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A MINIMUM ENTROPY PRINCIPLE IN THE GAS DYNAMICS EQUATIONS * 

Eitan TADMOR ** 
School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv, 69978 Tel-Aviv, Israel; and, Institute for 
Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, VA 23665, U.S.A. 

Let u(X, t) be a weak solution of the Euler equation, governing the inviscid polytropic gas dynamics; in 
addition, u(X, t) is assumed to respect the usual entropy conditions connected with the conservative Euler 
equations. We show that such entropy solutions of the gas dynamics equations satisfy a minimum entropy 
principle, namely, that the spatial minimum of their specific entropy, Ess inf,S(u(?, t)), is an increasing 
function of time. This principle equally applies to discrete approximations of the Euler equations such as the 
Godunov-type and Lax-Friedrichs schemes. Our derivation of this minimum principle makes use of the fact 
that there is a fami& of generalized entropy functions connected with the conservative Euler equations. 

1. Introduction 

Many phenomena in continuum mechanics are modeled by hyperbolic systems of conservation 
laws 

- =o, (x=(x,,..., Xd>, 4 E ia x [o, 4, 04 

where ftk) if = (f tk) , f&k))T are smooth nonlinear flux mappings of the N-vector of 
conservative variables u 2 uii,‘t ) = ( ul,. . . , u~)~. Friedrichs and Lax [3] have observed that the 
hyperbolic nature of such models is revealed by the property of most of those systems being 
endowed with a generalged _entropy function: A smooth convex mapping U(u) augmented with 
entropy flux mappings F = F(u) = (F”)(u), . . . , Fcd)( u)), such that the following compatability 
relations hold 

UU=fLk, = FikjT, k = 1, 2,. . . , d. 

Multiplying (1.1) by UUT and employing (1.2), one arrives at an equivalent formulation of the 
compatibility relations (1.2), namely, that under the smooth regime we have on top of (1.1) the 
additional conservation of entropy 

au d a$“‘4 

at+c k_lF=o- (1.3) 

Owing to the nonlinearity of the fluxes fck)( u), solutions of (1.1) may develop singularities at 

* Research was supported in part by NASA Contract No. NASl-17070 while the author was in residence at ICASE, 
NASA Langley Research Center, Hampton, VA 236655225. Additional support was provided in part by NSF 
Grant No. DMS85-03294 and AR0 Grant No. DAAG29-85-K-0190 while in residence at the University of 
California, Los Angeles, CA 90024. 

* * Bat-Sheva Foundation Fellow. 

0168-9274/86/$3.50 0 1986, Elsevier Science Publishers B.V. (North-Holland) 



212 E. Tadmor / A minimum entropy principle 

a finite time after which one must admit weak solutions, i.e., those derived directly from the 
underlying integral conservative equations. Considering (1.1) as a strong limit of the regularized 
problem, 

then, following Lax [9] and Krushkov [8], we postulate as an admissibility criterion for such limit 
solutions, an entropy stability condition which manifests itself in terms of an entropy inequality: 
We have, in the sense of distributions, 

au d aF(k) 

- kEl axk “* at + t: - 0 -5) 

Wzak solutions of (l.l), which in addition satisfy the inequality (1.5) for all entropy pairs 
(U, F) connected with that system, are called entropy solutions. 1 Having a (weakly) nonpositive 
quantity on the L.H.S. of (1.5) is thus a consequence of viewing these entropy solutions as limits 
of vanishing dissipativity mechanisms. In particular, the inequality (1.5) implies that the total 
entropy in the domain decreases in time (we assume entropy outflux through the boundaries) 

(1.6) 

In this paper, we consider entropy solutions, 

u= (P, m, EjT (1.7a) 

of the Euler equations. These equations govern the inviscid polytropic gas dynamics, asserting 
the conservation of the density p, the momentum ll~ = (m,, m2, m3)*, and the energy E. Let 
q = m/p denote the velocity field of such motion. Then, expressed in terms of the pressure, p, 

p=(y-l)*[E-’ 2 - p 1q I”], y = adiabatic exponent, (1.7b) 

the corresponding fluxes in this case are given by ’ 

fck)=(mk, qk’m+p’e(k), qk(Efp))*, k=l, 2, 3. (1.7c) 

The main result of this paper asserts that entropy solutions of Euler equations satisfy the 
following principle. 

Minimum Principle. Let u = u( ,, t) be an entropy solution of the gas dynamics equations (1.7) and 

let 

S(X, t) = S(u(X, t)) = ln(ppeY) (1.8) 

denote the specific entropy of such solution. Then the following estimate holds 

Ess inf 
1x1 <R+f.q,a, 

S(X, t = 0). 0.9) 

Here 4max stands for the maximal speed 1q 1 in the domain. 

The proof of this assertion is provided in Section 3. Prior to that we elaborate in Section 2 on 
the entropy inequality connected with the gas dynamics equations. In particular, Harten [5] has 

’ Krushkov [8, p.2411 has termed such solutions simply as generalized solutions. 
2 With eck) denoting the unit Cartesian vector t-j”’ = 6,,. 
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shown that there exists a whole family of entropy pairs associated with these equations, a fact 
which is essential in our derivation of the minimum principle. 

As an immediate consequence of the minimum principle, we conclude that Ess inf,S(x, t) is 

an increasing function of t for every entropy solution of (1.7). The following argument sheds 
additional light on this conclusion in the case of a piecewise-smooth flow. To this end, an 
arbitrary particle currently located at (X, t) is traced backwards in time into its initial position at 
t = 0. Since the specific entropy of such particle remains constant along the particle path-ex- 
cept for its decrease when crossing buckwardr shock waves, it follows that its value S( X, t) is 
greater or equal than that of the initial spatial minimum Ess inf,S(Y, t = 0), as asserted. In 
contrast to the above ‘Lagrangian’ argument, the derivation of the minimum principle outlined 
below, is purely an ‘Eulerian’ one. It enables us to relax the regularity assumption on the flow, 
and-since we do not follow the characteristics-it equally applies to discrete approximations of 
the Euler equations. 

In Section 4 we consider approximate solutions of the Euler equations, w( FV, t), which respect 
the entropy decrease estimate (1.6), 

c U( w(X,, t + At))AZ, < c U( w(x,, t))AZ,. (1.10) 
Y Y 

We note that such approximate solutions are obtained by entropy stable schemes satisfying 
the cell entropy inequality 

u(w(x,, t+At))< U(w(X,, t))+ f -&,~~],,--Fv(-_!],& 
k=l ” 

(1.11) 

e.g., the Godunov-type and Lax-Friedrichs schemes [6]. We have the following. 

Minimum Principle. Let w( X,, t) be an approximate solution of the gas dynamics equations (1.7) 
and let 

S(X,, t) = S( w(X,, t)) = ln(pppY) (1.12) 

denote the specific entropy of such solution. Assume that its total entropy decreases in time, (1.10). 
Then the following estimate holds 

S(X, t + At) 2 min S(x ” [ -u 4. (1.13) 

In the case of entropy stable schemes, (l.ll), a more precise estimate is obtained, which takes 
into account the support of the schemes’ stencil. 

The inequality (1.13) leads to an a priori pointwise estimate on the approximate solution 
w( X, t). Such pointwise estimates play an essential role with regard to question of the conver- 
gence of entropy stable schemes. In particular, DiPerna [2, Section 71 has recently shown that 
certain cases, such (two-sided) estimates are sufficient in order to guarantee the convergence 
such schemes. 

in 
of 

2. Generalized entropy functions of the Euler equations 

We consider the Euler equations for polytropic gas 

(24 
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It is well-known, e.g., [l], that for all smooth solutions of (2.1) the specific entropy ’ 

S( X, t) = ln( pp.Y) 

remains constant along streamlines, i.e., 

-=- (2.2a) 

Let h(S) be an arbitrary smooth function of S. Multiplying (2.2a) by p/z’(S)-prime denoting 
S-differentiation-we find 

Adding this to the continuity equation which is premultiplied by h(S), 

we obtain, after changing sign, a conservative entropy equation like (1.3) which reads [5] 

(2.2b) 

(2.3) 

In order to comply with the further requirement of being a generalized entropy function, 
U(U) = - ph( S) has to be a cunuex function of the conservative variables u = ( p, m, E)T. A 
straightforward computation caried out by Harten [5, Section 21 in the two-dimensional case 
shows that the Hessian U,, is positive definite if and only if 

p[h’(S)-y-h”(S)] >O, h’(S)>O. 

Excluding negative densities we may summarize that there exists a fumify of (generalized) 
entropy pairs (U, F) associated with Euler equations (2.1), 

u(u) = -ph(S), FCk’(u) = -m,h(S), k = 1, 2, 3, (2.4a) 

generated by the smooth increasing functions h(S) which satisfr 

h’(S) - y . h”(S) > 0. (2.4b) 

3. A minimum entropy principle 

Let u = (p, m, E)= be an entropy solution of the gas dynamics equations (2.1). Such a 
solution is characterized by the entropy inequality (1.5) 

w4 + i a~(Y4 Go 

at 
k=l axk 

which holds for all entropy pairs (U, F) connected with the equations. Thus we have 

&+4S)l + k$l &kmkh@)l Go 

(3.1) 

(3.2a) 

’ After normalization, taking the specific heat constant to be c, = 1. 
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where h(S) is any smooth increasing function which satisfies 

h’(S) - y - h”(S) > 0. (3.2b) 

To derive a minimum principle, we shall make use of an argument due to Lax [9, Section 31. 
We begin with the following lemma. 

Lemma 3.1. Let u be an entropy solution of the gas dynamics equations (2.1). Then for all 
nonpositive smooth increasing functions h ( S) satisfying (3.2b), we have 

j&*> t) .h(S& t>> dxa / p(X, O).h(S(F, 0)) dx. (3.3) 
. IFl<R+t.q,,,,, 

Here qrn, denotes the maximal speed [q ( in the domain. 

Proof. As in [lo, Theorem 4.11 we integrate the entropy inequality (3.2a) over the truncated cone 
C={ IX] GR+(t-7).q,,IO<<<t}; ifwelet(n,, n) denote the unit outward normal, then 

by Green’s theorem 

(3.4) 

The integrals over the top and bottom surfaces give us the difference between the left- and 
right-hand sides in (3.3), and by (3.4) this difference is bounded from below by 

The result follows upon showing that the last quantity is nonnegative. Indeed, since by 
assumption - ph( S) -C 0, this is the same thing as 

3 

no+ C 4knkaO; 
k=l 

on the mantle we have 

(no, E) = (1+ 4:ax)-1’2(4mar, VlXl)Y 

and hence 

3 

no+ c qknk= (l +d,) 
-l/2 

4 
3 qkXk 

nmx+c-- 
k-l k=l Ix1 

as asserted. 0 

The discussion in Lemma 3.1 was restricted to smooth functions h(S); by passing to the limit, 
its conclusion (3.3) f I1 o ows for any nonpositive nondecreasing function h(S) satisfying (3_2b), 

whether smooth or not. 
To derive the minimum entropy principle, we make a special choice of such function, h(S), 

given by 

h(S)=min[S-S,,O], So = Ess inf S( X, 0). 
Ixl<R+t.q,, 

(3.5) 
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The nonpositive function h(S) is a nondecreasing concave one, hence admissible by (3.2b), and 
consequently (3.3) applies 

/ 
p(X, t) .min[S(.?, t) -S,, O] d_? 

Ixl<R 

> 
J 

p(X, 0) .min[S(Z, 0) -S,, O] d.?. (3.6) 
1x1 <R+t.q,,, 

Now, by the choice of S,, the integral on the right of (3.6) vanishes since min[S(Y, 0) - S,, 0] 
does. The inequality (3.6) then tells us that the integral on the left is also nonnegative. But since 
the integrand on the left is by definition nonpositive, this can be the case provided this integrand 
vanishes almost everywhere; that is, we have for almost all X, 1 X 1 =S R 

S(X, t)>S,= Essinf S(X, t=O) 
IF(<R+t.q,,, 

and (1.9) follows. 
The minimum entropy principle was deduced from the entropy inequality (3.2), which in turn 

was postulated based on the formal regularization introduced in (1.4). In general, other 
regularizations equally apply; in particular, Euler equations are usually sought as the uanishing 
viscosity limit of the Navier-Stokes equations (here we 
case) 4 

take for simplicity the one-dimensional 

PJO. (3.7) 

Do the (generalized) entropy inequalities (3.2) remain valid on the basis of such limit? To answer 
this question we first note that if U(u) is any entropy function, then thanks to its convexity the 
mapping u -+ u = U, i s one-to-one, and hence one can make the change of variables u = U(U). 
Harten [5] has shown that such change of variable by each member of the family of entropy 
functions (2.4) puts the viscosity terms on the right of (3.7) into a negative semidefinite form. 
This makes apparent the dissipative effect of these viscosity terms. Indeed, if T = [E/p - 

: . 14 I *MY - 1) d enotes the absolute temperature, then direct manipulation of (3.7) yields, e.g., 
[l, Section 631, [12, Section 6.101, 

$[ph(S)] + $-[mh(S)] =P.h’(S)%, (3.8) 

from which we recover the entropy inequality (3.2a) for all smooth increasing functions h(S). We 
note that the convexity condition was not assumed in this case. The merit of using the convexity 
condition, however, is that it enables us to deal with more general artificial viscosity terms, other 
than those appearing in the Navier-Stokes equations. Such artificial viscosity terms are fre- 
quently encountered in finite-difference approximations to the Euler equations; specific exam- 
ples of this kind are studied in the next section. 

Finally we would like to remark on the previously mentioned Navier-Stokes equations. Our 
discussion above took into account only the viscosity contribution, neglecting heat conduction. 

4 With p combining the two viscosity coefficients in the general Navier-Stokes equations. 
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Hughes et al. [7] have shown that when the heat flux is also added, compare (3.7) 

with K denoting the heat conductivity constant, then only the ‘physical’ entropy, U(U) = - pS 
survives as the one which puts the additional heat flux into a symmetric negative-definite form. 
We would like to note in this connection the different limit behavior of the Navier-Stokes flows 
depending on the viscosity and heat conductivity; Gilbarg [4] has shown that as K + 0 keeping ~1 
fixed, we are led to a continuous thermally nonconducting shock layer, whereas for p --* 0 with K 

fixed the convergence is to a (generally) discontinuous nonviscous shock layer. Consequently, the 
viscosity rather than the heat flux should play the major rule in an appropriate regularization 
model for the Euler equations. 

4. Discrete approximations of the Euler equations 

In this section we consider approximate solutions of the Euler equations, w(x,, t), whose total 
entropy decreases in time, compare (1.10) 

c U( w(x,, t + At))AF, < c U( w(X,, t))AF,. (4.1) 
Y Y 

Estimate (4.1) holds for all entropy functions U= -@z(S) in (2.4). By passing to the limit, this 
applies to our previous choice of the function h(S) in (3.5) 

h(S)=min[S-S,,O], (4.2a) 

this time with a constant S, which is taken to be 

S, = minS( w(X,, t)). (4.2b) 

By our choice of “so, we have U( w(X,, t)) = 0. The inequality (4.1) tells us that the left-hand side 
is therefore, nonnegative; consequently 

S(X, t + At) - S,, 2 h(S(x, t + At)) 2 0 

and (1.13) follows. 
Approximate solutions which fulfill the required estimate (4.1) can be obtained by entropy 

stable schemes satisfying the cell entropy inequality (1.11) 

U( w(X,, t + At)) < U( w(X,, t)) + t &- [ F,$ - F!!,,]. (4.3) 
k=l ” 

Examples of such entropy stable schemes include the Godunov-type and Lax-Friedrichs 
schemes, e.g., [6]. A more precise minimum principle follows in these cases, taking into account 
the support of the schemes’ stencil. In particular, the (one-dimensional) Godunov scheme results 
from averaging of two neighboring Riemann problems [6], each of which satisfies (1.9). 
Consequently we have the following. 

Minimum Principle (of the Godunov scheme). Let w(x,, t) the Godunou approximate solution to 
the Euler equations (2.1). Assume that the appropriate CFL condition is met. Then the following 

estimate holds 

Sbb”~ t + At)) a “_l$$v+l s(w(xiT 4. (4.4) 
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Since the Lax-Friedrichs schemes coincides with a staggered Godunov’s solver, the same 
conclusion, (4.4), holds. Another way to see this is outlined below; it makes no reference to 
Riemann’s solution and can be generalized to the multidimensional problem. 

To this end, we approximate the (for simplicity-one-dimensional) Euler equations with the 

Lax-Friedrichs scheme 

w(x,, t + At) = :[ +,+I, t> + w(xypl, I)] - :A[ f(+,+lr t>> -.!(+-I, t>>]? 

h = At/Ax. (4.5) 

We remark that the Lax-Friedrichs scheme can be derived from center differencing of the 

regularization model (1.4),, . Lax has shown [9, Theorem 1.21 that if A = At/Ax is sufficiently 
small, then solutions of this difference scheme satisfy the following cell entropy inequality 

U(W(XV, t + At>) = :[U< r&,+1, t>) + u(w(x,-,, t))] 

- ‘i~[F(w(x.+,> 1)) - JIw(x,-,, a1 (4.6) 

for all entropy pairs (U, F) = ( - ph( S), - mh( S)) in (2.4). By passing to the limit, this applies 
to our previous choice of the function h(S) in (3.5) 

h(S)=min[S-S,,O], (4.7a) 

this time, with a contant S, which is taken to be 

S, = min[ S(x,+l, t>, S(x,-l, t)]. (4.7b) 

The inequality (4.6) now reads 

p(x,, t+At)dz(S(x,, t+At)) 

2 [+(I + Mx,_,, t))p(x,_1, f) *wxvpt, t)) 

+ :(I - Mx”+1, d)P(x”+l~ f) *h(S(x,+1, 011. (4.8) 
By our choice of the function h(S) in (4.7) we have h( S( x, + 1, t)) = 0. The inequality (4.8) tells 
us that the left-hand side is therefore nonnegative; consequently 

0 < h(S(x,, t + At)) < S(x, t + At) - S,, 

and the following minimum principle follows 

S(W(% t + At)) a mm S(w(x,,,, t)). 
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