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1 Introduction

Let PN stands for one of the standard spectral projections — Fourier, Chebyshev,
Legendre . . . . It is well known that such spectral projections, PNu, provide highly accurate approxi-
mations for sufficiently smooth u’s. This superior accuracy is destroyed if u contains discontinuities.
Indeed, PNu produces O(1) Gibbs’ oscillations in the local neighborhoods of the discontinuities, and
moreover, their global accuracy deteriorates to first-order.

We are interested in spectral approximations of nonlinear conservation laws

(1.1)
∂u

∂t
+

∂

∂x
f(u) = 0,

subject to initial conditions, u(x, 0) = u0, and augmented with appropriate boundary conditions. The
purpose of a spectral method is to compute an approximation to the projection of u(·, t) rather than
u(·, t) itself. Consequently, since nonlinear conservation laws exhibit spontaneous shock discontinuities,
the spectral approximation faces two difficulties:

• Stability. Numerical tests indicate that the convergence of spectral approximations to nonlinear
conservation laws fails. In [T2]–[T4] we prove that this failure is related to the fact that spu-
rious Gibbs oscillations pollute the entire computational domain, and that the lack of entropy
dissipation then renders these spectral approximations unstable.

• Accuracy. The accuracy of the spectral computation is limited by the first order convergence rate
of PNu(·, t).

With this in mind we turn to discuss in §2 the Spectral Viscosity (SV) method introduced in [T2]. In
this paper we restrict our attention to periodic problems. For a treatment of the nonperiodic case in
terms of the Legendre SV method we refer to [MOT].

The purpose of the SV method is to stabilize the nonlinear spectral approximation without sac-
rificing its underlying spectral accuracy. This is achieved by augmenting the standard spectral ap-
proximation with high frequency regularization. In §3 we briefly review the convergence results of
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the periodic Fourier SV method, [T2]–[T5], [MT], [CDT], [S]. These convergence results employ high
frequency regularization based on second order viscosity. In §4 we introduce spectral approximations
based on “super-viscosity”, i.e., high-frequency parabolic regularizations of order > 2. We prove the
H−1-stability of these spectral “super-viscosity” approximations, and together with L∞-stability, con-
vergence follows by compensated compactness arguments [Tr],[M].

We close this Introduction by referring to the numerical experiments reported in [T4],[MOT]. These
numerical tests show that by post-processing the spectral (super)-viscosity approximation, the exact
entropy solution is recovered within spectral accuracy. This post-processing is carried out as a highly
accurate mollification and operated either in the physical space as in [GT],[AGT],[MOT], or in the
dual Fourier space as in [KO],[MMO],[V]. It should be emphasized that the role of post-processing is
essential in order to realize the highly accurate content of the SV solution.

ACKNOWLEDGMENT. I wrote this paper while I was visiting the Division of Applied Mathematics
at Brown University and it is a pleasure for me to acknowledge stimulating discussions with David
Gottlieb which motivated the present study on the spectral “super viscosity”. The revised version of
this manuscript has benefited from critical comments of Heping Ma.
This research was supported in part by AFOSR grant 90-0093, DARPA grant N00014-91-J-4016 and
ONR grant N00014-91-J-1076.

2 The Fourier spectral viscosity method

To solve the periodic conservation law (1.1) by a spectral method, one employs an N -degree trigono-
metric polynomial

uN(x, t) =
∑

|k|≤N

ûk(t)eikx ,

in order to approximate the Fourier projection of the exact entropy solution, PNu.1 Starting with
uN(x, 0) = PNu0(x), the classical spectral method lets uN(x, t) evolve according to the approximate
model

(2.1)
∂uN

∂t
+

∂

∂x

[
PN

(
f(uN)

)]
= 0 .

As we have already noted, the convergence of uN towards the entropy solution of (1.1),
uN −→

N→∞
u, may fail, [T2]. Instead, we modify (2.1) by augmenting it with high frequency viscos-

ity regularization which amounts to

(2.2)s
∂uN

∂t
+

∂

∂x

[
PNf

(
uN(x, t)

)]
= εN(−1)s+1 ∂s

∂xs

[
Qm(x, t) ∗ ∂suN

∂xs

]
, s ≥ 1.

This kind of spectral viscosity can be efficiently implemented in Fourier space as

(2.3) εN
∂s

∂xs

[
Qm(x, t) ∗ ∂suN

∂xs

]
:= ε

∑
m<|k|≤N

(ik)2sQ̂k(t)ûk(t)eikx .

It involves the following three ingredients:

• the viscosity amplitude, ε = εN ,

(2.4a) ε ≡ εN ∼ 2Cs

N2s−1
;

Here, Cs is a constant which may depend on the fixed order of super-viscosity, s. (A pessimistic
upper bound of this constant will be specified below — consult [CDT, Theorem 2.1]).

1The spectral Fourier projection of u(x) is given by
∑

|k|≤N
(u, eikx)eikx; the pseudospectral Fourier projection of u(x)

is given by
∑

|k|≤N
< u, eikx > eikx, where < u, eikx >:= ∆x

∑
ν

u(xν)e−ikxν is collocated at the 2N + 1 equidistant

gridvalues xν = 2πν∆x. PNu denotes either one of these two projections.
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• the effective size of the inviscid spectrum, m = mN ,

(2.4b) m ≡ mN ∼ Nθ, θ <
2s − 1

2s
;

• the SV smoothing factors, Q̂k(t), which are activated only on high wavenumbers, |k| > mN ,
satisfying

(2.4c) 1 −
(

m

|k|
) 2s−1

θ

≤ Q̂k(t) ≤ 1, |k| > mN .

The SV method can be viewed as a compromise between the total-variation stable viscosity ap-
proximation – see (3.1) and (4.1)s below – which is restricted to first order accuracy (corresponding
to θ = 0), and the spectrally accurate yet unstable spectral method (2.1) (corresponding to θ = 1).
The additional SV on the right of (2.2)s is small enough to retain the formal spectral accuracy of the
underlying spectral approximation, i.e., the following estimate holds

‖εN
∂s+p

∂xs+p

[
Qm(x, t) ∗ ∂suN

∂xs

]
‖L2(x) ≤ Const · N−θ(q−p−1)‖∂quN

∂xq
‖L2(x), ∀q ≥ p + 1 > −∞.

At the same time this SV is shown in §3 & 4 to be large enough so that it enforces a sufficient amount
of entropy dissipation, and hence — by compensated compactness arguments — [Tr],[M], to prevent
the unstable spurious Gibbs’ oscillations.

3 Convergence of the Fourier SV method — 2nd order viscosity

The unique entropy solution of the scalar conservation law (1.1) is the one which is realized as the
vanishing viscosity solution, u = limε↓0 uε, where uε satisfies the standard viscosity equation

(3.1)
∂uε

∂t
+

∂

∂x
f(uε(x, t)) = ε

∂2

∂x2
uε(x, t).

This section provides a brief review of the convergence results for the Fourier SV method (2.2)1.
The convergence analysis is based on the close resemblance of the Fourier SV method (2.2)1 to the
usual viscosity regularization (3.1). To quantify this similarity we rewrite (2.2)1 in the equivalent form

(3.2a)

∂uN

∂t
+

∂

∂x
f(uN (x, t)) =

= εN
∂2uN

∂x2
− εN

∂

∂x

[
RN (x, t) ∗ ∂uN

∂x

]
+

∂

∂x
(I − PN )f(uN ),

where

(3.2b) RN (x, t) :=
N∑

k=−N

R̂k(t)eikx, R̂k(t) ≡
{

1 |k| < mN ,

1 − Q̂k(t) |k| ≥ mN .

Observe that the SV approximation in (3.2a) contains two additional modifications to the standard
viscosity approximation in (3.1).

{i} The second term on the right of (3.2a) measures the difference between the spectral viscosity,
εN

∂
∂x

[
Qm(x, t) ∗ ∂uN

∂x

]
, and the standard vanishing viscosity, εN

∂2uN

∂x2 . The following straightfor-
ward estimate shows this difference to be L2-bounded, ∀θ < 1

2 .
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‖εN
∂

∂x

[
RN (·, t) ∗ ∂uN

∂x

]
‖L2 ≤ Const · εN

[
m

1/θ
N max

|k|>mN

|k|2−1/θ + m2
N

]
‖uN(·, t)‖L2

≤ Const · N2θ−1‖uN(·, t)‖L2 ≤ Const · ‖uN(·, t)‖L2 , θ ≤ 1
2 .

{ii} The spectral projection error contained in the third term on the right of (3.2a) does not exceed

‖(I − PN )f(uN (·, t))‖L2 ≤ Const
1
N

‖ ∂

∂x
uN(·, t)‖L2 .

Equipped with the last two estimates one concludes the standard entropy dissipation bound, [T2], [MT],
[T4], [CDT],

(3.3) ‖uN(·, t)‖L2 +
√

εN‖∂uN

∂x
‖L2

loc(x,t) ≤ Const, εN ∼ 1
N

.

The inequality (3.3) is the usual statement of entropy stability familiar from the standard viscosity setup
(3.1). For the L∞-stability of the Fourier SV approximation consult e.g. [MT],[T3, §5] and [CDT, §4]
for the one- and respectively, multi-dimensional problems. The convergence of the SV method then
follows by compensated compactness arguments, [Tr],[M].

We note in passing that the the Fourier SV approximation (2.2)s, (2.4) shares other familiar proper-
ties of the standard viscosity approximation (3.1), e.g., total variation boundedness, Oleinik’s one-sided
Lipschitz regularity (for θ < 1

3 ), L1-convergence rate of order one-half, [S],[T4].

4 The Fourier SV method revisited – the super viscosity case

In this section we remove the restriction θ < 1
2 in (2.4b), which limits the portion of the inviscid

spectrum. The key is to replace the standard second-order viscosity regularization (3.1) with the
“super-viscosity” regularization

(4.1)s
∂uε

∂t
+

∂

∂x
f(uε(x, t)) = ε(−1)s+1 ∂2s

∂x2s
uε(x, t).

The convergence analysis of the spectral “super-viscosity” method (2.2)s is linked to the behavior of
the “super-viscosity” regularization (4.1)s. To this end we rewrite (2.2)s in the equivalent form

(4.2)

∂uN

∂t
+

∂

∂x
f(uN(x, t)) = εN (−1)s+1 ∂2suN

∂x2s
+

+εN
(−∂)s

∂xs

[
RN (x, t) ∗ ∂suN

∂xs

]
+

∂

∂x
(I − PN )f(uN ) =

:= I1(uN ) + I2(uN ) + I3(uN ).

As before, we observe that the second and third terms on the right of (4.2), I2(uN ) and I3(uN), are
the two additional terms which distinguish the spectral “super-viscosity” approximation (4.2) from the
super-viscosity regularization (4.1)s. In the sequel we shall use the following upper-bounds on these
two terms.

{i} The second term, I2(uN ), measures the difference between the SV regularization in (4.2) and the
“super-viscosity” in (4.1)s. Using the SV parameterization in (2.4c), (2.4b) and (2.4a) (in this
order), we find that this difference does not exceed

‖εN
(−∂)s

∂xs

[
RN (·, t) ∗ ∂suN

∂xs

]
‖L2 ≤ εN

[
m2s

N + m
2s−1

θ

N max
|k|>mN

|k|2s− 2s−1
θ

]
‖uN(·, t)‖L2

≤ Const · N2sθ−2s+1‖uN(·, t)‖L2 ≤

≤ Const · ‖uN(·, t)‖L2 , ∀θ ≤ 2s−1
2s .
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Thus, the second term on the right of (4.2), I2(uN ), is L2-bounded :

(4.3) ‖I2(uN )‖L2(x) ≤ Const‖uN (·, t)‖L2(x).

{ii} Regarding the third term, I3(uN ), we shall make a frequent use of the spectral estimate which we
quote from [CDT, §2.3]2,

(4.4) ‖ ∂p

∂xp
(I − PN )f(uN (·, t))‖L2 ≤ Cq

1
N q−p

‖ ∂q

∂xq
uN(·, t)‖L2 , ∀q ≥ p > −∞, q >

1
2
.

(The restriction q > 1
2 is required only for the pseudospectral Fourier projection, PN , whose

truncation estimate in provided in e.g., [T1, Lemma 2.2]). An upper bound on the constants Cs

appearing on the right of (4.4) is given by [CDT, Theorem 7.1]

Cs ∼
s∑

k=1

‖f(·)‖Ck‖uN‖k−1
L∞ ;

this estimate may serve as a (pessimistic) bound for the same constant used in conjunction with
the viscosity amplitude, εN , in (2.4a).

Next we turn to the behavior of the quadratic entropy of the SV solution, U(uN ) = 1
2u2

N . (A similar
treatment applies to general convex entropy functions U(uN).) Multiplication of (4.2) by uN implies

(4.5)

1
2

∂

∂t
u2

N +
∂

∂x

∫ uN

ξf ′(ξ)dξ =

= uNI1(uN ) + uNI2(uN) + uNI3(uN ) =

:= II1(uN ) + II2(uN ) + II3(uN ).

The three expressions on the right (4.5) represent the quadratic entropy dissipation + production of
the SV method. Successive ”differentiation by parts” enable us to rewrite the first expression as

(4.6a)

II1(uN ) ≡ εN

∑
p + q = 2s − 1

0≤p<s

(−1)s+p+1 ∂

∂x

[
∂puN

∂xp

∂quN

∂xq

]
− εN

(
∂suN

∂xs

)2

:= II11(uN ) + II12(uN ).

Similarly, the second expression can be rewritten as

(4.6b)

II2(uN) ≡ εN

∑
p+q=s−1

(−1)s+p ∂

∂x

(
∂puN

∂xp

[
∂qRN (x, t)

∂xq
∗ ∂suN

∂xs

])
+

+εN
∂suN

∂xs
RN (x, t) ∗ ∂suN

∂xs

:= II21(uN ) + II22(uN ).

2As usual we let ∂p
xw(x) :=

∑
k 6=0

(ik)pŵ(k)eikx. Note that if
∫

w(x)dx = 0 then ∂p
xw(x) with p < 0 coincides with the

|p|-th order primitive of w(x).
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Finally, we have for the third expression

(4.6c)

II3(uN ) ≡
s−1∑
p=0

(−1)p ∂

∂x

[
∂puN

∂xp

∂−p

∂x−p
(I − PN )f(uN)

]
+

+(−1)s ∂suN

∂xs

∂−s+1

∂x−s+1
(I − PN )f(uN )

:= II31(uN ) + II32(uN ).

We arrive at the following entropy estimate which plays an essential role in the convergence analysis
of the SV method.

LEMMA 4.1 Entropy dissipation estimate. There exists a constant, Const ∼ ‖uN(·, 0)‖L2, (but oth-
erwise is independent of N), such that the following estimate holds

(4.7) ‖uN(·, t)‖L2 +
√

εN‖∂suN

∂xs
‖L2

loc
(x,t) ≤ Const, εN =

2Cs

N2s−1
.

REMARK. Observe that the entropy dissipation estimate in (4.7) is considerably weaker in the “super-
viscosity” case where s > 1, than in the standard viscosity regularization, s = 1 quoted in (3.3).

PROOF. Spatial integration of (4.5) yields

1
2

d

dt
‖uN(·, t)‖2

L2 + εN‖ ∂s

∂xs
uN(·, t)‖2

L2 = (uN , I2(uN ))L2(x) + (uN , I3(uN ))L2(x).

According to (4.3), the first expression on the right of the last inequality does not exceed

(4.8) |(uN , I2(uN ))L2 | ≤ Const · ‖uN(·, t)‖2
L2 .

According to (4.6c), the second expression on the right= (−1)s ∂suN

∂xs
∂−s+1

∂x−s+1 (I−PN )f(uN), and by (4.4)
it does not exceed

(4.9) |(uN , I3(uN ))L2 | ≤ ‖∂suN

∂xs
‖L2 · Cs

N2s−1
‖∂suN

∂xs
‖L2 ≤ 1

2
εN‖ ∂s

∂xs
uN (·, t)‖2

L2 .

(In fact, in the spectral case, the second expression vanishes by orthogonality ). The result follows from
Gronwall’s inequality.

Equipped with Lemma 4.1 we now turn to the main result of this section, stating

THEOREM 4.2. Convergence. Consider the Fourier “super-viscosity” approximation (2.2)s–(2.4),
subject to L∞-initial data, uN (·, 0). Then uniformly bounded uN converges to the unique entropy
solution of the convex conservation law (1.1).

PROOF. We proceed in three steps.
Step 1. L∞-stability. The L∞-stability for spectral viscosity of 2nd order, s = 1, follows by

Lp-iterations along the lines of [MT] and [CDT], (we omit the details). The issue of an L∞ bound
for spectral viscosity of ’super’ order s > 1 remains an open question. The intricate part of this
question could be traced to the fact that already the underlying super-viscosity regularization (4.1)s,
lacks monotonicity for s > 1: instead, it exhibits additional oscillations which are added to the spectral
Gibbs’ oscillations (Both types of oscillations are post-processed without sacrificing neither stability
nor spectral accuracy).
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Step 2. H−1-stability. We want to show that both — the local error on the right hand-side of (4.2),∑
1≤j≤3

Ij(uN ), and the quadratic entropy dissipation + production on the right of (4.5),
∑

1≤j≤3

IIj(uN),

belong to a compact subset of H−1
loc (x, t).

To this end we first prepare the following. Bernstein’s inequality gives us ∀p < s ≤ q
(4.10)

‖εN

[
∂puN

∂xp

∂quN

∂xq

]
‖L2

loc
(x,t) ≤ Const · εN‖∂puN

∂xp
‖L∞ · ‖∂quN

∂xq
‖L2

loc
(x,t) ≤

. . . by Bernstein inequality . . . ≤ Const · εN · Np‖uN‖L∞ · N q−s‖∂suN

∂xs
‖L2

loc
(x,t) ≤

. . . by Lemma 4.1 . . . ≤ Const · √εN · Np+q−s‖uN‖L∞ ∼
√

2Cs · Np+q−2s+ 1
2 · ‖uN‖L∞ .

Consider now the first two expressions, I1(uN ) and II1(uN ). The inequality (4.10) with (p, q) =
(0, 2s − 1) implies that I1(uN ) tends to zero in H−1

loc (x, t), for

(4.11) ‖I1(uN )‖H−1
loc

(x,t) ≤ Const ·
√

2Cs/N · ‖uN‖L∞ → 0.

We turn now to the expression II1(uN ) in (4.6a): its first half tends to zero in H−1
loc (x, t), for by (4.10)

we have ∀p + q = 2s − 1,

(4.12)

‖II11(uN ) ≡ εN ·
∑

p + q = 2s − 1
0≤p<s

(−1)s+p ∂

∂x

[
∂puN

∂xp

∂quN

∂xq

]
‖H−1

loc
(x,t) ≤

≤ Const ·
√

2Cs/N ·
∑

p + q = 2s − 1
0≤p<s

‖uN‖L∞ ≤

≤ Const · s√2Cs/N · ‖uN‖L∞ → 0;

the second half of II1 in (4.6a), −εN

(
∂suN

∂xs

)2

, is bounded in L1
loc(x, t), consult Lemma 4.1, and hence

by Murat’s Lemma [M], belongs to a compact subset of H−1
loc (x, t). We conclude

(4.13) II12(uN ) −→
H−1

loc
(x,t)

≤ 0.

We continue with the next pair of expressions, I2(uN ) and II2(uN ). According to (4.3), I2(uN) —
and therefore also II2(uN ) = uNI2(uN ) — are L2-bounded, and hence belong to a compact subset of
H−1

loc (x, t); in fact, by repeating our previous arguments which led to (4.3) one finds that

(4.14) ‖I2(uN )‖H−1(x,t) ≤ Const · εNms−1
N ‖∂suN

∂xs
‖L2(x,t) ≤ Const · √εNms−1

N ∼
√

2Cs · N− 2s−1
2s → 0.

A similar treatment shows that the first half of II2(uN ) in (4.6b) tends to zero in H−1
loc (x, t), for

(4.15)

‖II21(uN ) ≡ εN

∑
p+q=s−1

(−1)s+p ∂

∂x

(
∂puN

∂xp

[
∂qRN (x, t)

∂xq
∗ ∂suN

∂xs

])
‖H−1

loc
(x,t) ≤

≤ εN ·
∑

p+q=s−1

Np‖uN‖L∞ · mq
N‖∂suN

∂xs
‖L2

loc
(x,t) ≤

≤ Const · √εN

∑
p+q=s−1

Np+q‖uN‖L∞ ≤ s
√

2Cs/N · ‖uN‖L∞ → 0.
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The second half of II2(uN ) is L1-bounded, for

(4.16) ‖II22(uN ) ≡ εN
∂suN

∂xs
RN (x, t) ∗ ∂suN

∂xs
‖L1 ≤ Const · εN‖∂suN

∂xs
‖2

L2
loc

(x,t) ≤ Const.

Finally we treat the third pair of expressions, I3(uN) and II3(uN). The spectral decay estimate
(4.4) with (p, q) = (0, s), together with Lemma 4.1 imply that I3(uN ) tends to zero in H−1

loc (x, t); indeed

(4.17) ‖I3(uN ) ≡ ∂

∂x
(I − PN )f(uN )‖H−1

loc
(x,t) ≤

Cs

Ns
‖∂suN

∂xs
‖L2 ∼

√
2Cs/N → 0.

A similar argument applies to the expression II3(uN) given in (4.6c). Sobolev inequality – consult
(4.10), followed by the spectral decay estimate (4.4) imply that the first half of II3(uN) does not exceed

(4.18)

‖II31(uN ) ≡
s−1∑
p=0

(−1)p ∂

∂x

[
∂puN

∂xp

∂−p

∂x−p
(I − PN )f(uN )

]
‖H−1

loc
(x,t) ≤

≤
s−1∑
p=0

‖∂puN

∂xp
‖L∞ · ‖ ∂−p

∂x−p
(I − PN )f(uN )‖L2

loc
(x,t) ≤

≤ Const ·
s−1∑
p=0

Np‖uN‖L∞
Cs

Ns+p
‖∂suN

∂xs
‖L2

loc
(x,t) ≤

∼ Const · s√2Cs/N‖uN‖L∞ → 0.

According to Lemma 4.1, the second half of II3(uN ) is L1-bounded, for

(4.19) ‖II32(uN ) ≡ ∂suN

∂xs

∂−s+1

∂x−s+1
(I − PN )f(uN )‖L1 ≤ ‖∂suN

∂xs
‖L2

Cs

N2s−1
‖∂suN

∂xs
‖L2 ≤ Const,

and hence by Murat’s Lemma [M], belongs to a compact subset of H−1
loc (x, t). We conclude that the

entropy dissipation of the Fourier spectral “super-viscosity” method, for both linear and quadratic
entropies, belongs to a compact subset of H−1

loc (x, t).
Step 3. Convergence. It follows that the SV solution uN converges strongly

(in Lp
loc, ∀p < ∞) to a weak solution of (1.1). In fact, except for the L1-bounded terms II22(uN ) and

II32(uN ), we have shown that all the other expressions which contribute to the entropy dissipation
tend either to zero or to a negative measure. Using the strong convergence of uN it follows that
II22(uN ) and II32(uN ) also tend to zero, consult [MT]. Hence the convergence to the unique entropy
solution.

REMARKS.
1. Low pass filter [G]. We note that the spectral “super-viscosity” in (2.2)s allows for an increasing

order of parabolicity, s ∼ Nµ, µ < 1/2 (at least for bounded Cs’s). This enables us to rewrite the
spectral “super-viscosity” method in the form

∂uN

∂t
+

∂

∂x
[PNf(uN)] = −N

∑
|k|≤N

σ(
k

N
)ûk(t)eikx,

where σ(ξ) is a symmetric low pass filter satisfying

σ(ξ)




≤ |ξ|2s, |ξ| ≤ 1,

≥ |ξ|2s − 1
N , |ξ| > 0.
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In particular, for s ∼ Nµ, one is led to a low pass filter which is C∞-tailored at the origin, consult [V].
2. Super viscosity regularization. Theorem 4.2 implies the convergence of the regularized “super-

viscosity” approximation uε in (4.1)s, to the entropy solution of the convex conservation law (1.1).
Unlike the regular viscosity case, the solution operator associated with (4.1)s>1 is not monotone —
here there are ”spurious” oscillations, on top of the Gibbs’ oscillations due to the Fourier projection.
What we have shown is that the oscillations of either type do not cause instability. Moreover, these
oscillations contain, in some weak sense, highly accurate information on the exact entropy solution;
this could be revealed by post-processing the spectral (super)-viscosity approximation, e.g. [MOT].
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