

(2.16) (e (> T), () = (°(,0),4°(-,0)) + (F*(x,1), ¢°(, 1)) 2(a,[0,1)) -
Conservation implies that &5 = [ e(z,0)dz = 0 and by (2.15a) we find

1(e=(+,0), ¢° (-, 0))| < lle* (-, O)llLipr 16° (-5 O) | ip
(2.17a)

< (14 BLGT) (1€ (, 0) i - () ips
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similarly, conservation implies that F§ = N 0,7] F*(z,t)dzdt = 0 and by (2.15a),
(2.15b) we find
(2.17p)

|(F(2,t), °(2,8)) L2a, 0,1 | < I1FE(@, )| Lipt (=, 10,7) 65 (2, )| Lip(a,fo,10)

< (14 laloo) Tl FE (2, 8) | igt (s, 10,70 19(2) | -

The error estimate (2.10a) follows from the last two estimates together with (2.16).
o

The Lip'-convergence rate estimate (2.10b) can be extended to more familiar
W,oP-convergence rate estimates. The rest of this section is devoted to three corollaries
which summarize these extensions.

We begin by noting that the conservation and Lip*-stability of v® (-, t) imply that

v*(, T)—and consequently that the error, v*(:,T) — v(:,T), have bounded variation,
1

[L§)-1 + 6T

We can now interpolate between the BV-regularity (2.18) and the Lip/-error estimate

(2.10b), with the help of Sobolev inequality stating that for all s € -1, 1—1,] we have
(e.g., [Fr, Thm. 9.3])

(2.18) [v*(-,T) — v(-,T)||Bv < Const

IDewllwer < Const - | Dewllyih - Il n="-2, 1<p<oo.

Applying the latter to the primitive of v*(-,T) — v(-, T) we conclude the following.
COROLLARY 2.2. Let {v°(z,t)}c>0 be a family of conservative, Lip'-consistent,

and Lip* -stable approzimate solutions of the conservation law (2.1), (2.2), with Lip*-

bounded initial conditions (2.9). Then the following convergence rate estimates hold:

(2.19)  |lv°(,T) —u(-, T)|lwer < Constr-e %", -1<s<=, 1<p< oo

Y=

The error estimate (2.19) with (s,p) = (0,1) yields L'-convergence rate of order
O(+/¢), which is familiar from the setup of monotone difference approximations [Ku],
[Sa]. Of course, uniform convergence (which corresponds to (s,p) = (0, 00)) fails in
this case, due to the possible presence of shock discontinuities in the entropy solution
u(-,t). Instead, we seek pointwise convergence away from the singular support of
u(+,t). To this end, we employ a C}(—1,1)-unit mass mollifier of the form (s(x) =
3¢(%). The error estimate (2.10) asserts that

220) D)) - @) 5@ < Mg || %]
Loo

Moreover, if {(z) is chosen so that

(2.21a) /xk((:c)dw =0 fork=1,2,...,p—1,

then a straightforward error estimate based on Taylor’s expansion yields

(2.21b) |(u(-,T) * ¢s)(2) — u(=, T)| < %?”C“Ll - [u® o,
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where |u(P) |, measures the degree of local smoothness of u(+,t),

g0 = H (-, T)

L5 (z+6-supp()

The last two inequalities imply the following corollary.
COROLLARY 2.3. Let {v®(x,t)}e>0 be a family of conservative, Lip'-consistent,
and Lip* -stable approzimate solutions of the conservation law (2.1), (2.2), with Lip*-
bounded initial conditions (2.9). Then, for any p-order mollifier (s(x) = 3¢(%) satis-
fying (2.21a), the following convergence rate estimate holds:
|u(p)|loc) 2

1
7 EP+Z, & ~ertz,
p!

(2.22) |(v°(-,T) * ¢s)(z) — u(z, T)| < Constp (1 +

Corollary 2.3 shows that by post-processing the approximate solutions v (-, t), we
are able to recover the pointwise values of u(z,t) with an error as close to € as the
local smoothness of u(:,t) permits. A similar treatment enables the recovery of the
derivatives of u(x,t) as well, consult [Ta6, §4].

The particular case p = 1 in (2.22), deserves special attention. In this case, post-
processing of the approximate solution with arbitrary Cj-unit mass mollifier {(z),
gives us

(2.23)  [(v°(T) * ¢)(2) — w(x, T)| < Const - (1 + [uz (-, T)loc) - V&, 6~ Ve

We claim that the pointwise convergence rate of order O(+/€) indicated in (2.23)
holds even without post-processing of the approximate solution. Indeed, let us consider
the difference

o (@,T) — W°( T) % &) (x) = / (@, T) — v* (& — 3, T)|Cs(3)dy

Yy

_ /y [vs(z,T) —_v;(a:—y,T)] '—%C (%) dy.

By choosing a positive Cj-unit mass mollifier ¢(z) supported on (—1,0) then, thanks
to the Lip*-stability condition (2.6), the integrand on the right does not exceed
Const - §, and hence

(2.24a) v¥(z,T) — (v°(-,T) * {5)(xz) < Const - § .

Similarly, a different choice of a positive C3-unit mass mollifier ¢(x) supported on
(0,1) leads to

(2.24Db) v¥(z,T) — (v*(-,T) * {5)(x) > Const - 6.
Each of the last two inequalities (with § ~ /£) together with (2.23) show that the
approximate solution itself converges with an O(¥/¢)-rate, as asserted.

We summarize what we have shown by stating the following.

COROLLARY 2.4. Let {v°(z,t)}e>0 be a family of conservative, Lip'-consistent,

and Lip*-stable approzimate solutions of the conservation law (2.1), (2.2), with Lip™*-
bounded initial conditions (2.9). Then the following convergence rate estimate holds:

[v¢(z,T) — u(z,T)| < Constg, T - e,

(2.25)
ConStz,T ~1+ |u$("T)|L°°(z— Ve, z+ Ye)-
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Remark. The above derivation of pointwise error estimates applies in more general
situations. Consider, for example, a family of approximate solutions, {v*(z,t)}c>o0,
which satisfies a standard L! (rather than Lip’) error estimate

(2.26) |(v* (-, T) — u(-,T), ¢(-))| < Constr - Ve||¢| Lo

Then our previous arguments show how to post-process v*(-,T) in order to recover
the pointwise values of the entropy solution, u(z,T) with an error as close to /z as
the local smoothness of u(-,T) permits. In particular, using (2.26) with a positive
C5-unit mass mollifier, (s(x) = +¢(%) we obtain

(2.27) |(v°(:, T) * ¢s) () — (u(-, T) * (5)(x)| < Constr - ?IICIIL«»
Using this together with

|(u(, T) * G5) () = u(@, T)| < 8l¢ller - lua (> T)llLes (a+é-supp ¢)»
we find

(2.28)  |(v°(-,T) * Cs)(x) — u(x, T)| < Constr(l + [ue( T)oc) V6, 6~ z.

If the approximate solutions {v*(z,t)}.>0 are also Lip*-stable, then we may augment
(2.28) with (2.24) to conclude the pointwise error estimate

|v*(z, T) — u(x,T)| < Constg,r - V€,
(2.29)
ConStx,T ~1+ |uz(’,T)|L°°(:v— Ye,z+ Ye)-
3. Finite-difference approximations. We want to solve the conservation law

(2.1)~(2.2) by difference approximations. To this end we use a grid (z, := vAz, t" :=

nAt) with a fixed mesh ratio A = % = Const. The approximate solution at these

grid points, v} = v(z,,t"), is determined by a conservative difference approximation

which takes the following viscosity form, e.g., [Ta2],

o = o~ 2[f) - Fy)]
(3.1)

1 n
+—2'[Q:+%(v3+1 - 'UITJL) - Q;,,l_%(vv - v:/l—l)]a n Z 0,

and is subject to Lip*-bounded initial conditions,

1 [%+3
(3.2) W=z [ uw@©d, L = ol < oo

v-%
Let v®(z,t) be the piecewise linear interpolant of our grid solution, v¢(z,,t") = v?,
depending on the small discretization parameter ¢ = Az | 0. It is given by
(3.3) VA% (e, 1) = D ulAT(x,t),  AT(z,t) := Aj(z)A™(2),
jm
where Aj(z) and A™(t) denote the usual “hat” functions,

|
Aj(z) = — min(z — -1, %41 — 2)4,

Az

1
A™(t) = x min(¢ — ¢™1 ™ —¢),.
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To study the convergence rate of v2*(z,t) as Az | 0, we first have to verify the
conservation and the Lip’-consistency of the difference approximation. To this end
we proceed as follows.

We first note that v2%(z, t) are clearly conservative, for by the choice of the initial
conditions in (3.2),

z Az n . on Az
/UA (IL‘, t)d(l) = T Zvu +vv+1 = ? ZUS +’U3+1 = /UO(.'L‘)d.'E

Moreover, these initial conditions are Lip’-consistent—in fact, the following estimate,
which is left to the reader, holds: (v2%(x,0) —ug(z), ¢(x)) < Const-(Az)2||uo(z)| By -
||¢(z)|| Lip- Finally, we turn to consider the Lip’-consistency with the conservation law
(2.1). To this end we compare v®(z,t) with certain entropy conservative schemes
constructed in [Ta3].

A straightforward computation (carried out in the Appendix) shows that there ex-
ists a bounded piecewise-constant function, D"(z) =}, D;‘_'_% Xj+1(@), (Xp3(2) =
characteristic function of (z;,z;+1)), such that the difference approximation (3.1)
recast into the equivalent form®
(3.4)

0 A 0 .. A
2, z(x,t>,Az<x,t)) ; (—f(v “‘(x,t)),AL‘(w,t)>
<at Azt Oz z,At
_ At a Az 2 n _ g 2 Ax 2 n
-5 (Eeognen) -F(geogren)

Hence, for arbitrary ¢eC§°, we may rewrite (3.4) as

4

(35) (vtA:c + f(vAz)za ¢)z,t = ZTkAz

k=1

The sum on the right-hand side of (3.5) represents the truncation error of the dif-
ference approximation (3.1), and according to (3.4), it consists of the following four
contributions (here, ¢(z,t) = 2 vn ®(,t")A](z,t) denotes the piecewise-linear in-
terpolant of ¢(z,t)):

Az -
T, = —?(vfz,%)n(z),m,
At N
T2 = T(VtAz,qSt)A:c,t)
T3 = (vtsz¢)$,t - (’UtAmaé)Az,t)

T4 = (f(vAz):u ¢)$,t - (f(vAz)a:a &)z,At-

tThe Euclidean and weighted L2-inner products are denoted by (p,%)s = f p(z)y(z)dz
and (p,¥)p(z) = f p(z)(z)D(z)dx. The corresponding discrete ¢2-inner product reads
(P, ¥)Az = E" p(zv)Y(zy)Az. Similar notations are used for (z,t)-functions, e.g., (p, %) p(z),at =

> [ o, t") ¢ (=, ) D(z)dzAt, el o Ay = 1,2, Ip(@v, t)|PAzdt, etc.
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We want to show that the difference approximation (3.1) is consistent with the con-
servation law (2.1), in the sense that the Lip’-size of its truncation error is of order
O(Az). The required estimates in this direction are collected below. We begin with
a straightforward estimate of the first term,

JAV: N .
71| < T””? 21 D)), at) * 1@zl Lo (z,a¢)
(3.6a)
< C1 - Az||[vA®(z, t) || 22 (0,11, BV (=) - |19(=, )| Lip(a,[0,7))-

The difference approximation (3.1) enables us to upper bound time-differences in
terms of spatial differences to yield the following upper-bound on the second term:

Aty as A
|T2| 57“”? 1 (az,t) - 9t Lo Azt
(3.6b)

< Cy - Az||[v2®(z, t) || 21 (0,11, BV (=) - |19(=, )| Lip(z,[0,7))-
The third contribution to the truncation error we rewrite as
T3 = [(v°%, @)zt — (VP%, @) ac,t] + (V5% ¢ — B)aye = Ta1 + Tso.
We have (abbreviating ¢7* = ¢(z;,t™)):
_ 1 +1 _ 1 n+l _ 'n,—l n
T =) G AR )85 (Av(2), Aj(2))z — Z (v )9, Az

V)an ).7’

=33 S — o) 2 (9l — 260 + 61,

and hence T3; is upper bounded by
|Ts1| < Const.Az|[v;*|| L (az,a8) - 6(2, )| Lip(e,f0,17)-
This, together with the standard interpolation error estimate,
|Ts2| < 02 (w,e) - 16 — Bll Loz, < Comst - Azl || L1 (a,e) - 6, )| Lip(e, o7

gives us that the third term does not exceed

|T3| < Const - Az||vP®|| 1 (z,e) |16(2, E) || Lip(a,f0,71)
(3.6¢)

< Cs - Az||v2%(z, t) || L1 (0,11, BV (=) * 19(Z, )| Lip(a,f0,T])-

A similar treatment of the fourth term implies

(3.6d) |T4| < Cy - Az|[v2% (2, )| L2 (0,77, BV (2)) * 18(Z: )| Lip(a,o,1)-

Equipped with the last four estimates (3.6a)—(3.6d), we return to (3.5), obtaining

|(v® + f(V2%)z, d)el

< Const - Az||[v2%(z,t)|| L2 (0,1, BV (2)) * |6(Z )| Lip(z,0,17)-

(3.7)
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This shows that the Lip’-consistency estimate (2.4b) holds with ¢ = Az and K1 ~
lvA=(z, t)|| L1([0,T),BV(z))- Thus, Corollaries 2.2-2.4 apply and their various error es-
timates are put together in the following.

THEOREM 3.1. Assume that the difference approzimation (3.1)—(3.2) is Lip*-
stable in the sense that the following one-sided Lipschitz condition is fulfilled:

1
Lt< ——"—— 0<t"<T

(38) B
(vu+l — vu)+

— Az n
L'r-t = ”’U ('at )“Lip"' = mf‘x Az
Then the following error estimates hold:
(3.92)
—s 1
lv22(-, T) — u(:, T)||lws» < Constr - (Ax)lTvz, -1<s< ps 1<p<oo,

(3.9b) [vA%(x,T) — u(z, T)| < Const, T - [l + max |ug(¢,T)|| - VAz.

¢~=|< VAz

Ezamples. The following first-order accurate schemes (identified in a decreasing
order according to their numerical viscosity coefficient, Q,, 41 = Qr .,_1), are frequently
2

referred to in the literature.

(3.10a) Lax-Friedrichs scheme : f_f_ff =1,
Vy41
(3.10Db) Engquist—Osher scheme : QFO, el 1_)/\——'0" / |f' (v)|dv,
v+1 v Ju,
n ny _ 9
(3.10c) Godunov scheme : Qu+ , = [f(v"H) j: ) f('v)] ,
Vo1 — vy
: R _ _ o _ fpn) - f0))

(3.10d) Roe scheme : QH_% =AMay 1l a1 = ay 1= W

We comment briefly on the Lip*-stability condition of these schemes. The solu-
tion of the Lax—Friedrichs scheme satisfies [Tal, Eqn. 3.8]

L, <L} (1 - EAtL:;) ,

which in turn implies (by induction) the desired Lip*-stability (3.8) with 8 = §, for

1 1

3.11 Lt<Lf (1-8L; I S U QUL
( ) n — n—l( :B n—l) < [L:_l]—l +ﬂAt = = [L(-)’-]_l-}-ﬂt"

A similar framework was used in [GL, §3] to show that Godunov scheme satisfies
the Lip*-stability estimate (3.8) with 5 = £.

The Lipt-stability of the Engquist—Osher (E-O) scheme is closely related to
Godunov’s scheme. The two schemes coincide except for sonic shock cells (where
a(vy4+1) < 0 < a(vy)), which leads to

(3.12) Aa,y1 < Q 1 < Q +1 S Q — Const - (Av,41)-
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Hence, the forward differences of E-O scheme are upper-bounded by

ni‘} _(]_ V+1)A'U:+%+%(QS+%_Aau+%)Av:+%
1/NG
+§(QV_% +)\au_%)Av;‘_%

(3.13) +3(QF% — QF,3)Av}, s +3(QF% — Q5 y)Av)_

vl

< (1 - Q,,+1) +1 + 2(Q,,+3 /\a,,+%)AvL‘+%

1(nG
+'2'(QV_% + /\CL,,_%)A’ULL -
We distinguish between two cases. If Av], , > 0, then the first term on the right of
1=

(3.13) does not exceed (1— Qu+1) i1

2
sided Lipschitz condition in thls case, because Godunov’s solution does. Otherwise,
Av™ v+l and therefore (1 — Q s )Avy +1 is negative, hence

and hence the E-O solution satisfies the one-

Av nﬂ < 3(QF,3 — My 3)A) 5 + 3(Q5_y +2a,_y)A0],
and the Lip*-bound follows in view of (3.12) and the CFL condition Amax |f’| < 3.

Finally, for the Roe (or Courant-Isaacson—Rees) scheme, Lip*-stability (3.8) with
B = 0 (no decay), was proved in [Br]. Note that the assumption of Lip*-bounded
initial conditions is essential for convergence to the entropy solution in this case,
in view of the discrete steady-state solution, v = sgn(v + ), which shows that
convergence of Roe scheme to the correct entropy rarefactlon fails due to the fact
that the initial data are not Lip*-bounded.

Using Theorem 3.1, we conclude the following.

COROLLARY 3.2. Consider the conservation law (2.1), (2.2) with Lip™-bounded
initial data (2.9). Then the Roe, Godunov, Engquist-Osher, and Laz—Friedrichs dif-
ference approzimations (3.1), (3.10) with discrete initial data (3.2) converge, and their
piecewise-linear interpolants 'vA”’(a; t), satisfy the convergence rate estimates (3.9a),

(3.9b).

4. Glimm scheme. We recall the construction of Glimm approximate solution
for the conservation law (2.1); see [Gl] and [Sm]. We let v(z,t) be the entropy solution
of (2.1) in the slab t* < ¢t < t"*1,n > 0, subject to piecewise constant data v(z,t") =
>, vxv(z). To proceed in time, the solution is extended (in a staggered fashion)
with a jump discontinuity across the lines t"*!,n > 0, where v(z,t"*!) takes the
piecewise constant values
(4.1) v(z,t"t1) = Zv”"‘l Xu+1(2), vt = v(z,43 +r" Az, t"t1 —0).

v+3 v+3

Notice that in each slab, v(z,t) consists of successive noninteracting Riemann so-
lutions provided the CFL condition, A - max|a(u)| < % is met. This defines the
Glimm approximate solution, v(z,t) = v¢(z,t), depending on the mesh parameters
€ = Az = AAt, and the set of random variables {r"}, uniformly distributed in [—1, 1].

In the deterministic version of the Glimm scheme, Liu [Li] employs equidistributed
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rather than a random sequence of numbers {r"}. We note that in both versions, we
make use of exactly one random or equidistributed choice per timestep (independently
of the spatial cells), as was first advocated by Chorin [Cho].

It follows that both versions of Glimm scheme share the Lip*-stability estimate
(2.6). Indeed, since the solution of a scalar Riemann problem remains in the convex
hull of its initial data, we may express v;‘I; as (1-67, 1 g + 67 +%v{,‘+1 for some
0:+% € [0,1], and hence

n+l _ ,n+l _ gn n _pn n
LAY "’,,_%—0.,+%Avu+%+(1 0u_%)AvV_l.

We now distinguish between two cases. If either Av”_, or Av} 1 is negative, then
2 2

(4.2) v:_";; - v:f; < max(Av;‘+%, Av;‘_%).

Otherwise—when both Av™ , and Av”_, are positive, the two values of v"*1 and
2

V+% V+%
v;‘f; are obtained as sampled values of two consecutive rarefaction waves, and a
straightforward computation shows that their difference satisfies (4.2). Thus in either
case, the Lipt-stability (2.6) holds with 3 = 0.

Although Glimm approximate solutions are conservative “on the average,” they
do not satisfy the conservation requirement (2.3). We therefore need to slightly modify
our previous convergence arguments in this case.

We first recall the truncation error estimate for the deterministic version of Glimm
scheme [HS, Thm. 3.2],

(’U,}AaJ + f(’UAx)z, #(z, t))Lz(:c,[O,T])
(4.3)
< Coustr [V/Aa|In Az - ollz= + Az - [9(z, ) ipefo)] -

Let ¢(z,t) = ¢2%(z,t) denote the solution of the adjoint error equation (2.12). Ap-
plying (4.3) instead of (2.17b) and arguing along the lines of Theorem 2.1, we conclude
that Glimm scheme is Lip'-consistent (and hence has a Lip’-convergence rate) of order

VAz|In Az|,
(@4)  1(e5(.T),6())| < Constr [VAz|InAa| - |gllz= + Az [@)ls] -

To obtain an L!-convergence rate estimate we employ (4.4) with ¢5 = ¢ * ¢ (3)
yielding

45)  1e>*(.T),60)] < Conste [VAa|in Al + 5] 16(o)lum.

Using this estimate together with
(€, T), [8() — ¢5()) = (e°(-,T) — €§(-, T), ¢) < Const - [le°(-, T)||Bv - 8|l L=,

imply (for § ~ v/Az), the usual L'-convergence rate of order O(y/Az|InAz|). As
noted in the closing remark of §2, the Lip*-stability of Glimm’s approximate solutions
enables us to convert the L!-type into pointwise convergence rate estimate.
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We close this section by stating the following.

THEOREM 4.1. Consider the conservation law (2.1), (2.2) with sufficiently small
Lip*-bounded initial data (2.9). Then the deterministic version of Glimm approzimate
solution vA%(z,t) (4.1) converges to the entropy solution u(z,t), and the following
convergence rate estimates hold:

(4.6) 022 (-, T) — u(-, T)||: < Consty - /Az|InAz],

(4.7) |v**(z,T) — u(z, T)| < Const, - |1+ max |uz(£, T)|| - +/Az|In Az|.
J§—=|<

-

Remarks. 1. A sharp L!-error estimate of order O(v/Ax) can be found in [Lu],
improving the previous error estimates of [HS].

2.  Theorem 4.1 hinges on the truncation error estimate (4.3) which assumes
initial data which sufficiently small variation [HS]. Extensions to strong initial dis-
continuities for Glimm scheme and the front tracking method can be found in [Che,
Thms. 4.6 and 5.2].

APPENDIX. We want to show that the piecewise-linear interpolant v2%(z,t) in
(3.3) serves as an approximate weak solution of the conservation law (2.1).

Let

v (z) = Ev,’}A,,(ac) and v,(t) = Zv{,‘A"(t)

denote the spatial and temporal interpolants of the discrete grid solution {v}}, n.
Straightforward integration by parts yields [Ta3]

(f(02*(2,1)z, Au(2))z = 3[f(vo41(t) — F(vr-1(2))]
(1a)
—3(@Q} 1 DAV, 1 (H) — Q)1 (DA, 1 (1)),

where (we abbreviate v, 1(£,t) = 1w () + vu41(t)] + €Av, +1(8)

B Qu0=duno [ L (i) rmaeoe

In particular, for f(v) = v we have Q* =0 and (1a) yields

(v27(2, 1), A (2))e = Glov+1(8) = vu—a(B))-
Exchanging the role of the x and t variables in the last equality we get
(2) (9% (2, ), A™())e = 3[" (&) — "7} (2))-
Moreover, with D(z) = 3_, D, 1X,41(x) we have

®) 500, (A @)e)o = ~5Dury M 1) = D,y vy 0]

and by exchanging the role of the z and ¢ variables in (3) we get

(4) ﬁ(v 2 (), (A™(t))e)e = ——[v"*‘(x) 20" (z) + 0" (2)).
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The equalities (1)—(4) imply

(S0, ) ALz D)t
() At At
= S0k ~ F050) - SR (AL, — @)y M)Ay,

Az
) (0% (2, 8), AL (@, D) ass = ol =07

(3) T(%A (,8), (AL(2,1)2) D@),a0 = =5 [Dyry Avp, s — D,y Avp 4],

@) 08,0, (AL (o )e)aee = ~ oo™ — 20 — 0]

The difference approximation (3.1) reads

A
(5) Aalopt = of] = =S (l) — FOE)] + QU y Ay — Q4 AvT ]

By (2') and (4'), the left-hand side (LHS) of (5) equals

A
LHS = S2 [t — o)) + 8o St — 207 + 0]

At
= (0(2,0) AL (@, O)arme — (0B (2 1), (AZ(&, D)) am
Next, we set D' 1 = 3Q7 1 — Q1 (t"); then by (1’) and (3') the right-hand side
2
(RHS) of (5) equals

A A
RHS = 57 1£004) = F050)] + 5@ A0y — @y A, )

Nl

n n
_[DV+1 V+1 _DV—%A'UV

]

_1
2

= (A%, 1)e, AL, )i a0 — S (037 (a,0), (A2, )2 ey

and (3.4) now follows.
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