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Summary. We present a systematic study of the novel entropy stable approxima-
tions of a variety of nonlinear conservation laws, from the scalar Burgers equation to
1D Navier-Stoke and 2D shallow water equations. This new family of second-order
difference schemes avoid using artificial numerical viscosity in the sense that their
entropy dissipation is dictated solely by physical dissipation terms. The numerical
results of 1D compressible Navier-Stokes equations equations provide us a remark-
able evidence for different roles of viscosity and heat conduction in forming sharp
monotone profiles in the immediate neighborhoods of shocks and contacts. Further
implementation in 2D shallow water equations is realized dimension by dimension.

1 The Inviscid Burgers’ Equation

1.1 Entropy conservative schemes

We begin with the inviscid Burgers equation,

∂u

∂t
+

∂

∂x
f(u) = 0, f(u) =

1
2
u2. (1)

It is equipped with a family of entropy functions, Up(u) = u2p, p = 1, 2, · · · ,
such that solutions of (1) satisfy, at the formal level,

∂

∂t
Up(u) +

∂

∂x
Fp(u) = 0. (2)
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These are additional conservation laws balanced by the corresponding en-
tropy flux functions Fp(u) = 2pu2p+1/(2p+1). Spatial integration then yields
(ignoring boundary contributions)

∫

x

u2p(x, t) dx =
∫

x

u2p(x, 0) dx. (3)

We turn to the discrete framework. Discretization in space yields the semi-
discrete scheme,

d

dt
uν(t) +

1
∆x

(
fν+ 1

2
− fν− 1

2

)
= 0. (4)

Here, uν(t) denotes the discrete solution along the gridline (xν, t) with xν :=
ν∆x, ∆x being the uniform meshsize, and fν+ 1

2
:= f(uν−r+1, · · · , uν+r) is a

consistent numerical flux based on a stencil of 2r + 1 neighboring grid values,
that makes (4) conservative in the sense that

∑
ν uν(t)∆x =

∑
ν uν(0)∆x.

Fix p. We seek a semi-discrete scheme that conserves the entropy Up(u) = u2p

in the sense of satisfying the discrete analogue of (2)p,

d

dt
Up(uν(t)) +

1
∆x

(Fν+ 1
2
− Fν−1

2
) = 0.

Here, Fν+ 1
2

is a consistent numerical entropy flux. According to [Ta1987,
Theorem 5.2], such 3-point scalar entropy conservative schemes are uniquely
determined by the entropy conservative numerical flux fν+ 1

2
= f∗

ν+ 1
2

given by,

fν+ 1
2

= f∗
ν+ 1

2
=

2p − 1
2(2p + 1)

· u2
ν · (uν+1/uν)2p+1 − 1

(uν+1/uν)2p−1 − 1
. (5)

The resulting scheme (4), (5) is entropy conservative in the sense that the
discrete analogue of total entropy conservation (3) is satisfied,

∑

ν

u2p
ν (t) ∆x =

∑

ν

u2p
ν (0) ∆x

Of course, all the above manipulations are at the formal level. To recover
the physical relevant entropy inequality, ∂tUp(u) + ∂xFp(u) ≤ 0, one can add
numerical dissipation,

d

dt
uν(t) +

1
∆x

(
f∗

ν+ 1
2
− f∗

ν− 1
2

)
=

ε

(∆x)2
(
d(uν+1) − 2d(uν) + d(uν−1)

)
, ε > 0.

This serves as an approximation to the vanishing viscosity regularization ut +
f(u)x = εd(u)xx, d′(u) > 0. Sum this scheme against vν := U ′

p(uν) = 2pu2p−1:
the resulting entropy balance that follows reads,
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d

dt

∑

ν

Up(uν(t))∆x = − ε

∆x

∑

ν

∆dν+ 1
2

∆vν+ 1
2

(∆vν+ 1
2
)2 ≤ 0, (6)

since
∆d

ν+ 1
2

∆v
ν+ 1

2

:= d(uν+1)−d(uν)
vν+1−vν

> 0 for d′(u) > 0. Observe that the amount of

entropy dissipation on the right is completely determined by the dissipation
term εd(u). No artificial viscosity is introduced by the convective term. If we
exclude any dissipative mechanism (ε = 0), the entropy conservative solutions
admit dispersive oscillations interesting for their own sake, consult [La1986,
LL1996].
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Fig. 1. Scalar Burger’s equation, sine initial condition, entropy-conservative
schemes, 200 spatial grids, U(u) = u2p, ∆t = 5 × 10−3, ∆x = 5 × 10−3



1114 Eitan Tadmor and Weigang Zhong

1.2 Numerical experiments

The semi-discrete entropy conservative scheme (4),(5) is integrated with the
following third-order Runge-Kutta (RK3), consult [GST2001].

u(1) = un + ∆tL(un),

u(2) =
3
4
un +

1
4
u(1) +

1
4
∆tL(u(1)), (7)

un+1 =
1
3
un +

2
3
u(2) +

2
3
∆tL(u(2)),

where [L(u)]ν = − 1
∆x (f∗

ν+ 1
2
−f∗

ν− 1
2
). We note that this explicit RK3 time dis-

cretization produces a negligible amount of entropy dissipation. For a general
framework of entropy conservative fully discrete schemes, consult [LMR2002].

We solve the inviscid Burgers equation with the sine initial condition,
u(0, x) = sin(2πx) and periodic boundary. In Fig.1, we display the numerical
solutions for (7) with the numerical flux (5) for different choices of p. Ob-
serve that the amplitude of the spurious dispersive oscillations decreases as
p increases. Indeed, as we increase p, the control of a constant Up entropy,[∑

ν u2p
ν (t) ∆x

] 1
2p approaches the control of L∞-norm.

2 The 1D Navier-Stokes Equations

2.1 Entropy dissipation

We consider the Navier-Stokes equations (NSE) governing the density ρ =
ρ(x, t), momentum m = m(x, t), and energy E = E(x, t),

∂

∂t
u +

∂

∂x
f (u) = ε

∂2

∂x2
d(u), u = [ρ, m, E]>. (8)

They are driven by the convective flux f (u) =
[
m, qm + p, q(E + p)

]>, to-
gether with the dissipative flux εd(u) = (λ + 2µ)

[
0, q, q2/2

]> + κ
[
0, 0, θ

]>
which stands for the combined viscous and heat fluxes. Here, ε represents the
amplitudes of the viscosity and conductivity. These fluxes involve the velocity
q := m/ρ, the pressure p = p(x, t) = (γ − 1)e where e := E − m2

2ρ , and the
absolute temperature, θ = θ(x, t) > 0, such that Cvρθ = e. Here γ > 1, λ, µ
are fixed and κ 7→ κ/Cv with Cv = 1.

The viscous and heat fluxes are dissipative in the sense that they are re-
sponsible for the dissipation of total entropy, U (u) = −ρS with S = ln(pρ−γ )
being the specific entropy,

∂

∂t
(−ρS) +

∂

∂x
(−mS + κ(ln θ)x) = −(λ + 2µ)

q2
x

θ
− κ

(
θx

θ

)2

≤ 0. (9)
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Spatial integration of (9) then yields the second law of thermodynamics,

d

dt

∫

x

(−ρS) dx = −(λ + 2µ)
∫

x

q2
x

θ
dx− κ

∫

x

(
θx

θ

)2

dx ≤ 0. (10)

In fact, (10) specifies the precise entropy decay rate. In the case of the Euler
equations, λ = µ = κ = 0, total entropy is precisely conserved,

∫

x

−ρS(x, t) dx =
∫

x

−ρS(x, 0) dx.

This corresponds to the scalar entropy conservation (3).

2.2 Entropy stable schemes for the Navier-Stokes equations

We now turn our attention to the construction of entropy stable schemes for
NSE (8). We use the conservative differences for convective flux and standard
centered differences for the dissipative terms on the RHS.

d

dt
uν(t) +

1
∆x

(
f∗ν+1

2
− f∗ν−1

2

)
=

ε

(∆x)2
(
dν+1 − 2dν + dν−1

)
, (11)

Here, dν := d(uν). As in the scalar case, we seek entropy conservative flux
f∗
ν+1

2
, so that the entropy decay will be dictated solely by the dissipation terms

on the right of (11). The construction of the entropy conservative flux f∗
ν+ 1

2

follows [Ta2004] and [TZ2006], and is summarized in the following

Algorithm 1 If uν = uν+1 then f∗
ν+ 1

2
= f (vν); else

• Set ∆uν+ 1
2

:= uν+1 − uν. Starting with u1
ν+ 1

2
:= uν, compute recussively

the intermediate states,

uj+1

ν+1
2

= uj

ν+1
2

+
〈
̂̀j

ν+ 1
2
, ∆uν+1

2

〉
r̂j

ν+1
2
, j = 1, 2, 3, . (12)

Here, {̂̀j

ν+ 1
2
} and {r̂j

ν+ 1
2
} are the left and right eigensystems of the Roe

matrix A(uν ,uν+1)(see [Roe1981]).
• Set rj

ν+1
2

:= v(uj+1

ν+1
2
) − v(uj

ν+1
2
) and let {`j}3

j=1 be the corresponding
orthogonal system. Compute the entropy-conservative numerical flux,

f∗ν+ 1
2

= (γ − 1)
3∑

j=1

mj+1
ν+ 1

2
− mj

ν+ 1
2〈

`j

ν+ 1
2
, ∆vν+1

2

〉 `j
ν+ 1

2
,

〈
`j

ν+ 1
2
,vj+1

ν+ 1
2
− vj

ν+ 1
2

〉
= δjk

(13)

Here, v(u) := Uu(u) = [−E/e − S + γ + 1, q/θ,−1/θ]> are the entropy vari-
ables, and {mj} are intermediate momentum values along the path. We now
arrive at our main result of NSE corresponding to the Burgers statement (6).



1116 Eitan Tadmor and Weigang Zhong

Theorem 1 ([TZ2006], Theorem 3.6). The semi-discrete scheme (11)
with the entropy conservative numerical flux f∗

ν+ 1
2

in (12)-(13) and d(uν)

being the dissipative NS flux, is entropy stable in the sense that 3

d

dt

∑

ν

[−ρν(t)Sν (t)] ∆x = −
∑

ν

ε

∆x

〈
∆vν+ 1

2
,

∆dν+1
2

∆vν+ 1
2

∆vν+1
2

〉
(14)

= − (λ + 2µ)
∑

ν

(
∆qν+1

2

∆x

)2 (
1̂/θ

)
ν+ 1

2

∆x

− κ
∑

ν

(
∆θν+ 1

2

∆x

)2 (
1̃/θ

)2

ν+ 1
2

∆x ≤ 0.

This statement is a discrete analog of the entropy balance statement (10).
Here is our main point: we introduce no excessive entropy dissipation due to
spurious, artificial numerical viscosity. According to (14), the semi-discrete
scheme contains the precise amount of numerical viscosity to enforce the cor-
rect entropy dissipation dictated by NSE. More can be found in [Ta2004,
TZ2006].

2.3 Numerical experiments
We consider ideal polytropic gas equations as an approximation of air with

γ = 1.4, Cv = 716, κ = 0.03, λ + 2µ = 2.28× 10−5.

We simulate the Sod’s shocktube problem, where the Euler and NSE are
solved over the interval [0, 1] subject to Riemann initial conditions

(ρ, m, E)t=0 =
{

(1.0, 0.0, 2.5) 0 < x ≤ 0.5
(0.125, 0.0, 0.25) 0.5 < x < 1.

In Fig.2, we display the numerical solutions for the fully discrete scheme
(11) with RK3 method (7) and the numerical flux (13). The density fields of
four different cases are recorded.

Density field of the Euler equations 2(a) demonstrates the purely dispersive
character of the entropy conservative schemes. Dispersive oscillations on the
mesh scale are observed in shocks and contact regions due to the absence of any
dissipative mechanism. These oscillations approach a modulated wave envelop,
consult [La1986, LL1996] for more discussions on dispersive oscillations.

For the results of NSE in 2(b)-2(d), the presence of heat flux causes the
oscillations to be dramatically reduced around the contact discontinuity and
the shock in 2(b). The viscous flux in NSE, on the other hand, is doing a better
job than heat flux in damping oscillations around the shock in 2(c), but we
still can observe an oscillatory behavior around the contact discontinuity. In
2(d), not only the oscillations around the shock are damped out by viscosity,
but the oscillations around the contact discontinuity are significantly reduced
due to the heat flux.
3 We let ẑν+ 1

2
=

(
zν + zν+1

)
/2 and z̃ν+ 1

2
=

√
zνzν+1.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1−D N−S,density,λ+2µ=2.28e−005,γ=1.4,Cv=716,κ=0.03,entropy=−ρ ln(pρ−γ),∆t=2.5e−005,∆x=0.00025

x

ρ

t=0.0
t=0.05
t=0.1

(d) Navier-Stokes with viscosity and
heat

Fig. 2. Density field Sod problem with 4000 spatial gridpoints, U(u) =
−ρ ln

(
pρ−γ

)
, ∆t = 2.5 × 10−5, ∆x = 2.5 × 10−4

3 The 2D Shallow Water Equations

We turn to 2D shallow water equations,

∂

∂t
u +

∂

∂x
f (u) +

∂

∂y
g(u) = η

∂

∂x

(
h

∂

∂x
d(u)

)
+ η

∂

∂y

(
h

∂

∂y
d(u)

)
, (15)

with u = [h, uh, vh]> being the vector of conserved variables balanced by the
flux vectors

f = [uh, u2h + gh2/2, uvh]>, g = [vh, uvh, v2h + gh2/2]>,
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and the viscous flux vector d = [0, u, v]>. Here, h = h(x, t) is the total
water height, (u(x, t), v(x, t)) are the depth-averaged velocities along x and y
direction. Finally, g is the constant acceleration due to gravity, and η > 0 is
the constant eddy viscosity which models the turbulence stress in the flow.

The total energy U (u) = (gh2+u2h+v2h)/2 serves as an entropy function,

∂

∂t
U (u) +

∂

∂x
F (u) +

∂

∂y
G(u) = −ηh(u2

x + u2
y + v2

x + v2
y), (16)

where F (u) = guh2 + u3h+uv2h
2 − huux and G(u) = gvh2 + u2vh+v3h

2 − hvvy

are the entropy fluxes. Spatial integration of (16) yields

d

dt

∫

y

∫

x

U (u) dxdy = −η

∫

y

∫

x

h(u2
x + u2

y + v2
x + v2

y) dxdy. (17)

For the inviscid case (η = 0), the global entropy conservation is satisfied,
∫

y

∫

x

U (u(x, t)) dxdy =
∫

y

∫

x

U (u(x, 0)) dxdy

Arguing along the same line as the above NSE dimension by dimension, we
obtain the entropy-stable semi-discrete schemes (recall ẑν+ 1

2
:= (zν+1+zν)/2)

d

dt
uν,µ(t) +

1
∆x

(f∗ν+ 1
2 , µ − f∗ν−1

2 , µ) +
1

∆y
(g∗

ν, µ+ 1
2
− g∗

ν, µ− 1
2
)

=
η

∆x
(ĥν+ 1

2 , µ

dν+1, µ − dν, µ

∆x
− ĥν−1

2 , µ

dν, µ − dν−1,µ

∆x
)

+
η

∆y
(ĥν, µ+ 1

2

dν, µ+1 − dν, µ

∆x
− ĥν, µ− 1

2

dν, µ − dν, µ−1

∆x
), (18a)

with the entropy-conservative fluxes f∗
ν+ 1

2 , µ
and g∗

ν, µ+ 1
2

outlined in Algorithm
1 along x and y direction, respectively,

f∗
ν+ 1

2 , µ
=

g

2

3∑

j=1

(hj+1

ν+ 1
2 , µ

)2uj+1

ν+ 1
2 , µ

− (hj

ν+ 1
2 , µ

)2uj

ν+ 1
2 , µ〈

`xj

ν+ 1
2 , µ, ∆vν+ 1

2 , µ

〉 `xj

ν+ 1
2 , µ, (18b)

g∗
ν, µ+ 1

2
=

g

2

3∑

j=1

(hj+1

ν, µ+ 1
2
)2uj+1

ν, µ+ 1
2
− (hj

ν, µ+ 1
2
)2uj

ν, µ+ 1
2〈

`yj

ν, µ+ 1
2
, ∆vν, µ+ 1

2

〉 `yj

ν, µ+ 1
2
, (18c)

Here, uν, µ(t) denotes the discrete solution at the grid point (xν, yν , t), dν, µ :=
d(uν,µ), and v := Uu = [gh − 1

2 (u2 + v2), u, v]> is the entropy variable.
Numerical flux f∗ and g∗ are constructed separately along two different phase
pathes dictated by two sets of vectors {`xj

} and {`yj

}. {hj} and {uj} are
intermediate values of height and velocity along the path. The above difference
scheme (18a)-(18c) is an entropy stable scheme with no artificial viscosity in
the sense that the following discrete entropy balance is satisfied,
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d

dt

∑

ν, µ

U (uν, µ(t))∆x∆y = −η
∑

ν, µ

{
ĥν+ 1

2 , µ

[(
∆uν+1

2 , µ

∆x

)2

+
(

∆vν+1
2 , µ

∆x

)2
]

+ĥν, µ+ 1
2

[(
∆uν, µ+ 1

2

∆y

)2

+
(

∆vν, µ+ 1
2

∆y

)2
]}

∆x∆y. (19)

(19) is a discrete analogue of the entropy balance statement (17).
Equipped by RK3, we test the entropy stable scheme (18a)-(18c) by the

2D partial Dam-Break problem with free-slip boundary described in [FC1990].
Both the inviscid and viscous case are tested. The water surface profiles at
time t = 7.2s are recorded in Fig.2.
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Fig. 3. Shallow water equations, Dam-Break, 200×200 m2 basin, free-slip boundary,
∆x = ∆y = 5 m, ∆t = 5 × 10−3 s

Comparing 3(b) to 3(a), we observe the improvements in smoothness of
the numerical solutions. There is no analytical reference solution for this test
case, but other numerical results are available in [FC1990].
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