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Abstract. We introduce a new approach to obtain sharp pointwise error estimates for viscosity
approximation (and, in fact, more general approximations) to scalar conservation laws with piece-
wise smooth solutions. To this end, we derive a transport inequality for an appropriately weighted
error function. The key ingredient in our approach is a one-sided interpolation inequality between
classical L1 error estimates and Lip+ stability bounds. The one-sided interpolation, interesting for
its own sake, enables us to convert a global L1 result into a (nonoptimal) local estimate. This, in
turn, provides the necessary bounds on the coefficients of the above-mentioned transport inequality.
Estimates on the weighted error then follow from the maximum principle, and a bootstrap argument
yields optimal pointwise error bound for the viscosity approximation.

Unlike previous works in this direction, our method can deal with finitely many waves with
possible collisions. Moreover, in our approach one does not follow the characteristics but instead
makes use of the energy method, and hence this approach could be extended to other types of
approximate solutions.
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1. Introduction. We study the convergence of vanishing viscosity solutions gov-
erned by the single conservation law

uεt + f(uε)x = εuεxx, x ∈ R, t > 0, ε > 0,(1.1)

and subject to the initial condition prescribed at t = 0,

uε(x, 0) = u0(x).(1.2)

We are interested in the pointwise convergence rate of uε toward the inviscid solution,
u, of the corresponding inviscid conservation law

ut + f(u)x = 0, x ∈ R, t > 0,(1.3)

which is subject to the same initial conditions

u(x, 0) = u0(x).(1.4)

We will investigate the pointwise convergence rate of uε toward u, assuming that the
inviscid solution u has finitely many shocks or rarefaction waves. This is the generic
situation [19, 23].
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It is well known that uε(·, t) converges strongly in L1 to u(·, t), where u(·, t) is the
unique, so-called entropy solution of (1.3)–(1.4) (e.g., [9, 11]). The L1 convergence
rate in this case is upper bounded by

‖uε(·, t)− u(·, t)‖L1 ≤ const · √ε.(1.5)

Consult [10] and [18] for the discrete analogue of monotone difference schemes. Al-
though the L1 convergence rate of order O(

√
ε) is optimal [17, 24], in practice one

obtains an L1 rate of order O(ε), when applied to convex conservation laws,

f ′′ ≥ β > 0,(1.6)

with finitely many shock or rarefaction discontinuities (and these are the only solutions
that can be computed!). For Riemann problems with a convex flux, this first-order
estimate has been obtained by Bakhvalov [1] (and Harabetian [7] proved an O(ε| ln ε|)
rate for Riemann problems with a rarefaction wave). Teng and Zhang [26] provided
an O(ε) rate for Riemann problems with finitely many shocks; Fan [2] established
the L1 convergence rate for the Godunov scheme. The general first-order estimates
in L1 were obtained recently by Tang and Teng [25]. It is proved that for convex
conservation laws whose entropy solution consists of finitely many discontinuities, the
L1 error between the viscosity solution, uε, and its inviscid limit, u, is bounded by
O(ε| ln ε|). If neither central rarefaction waves nor spontaneous shocks occurs, the
error bound is improved to O(ε).

It is understood that the L1 error estimate is a global one, while in many practical
cases we are interested in the local behavior of u(x, t). Consequently, when the error is
measured by the L1 norm, there is a loss of information due to the poor resolution of
shock waves in u(x, t). Several authors have investigated pointwise error estimates: For
a system of conservation laws, Goodman and Xin [6] proved that the viscosity methods
approximating piecewise smooth solutions with finitely many noninteracting shocks
have a local O(ε) error bound away from the shocks. A general convergence theory
for 1D scalar convex conservation laws was developed by Tadmor and coauthors; see,
e.g., [13, 14, 15, 21]. They proved that when measured in the weak W−1,1 topology,
the convergence rate of the viscous solution is of order O(ε) in the case of rarefaction-
free initial data [13, 21] and is of order O(ε| ln ε|) in the general case [15]. These
weak W−1,1 estimates are then converted into the usual L1 error bounds of order
one-half, and, moreover, pointwise error estimates of order one-third, O(ε1/3), are
derived. Pointwise error analysis for finite difference methods to scalar and system
of conservation laws was given recently by Engquist and Yu [4] and Engquist and
Sjögreen [3].

In this work, we will provide the optimal pointwise convergence rate for the vis-
cosity approximation. The previous results for the optimal order-one convergence
rates, in both L1 and L∞ spaces, are all based on a matching method and traveling
wave solutions; see, e.g., [4, 6, 25]. Another approach, based on matching the Green
function of the linearized problem, was initiated by Liu [12] in his study of pointwise
error estimates of viscous shock waves; consult [20] for the corresponding statement
on viscous rarefactions. In this work, however, we avoid the use of matching inner
expansions; instead, our arguments are based on energylike estimates, refining the
approach initiated in [21]. The proof of our results is based on two ingredients:

(1) a Lip+ boundedness along [21] which enables us to “convert” a global result
into a local estimate for all but finitely many O(ε) neighborhoods of discontinuities;
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(2) a weighted quantity of the error satisfying a transport inequality such that
the maximum principle applies. Unlike previous work on pointwise estimates, this
framework can deal with finitely many shocks with possible collisions.

We recall that as long as the solutions of (1.3)–(1.4) are smooth, the first-order
pointwise error estimates can be easily established. We briefly demonstrate the proof.
It follows from (1.1) and (1.3) that, for e(x, t) := uε(x, t)− u(x, t),

et + f ′(uε)ex = εexx − f ′′(•)uxe+ εuxx,(1.7)

where • is an intermediate value between u(x, t) and uε(x, t). Now, if u ∈ C2(R ×
[0, T ]), then the classical maximum principle yields the standard first-order error
bound:

|e(x, t)| ≤ Cε, (x, t) ∈ R× [0, T ].(1.8)

In case the solution of (1.3)–(1.4) consists of shock and rarefaction discontinuities,
the above argument fails. In this work, instead of considering directly the error
function uε(x, t)−u(x, t), we construct a weighted error function, E(x, t) := (uε(x, t)−
u(x, t))ρ(x, t), where ρ is a distance function to the singular supports of u(x, t). By
properly choosing the distance function, we will show that the classical maximum
principle can be applied to a differential equation for E. This leads to an O(ε) bound
for E(x, t) in R × [0, T ]. The key idea which enables us to apply the maximum
principle is to employ a (nonoptimal) local estimate, obtained by using the Lip+

boundedness and the L1 error bound. This local estimate plays an important role in
upper bounding one of the key coefficients in the transport inequality for the weighted
error function.

The paper is organized as follows. In section 3 we first consider the case when
there is only one shock; i.e., the set of shocks S consists of only one smooth curve.
We first show that

dist(x, S)|u(x, t)− uε(x, t)| ≈ Cε.(1.9)

It implies that |u(x, t)−uε(x, t)| ≤ C(h)ε for (x, t) with O(h) distance away from the
set of shocks. The result (1.9) will be generalized to finitely many shocks with possible
collisions. In section 4 we consider piecewise smooth solutions with rarefaction waves.
In this case, due to the initial positive jumps, the uniform boundedness of the Lip+

estimate does not hold. Instead the entropy solution is characterized by Oleinik’s E-
condition with a singular Lip+ bound as t ↓ 0. Special attention is paid to construct a
proper smoothness region inside which the maximum principle will apply. Our main
result in this section asserts

|u(x, t)− uε(x, t)| ≤ C(h)ε| log ε|2(1.10)

for (x, t) with O(h) distance away from the sets of rarefactions.

2. A one-sided interpolation inequality. In this section we derive an inter-
polation inequality which enables us to convert a global L1 error estimate into a local
error estimate. To begin with, we let ‖ • ‖Lip+ denote the Lip+ seminorm

‖w‖Lip+ := ess sup
x6=y

[
w(x)− w(y)

x− y
]+

,

where [w]+ = H(w)w, with H(•) the Heaviside function.
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The following lemma due to Nessyahu and Tadmor [13, section 2] is at the heart
of matter.

Lemma 2.1. Assume that v ∈ L1 ∩ Lip+(I), and w ∈ C1
loc(x − δ, x + δ) for an

interior x such that (x− δ, x+ δ) ⊂ I. Then the following estimate holds:

|v(x)−w(x)| ≤ Const ·
[

1

δ
‖v − w‖L1 + δ{‖v‖Lip+(x−δ,x+δ) + |w|C1

loc
(x−δ,x+δ)}

]
.(2.1)

In particular, if the size of the smoothness neighborhood for w can be chosen so that

δ ∼ ‖v − w‖1/2L1(I) · (‖v‖Lip+ + |w|C1
loc

)−1/2 ≤ 1

2
|I|,(2.2)

then the following estimate holds:

|v(x)− w(x)| ≤ Const · ‖v − w‖1/2L1(I) ·
[
‖v‖Lip+ + |w|C1

loc
(x−δ,x+δ)

]1/2
.(2.3)

Thus, (2.3) tells us that if the global L1 error ‖v−w‖L1 is small, then the pointwise
error |v(x) − w(x)| is also small whenever wx is bounded. This does not require the
C1 boundedness of v; the weaker one-sided Lip+ bound will suffice.

For completeness, we now present the proof along the lines of [21, section 2].
Proof. For any C1

0 (−1, 1)-unit mass mollifier, ψδ(x) = 1
δψ(x/δ), we obtain

|(v ∗ ψδ)(x)− (w ∗ ψδ)(x)| ≤ Const · 1

δ
‖v − w‖L1 .(2.4)

Since w ∈ C1(x− δ, x+ δ), we have

|w(x)− (w ∗ ψδ)(x)| ≤ Const · δ · |w|C1
loc

(x−δ,x+δ).(2.5)

Combining (2.4) and (2.5) we get the bound for the distance between the modified v
and w(x)

|(v ∗ ψδ)(x)− w(x)| ≤ Cδ · |w|C1
loc

(x−δ,x+δ) + C
1

δ
‖v − w‖L1 .(2.6)

The above estimate holds for any C1
0 (−1, 1)-unit mass mollifier of the form ψδ(x) =

1
δψ(x/δ). Let ψ

(+)
δ (x) = 1

δψ
(+)(x/δ), where ψ(+) ∈ C1

0 (0, 1); that is, ψ(+) is supported
on (0, 1). Consider

v(x)− (v ∗ ψ(+)
δ )(x) =

∫ ∞
−∞

(
v(x)− v(x− y)

)
ψ

(+)
δ (y)dy(2.7)

=

∫ δ

0

(
v(x)− v(x− y)

y

)
y

δ
ψ(+)

(y
δ

)
dy.

Since v is assumed to be Lip+ bounded, (2.7) yields

v(x)− (v ∗ ψ(+)
δ )(x) ≤ δ ‖v‖Lip+ .(2.8)

Next we decompose the difference between v and w

v(x)− w(x) ≡
(
v(x)− (v ∗ ψ(+)

δ )(x)
)

+
(

(v ∗ ψ(+)
δ )(x)− w(x)

)
.(2.9)
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Setting ψδ = ψ
(+)
δ in (2.6), we get the upper bound for the last term above. This

together with the upper bound (2.8) yields

v(x)− w(x) ≤ Cδ
[
|w|C1

loc
(x−δ,x+δ) + ‖v‖Lip+

]
+ C

1

δ
‖v − w‖L1 .(2.10)

On the other hand, let ψ
(−)
δ (x) = 1

δψ
(−)(x/δ), where ψ(−) ∈ C1

0 (−1, 0). We can verify
that

(v ∗ ψ(−)
δ )(x)− v(x) =

∫ 0

−δ

[
v(x− y)− v(x)

−y
] −y
δ
ψ(−)

(y
δ

)
dy.

For y ∈ (−δ, 0), the term (−y/δ)ψ(−) (y/δ) is nonnegative. Therefore, Lip+ bounded-
ness implies

(v ∗ ψ(−)
δ )(x)− v(x) ≤ δ‖v‖Lip+ .(2.11)

Now replacing ψδ by ψ
(−)
δ in (2.6) and combining the resulting inequality and (2.11)

lead to

w(x)− v(x) ≤ Cδ ·
[
|w|C1

loc
(x−δ,x+δ) + ‖v‖Lip+

]
+ C

1

δ
‖v − w‖L1 .(2.12)

The desired estimate (2.1) follows from the upper bound (2.10) and the lower bound
(2.12) for v(x)− w(x).

Remark. A special case of the above inequality, with w ≡ 0, reads

|v(x)| ≤ Const
[1

δ
‖v‖L1(I) + δ‖v‖Lip+(I)

]
, (x− δ, x+ δ) ⊂ I.(2.13)

In particular, if the interval I is large enough relative to the ratio ‖v‖L1/‖v‖Lip+ , one
finds

|v(x)| ≤ Const · ‖v‖1/2L1(I) ‖v‖1/2Lip+(I) .(2.14)

This is the one-sided analogue of a Gagliardo–Nirenberg inequality. A general treat-
ment of these one-sided interpolation estimates is presented in [22]. In classical
Gagliardo–Nirenberg inequalities, one interpolates between weak and strong norms,
say, between the L1 and W 1,∞ norms (see, e.g., [5, Theorem 9.3]). In (2.14), how-
ever, only the one-sided bound (of the first derivative) is assumed. Such local error
estimates in the presence of one-sided bounds were first used in [21].

In the following sections, we will derive a transport inequality for an appropriately
weighted error function. The local error estimate in Lemma 2.1 will be used to upper
bound the coefficients of that transport inequality (outlined in (3.6) below), which in
turn enables us to obtain an optimal local error estimate using a bootstrap argument.

3. Piecewise smooth solutions with shocks. In this section, we assume that
the entropy solution of (1.3)–(1.4) is piecewise smooth, with finitely many shock dis-
continuities. Thus, if we let S(t) denote the singular support of u(•, t), then it con-
sists of finitely many shocks S(t) := {(x, t) |x = Xk(t)}, each of which satisfies the
Rankine–Hugoniot and the Lax conditions

X ′k =
[f(u(Xk, t))]

[u(Xk, t)]
,(3.1)

f ′(u(Xk(t)−, t)) > X ′k(t) > f ′(u(Xk(t)+, t)) .(3.2)



1744 EITAN TADMOR AND TAO TANG

We note in passing that many practical initial data lead to a finite number of shocks
(see, e.g., [19, 23]).

Owing to the convexity of the flux f, the viscosity solutions of (1.1) satisfy a Lip+

stability condition, similar to the familiar Oleinik E-condition [16], which asserts an
a priori upper bound for the Lip+ seminorm of the viscosity solution

uε(x, t)− uε(y, t)
x− y ≤ ‖uε(·, t)‖Lip+ ≤ 1

‖u0‖−1
Lip+ + βt

,(3.3)

where uε is the solution of (1.1)–(1.2), and β is the convexity constant of the flux f
given by (1.6). Consult, e.g., [21]. The above result suggests that if the initial data
do not contain non-Lipschitz increasing discontinuities, then the viscosity solution
of (1.1) will keep the same property. The same is true for the entropy solution of
(1.3)–(1.4).

Equipped with (2.3), together with the global error bound (1.5) and the Lip+

boundedness (3.3), we obtain the following pointwise error bound (see also [13]):

|uε(x, t)− u(x, t)| ≤ C 4
√
ε for dist(x, S(t)) ≥ 4

√
ε.(3.4)

Although the above pointwise local estimate is not optimal, it will suffice to derive the
optimal error bound by a bootstrap argument which employs the transport equation
outlined in (3.6) below.

The basic framework of our approach for dealing with the pointwise error esti-
mates proceeds in the following three steps.

• Step 1. Set

E(x, t) := (uε(x, t)− u(x, t))ρ(x, t),(3.5)

where ρ is a suitably defined distance function to the shock sets S(t). We
will also choose a suitable domain of smoothness D such that the following
differential equation holds:

Et + h(x, t)Ex − εExx = p(x, t)E + q(x, t)ε, (x, t) ∈ D.(3.6)

Here h, p, and q are smooth functions in D.
• Step 2. The functions p and q in (3.6) can be (uniformly) upper bounded and

bounded, respectively:

p(x, t) ≤ Const, |q(x, t)| ≤ Const for all (x, t) ∈ D.(3.7)

• Step 3. Let ∂D denote the usual boundary for this domain of smoothness; it
will be shown that

max
(x,t)∈∂D

|E(x, t)| ≤ Cε.(3.8)

The inequality (3.8) together with the maximum principle for (3.6)–(3.7) yield
|E(x, t)| ≤ Cε, for all (x, t) ∈ D, which in turn implies the pointwise estimate
|uε(x, t)− u(x, t)| ≤ Cε for (x, t) away from the shock set.

In Step 1 mentioned above, the function E is a weighted error function which
is continuous for (x, t) ∈ R × (0, T ]. The key point in this step is to introduce the
distance function ρ, which satisfies ρ → 0 as dist(x, S(t)) → 0 and ρ ∼ O(1) when
dist(x, S(t)) ∼ O(1). The proof for Step 2 is based on the pointwise error bound
(3.4) and the Lax entropy condition (3.2). The third step depends on the choice of
the weighted distance function ρ.
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3.1. Pointwise error for the case of one shock. We assume that there is a
smooth curve S(t) := {(x, t) |x = X(t)}, so that u(x, t) is C2 smooth at any point
x 6= X(t). There are two smooth regions x > X(t) and x < X(t). We first consider
the pointwise error estimate in the region x > X(t). Let e(x, t) := uε − u and set the
weighted error

E(x, t) = e(x, t)φ(x−X(t)) .

Here, φ(x − X(t)) is a weighted distance to the shock set. The function φ(x) ∈
C2([0,∞)) satisfies

φ(x) ∼
{
xα if 0 ≤ x� 1,
1 if x� 1

(3.9)

with α ≥ 1 to be determined later. More precisely, the function φ satisfies

φ(0) = 0, φ′(x) > 0, φ(x) ≤ xα for x > 0,(3.10)

xφ′(x) ≤ αφ(x) for x ≥ 0,(3.11)

|φ(k)(x)| ≤ Const, x ≥ 0;(3.12)

e.g., φ(x) = (1− e−x)α. Roughly speaking, the weighted function behaves like φ(x) ∼
min(|x|α, 1). Direct calculations using the definition of E give us1

Et + f ′(uε)Ex − εExx =
(
et + f ′(uε)ex − εexx

)
φ︸ ︷︷ ︸

I1

(3.13)

+
(
−X ′(t) + f ′(uε)

)
φ′e︸ ︷︷ ︸

I2

−2εφ′ex − εφ′′e.

It follows from the viscosity (1.1) and the limit (1.3) that

I1 =
(
− f ′(uε)ux + f ′(u)ux + εuxx

)
φ(3.14)

= −φf ′′(•)(uε − u)ux + εφuxx

= −f ′′(•)uxE + εφuxx ,

where here (and below) • denotes an intermediate value between −‖u0‖∞ and ‖u0‖∞.
Let u±(t) = u(X(t)± 0, t) and let

I3(t) = −X ′(t) + f ′(u+).

Observing that u−u+ = ux(ζ1)(x−X(t)), where ζ1 is an intermediate value between
x and X(t), we obtain

I2 =
(
I3 − f ′(u+) + f ′(u)− f ′(u) + f ′(uε)

)
φ′e(3.15)

= φ′eI3 + φ′ef ′′(•)(u− u+) + φ′f ′′(•)e2

=
(
I3 + f ′′(•)e

)φ′
φ
E + f ′′(•)ux(ζ1)

(x−X(t))φ′

φ
E,

1For ease of notation, φ denotes φ(x−X(t)) in the remainder of this subsection.
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where in the last step we have used the fact E = eφ. It is noted that ex = (Ex−φ′e)/φ.
This together with (3.13)–(3.15) yield the first desired result (3.6):

Et + h(x, t)Ex − εExx = p(x, t)E + q(x, t) ε ,

where the coefficient of the convection term is given by

h(x, t) = f ′(uε) + 2ε
φ′

φ
,(3.16)

and the functions p := p1 + p2 and q are given by

p1(x, t) := I3
φ′

φ
+ f ′′(•)eφ

′

φ
+ 2ε

(
φ′

φ

)2

,(3.17)

p2(x, t) := −f ′′(•)ux + f ′′(•)ux(ζ1)
(x−X(t))φ′

φ
,(3.18)

q(x, t) := φuxx − φ′′ e .(3.19)

We have then completed Step 1.
Next we move to Step 2, verifying the boundedness of the coefficients p and q

inside a suitable domain. To choose a proper domain of smoothness D inside the
region x > X(t), we let

D :=
{

(x, t)
∣∣∣ x ≥ X(t) + ε1/4 , 0 ≤ t ≤ T

}
.(3.20)

Using Lax geometrical entropy condition (3.2), u+(t) ≤ u−(t), and the convexity of
f, it follows that I3 is nonpositive:

I3(t) = −X ′(t) + f ′(u+) =

∫ 1

0

[
f ′(u+)− f ′(θu+ + (1− θ)u−)

]
dθ

=

∫ 1

0

f ′′(•)(1− θ)dθ (u+ − u−) ≤ 0.

For (x, t) ∈ D,x > X(t) + 4
√
ε, and hence by the property (3.11) of the weighted

distance function φ we have

0 ≤ φ′

φ
≤ C

x−X(t)
≤ Cε−1/4 for (x, t) ∈ D.

The last two upper bounds, together with (3.4), lead to the following estimate for p1:

p1 ≤ 0 + Cε1/4ε−1/4 + Cεε−1/2 ≤ C for (x, t) ∈ D .(3.21)

By the property of φ, (x−X(t))φ′(x−X(t))/φ(x−X(t)) ≤ Const and the regularity
of u, |ux| ≤ Const for all (x, t) ∈ D, we obtain that p2 is also upper bounded. Again,
due to the C2 smoothness assumption on u, q is bounded in the domain of smoothness
D. This completes Step 2.

Finally, we need to verify Step 3, upper bounding E on ∂D. We first check that the
maximum value for E on the left boundary is bounded by O(ε). On the left boundary,
we have x−X(t) = ε1/4; hence, since |φ| ≤ xα and since by (3.4) |e(x, t)| = O(ε1/4),
we have

|E(x, t)| ≤ εα/4|e(x, t)| ≤ Cεα/4 ε1/4 .
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Ω_1

Ω_2Ω_3

X(t) Y(t)

Z(t)

t=T

t=0

Fig. 1. Solution structure for two shocks.

Choosing α = 3, we have E(x, t) = O(ε) on the left boundary of the domain D. On
the right and bottom boundaries of D, E(x, t) vanishes. This completes Step 3. Hence,
the maximum principle gives

|E(x, t)| ≤ Cε for (x, t) ∈ D.

This implies that the weighted error uε(x, t)−u(x, t)φ(x−X(t)) is bounded byO(ε). In
particular, for (x, t) bounded away from the shock set S(t) we have an O(ε) pointwise
error bound. Similarly, we can show that the same holds when (x, t) is on the left
side of the shock.

We summarize what we have shown by stating the following.

Assertion 3.1. Let uε(x, t) be the viscosity solutions of (1.1)–(1.2), and let
u(x, t) be the entropy solution of (1.3)–(1.4). If the entropy solution has only one
shock discontinuity S(t) = {(x, t)|x = X(t)}, then the following error estimate holds:

• For a weighted distance function φ, φ(x) ∼ min(|x|3, 1),

|(uε − u)(x, t)|φ(|x−X(t)|) = O(ε) .(3.22)

• In particular, if (x, t) is away from the singular support, then

|(uε − u)(x, t)| ≤ C(h)ε , dist(x, S(t)) ≥ h.(3.23)

Remark. In the proof of Assertion 3.1, with the choice of the domain of smoothness
(3.20) the coefficients p1, p2, and q in (3.17)–(3.19) can be easily bounded, except the
second term in p1. This term, f ′′(•) e φ′/φ, is unlikely to be uniformly upper bounded
in D, unless a local error estimate such as (3.4) is available.

3.2. Pointwise error for two shocks with possible interactions. Consider
two initial shocks which after collision merge to a single shock; its structure is demon-
strated by Figure 1. Let X1(t) = X(t)

⋃
Z(t) and X2(t) = Y (t)

⋃
Z(t). The shock

set is then S(t) = {(x, t) |x = X1(t), or x = X2(t)}. Using the same techniques that
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were used in the previous subsection yield∣∣∣φ(X1(t)− x
)(

uε(x, t)− u(x, t)
)∣∣∣ ≤ CT ε for (x, t) ∈ Ω3 ,(3.24) ∣∣∣φ(x−X2(t)

)(
uε(x, t)− u(x, t)

)∣∣∣ ≤ CT ε for (x, t) ∈ Ω2 .(3.25)

In other words, pointwise error estimates for points in the domains Ω2 and Ω3

are obtained by following the same techniques used in section 3.1. We now turn to
the estimate of the pointwise error e(x, t) = uε(x, t)− u(x, t) for (x, t) ∈ Ω1. Set

E(x, t) = e(x, t)φ(x−X(t))φ(Y (t)− x), (x, t) ∈ Ω1,(3.26)

to be the weighted error function, where the new weighted function is the product of
the distance functions φ(x−X(t)) and φ(Y (t)−x). We abbreviate φ1 := φ(x−X(t))
and φ2 := φ(Y (t)− x). Direct calculation using the definition of E in (3.26) gives

Et + f ′(uε)Ex − εExx =
(
et + f ′(uε)ex − εexx

)
φ1φ2︸ ︷︷ ︸

J1

+
(
−X ′(t) + f ′(uε)

)
φ′1φ2e︸ ︷︷ ︸

J2

(3.27)

+
(
Y ′(t)− f ′(uε)

)
φ1φ

′
2e︸ ︷︷ ︸

J3

−2ε
(
φ′1φ2 − φ1φ

′
2

)
ex

−ε
(
φ′′1φ2 − 2φ′1 φ

′
2 + φ1φ

′′
2

)
e, (x, t) ∈ Ω1.

Again, using the viscosity (1.1) and its inviscid limit (1.3) gives

J1 = −f ′′(•)uxE + εφ1φ2uxx.(3.28)

In order to estimate J2 and J3, we let

J41 = −X ′(t) + f ′(u(X(t) + 0, t)), J42 = Y ′(t)− f ′(u(Y (t)− 0, t)).

As in the last subsection, we can show that
J2 =

(
J41 + f ′′(•) e

)
φ′1
φ1
E + f ′′(•)ux(ζ1)

(x−X(t))φ′1
φ1

E,

J3 =
(
J42 − f ′′(•) e

)
φ′2
φ2
E + f ′′(•)ux(ζ2)

(Y (t)−x)φ′2
φ2

E.

(3.29)

Using the above results, together with the definition ofE, we end up with the transport
equation similar to (3.6),

Et + h(x, t)Ex − εExx = p(x, t)E + q(x, t) ε.

Here, the coefficient of the convection term is given by

h(x, t) = f ′(uε) + 2ε

(
φ′1
φ1
− φ′2
φ2

)
,(3.30)
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and the functions p := p1 + p2 and q are defined by

p1 =
(
J41 + f ′′(•) e

)φ′1
φ1

+
(
J42 − f ′′(•) e

)φ′2
φ2

+ 2ε

(
φ′1
φ1
− φ′2
φ2

)2

,(3.31)

p2 = −f ′′(•)ux + f ′′(•)ux(ζ1)
(x−X(t))φ′1

φ1
+ f ′′(•)ux(ζ2)

(Y (t)− x)φ′2
φ2

,(3.32)

q(x, t) = φ1φ2uxx −
(
φ′′1φ2 + 2φ′1 φ

′
2 + φ1φ

′′
2

)
.(3.33)

Next we consider a subdomain of Ω1, which has ε1/4 distance away from the shock
curves x = X(t) and x = Y (t):

D :=
{

(x, t)
∣∣∣ X(t) + ε1/4 ≤ x ≤ Y (t)− ε1/4 , 0 ≤ t ≤ T

}
.(3.34)

We have then finished Step 1.
Following the same arguments as used in section 3.1 we can show that p1, p2

are uniformly upper bounded, and q is uniformly bounded. Moreover, we have that
max(x,t)∈∂D |E(x, t)| = O(ε). In other words, we have also verified Steps 2 and 3.
Therefore, O(ε) pointwise error bound is obtained for points inside Ω1 which are
away from the two shock curves.

We summarize what we have shown by stating the following.
Assertion 3.2. Let uε(x, t) be the viscosity solutions of (1.1)–(1.2) and u(x, t)

be the entropy solution of (1.3)–(1.4). If the entropy solution has only two shock dis-
continuities, S(t) = {(x, t) | x = X1(t), x = X2(t)}, then the following error estimate
holds:

• For a weighted distance function φ, φ(x) ∼ min(|x|3, 1),

|(uε − u)(x, t)|φ(|x−X1(t)|)φ(|x−X2(t)|) = O(ε) .(3.35)

• In particular, if (x, t) is away from the singular support of u, then

|(uε − u)(x, t)| ≤ C(h)ε , dist(x, S(t)) ≥ h.(3.36)

3.3. Finitely many shocks with possible interactions. In this general case,
we define the weighted distance function as

ρ(x, t) =

K∏
k=1

φ
(
|x−Xk(t)|

)
.(3.37)

Consider the weighted error function E(x, t) = (uε(x, t) − u(x, t)) ρ(x, t). We can
apply the same techniques as used in section 3.2 to obtain the transport (3.6), to
upper bound the coefficient function p and to bound the coefficient function q, and
to bound the weighted error on boundaries.

Finally, combining Assertions 3.1 and 3.2 and the discussions above, we conclude
the following.

Theorem 3.1. Let uε(x, t) be the viscosity solutions of (1.1)–(1.2) and u(x, t)
be the entropy solution of (1.3)–(1.4). If the entropy solution has finitely many shock
discontinuities, S(t) = {(x, t)|x = Xk(t)}Kk=1, then the following error estimates hold:

• For a weighted distance function φ, φ(x) ∼ min(|x|3, 1),

|(uε − u)(x, t)|
K∏
k=1

φ
(
|x−Xk(t)|

)
= O(ε) .(3.38)
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• In particular, if (x, t) is away from the singular support of u, then

|(uε − u)(x, t)| ≤ C(h)ε , dist(x, S(t)) ≥ h.(3.39)

We close this section with a revisit of our convergence rate argument. Our above
derivation of pointwise error estimates is based on two ingredients: a global error
bound and a Lip+-stability result. In fact, for convex conservation laws with piecewise
smooth solutions the global L1 error bound, order 1/2 in (1.5), can be improved to
order O(ε) [25], which in turn leads to a refinement of our “shock layer” estimate.
More generally, let’s consider the case of one shock with a general L1 error estimate
of order ‖uε − u‖L1 = O(εγ). This, together with the interpolation inequality (2.1)
yields |(uε − u)(x, t)| ≤ C{εγ/δ + δ} for all δ’s, δ = δ(x) ≥ dist(x, S(t)), and hence

|uε(x, t)− u(x, t)| ≤ C εγ/2 for dist(x, S(t)) ≥ εγ/2.

This local error bound suggests that the domain of smoothness will be chosen as
those x’s such that dist(x, S(t)) ≥ εγ/2. It will guarantee the upper boundedness of
the function p in the transport (3.6). We still choose φ ∼ min(xα, 1), which gives

max
∂D
|(uε − u)(x, t)|φ(|x−X(t)|) ≤ Cεγ/2εαγ/2.(3.40)

The weighted error function E = (uε − u)φ is now upper bounded by its boundary
values, which do not exceed the right-hand side of (3.40) and the last forcing term in
(3.6). Thus to optimize the error bound for E, we let γ/2 + αγ/2 = 1, which yields

α = 2/γ − 1.

This analysis can be easily extended to the case of finitely many shocks.
The general L1 convergence rate estimate of order γ = 1

2 led to our above choice
of (α, γ) = (3, 1). It is shown in [25] that when the entropy solution has only finitely
many shock discontinuities, then the L1 rate of convergence is precisely of order γ = 1,
which in turn leads to α = 1. Hence, we arrive at the following improved version of
Theorem 3.1.

Theorem 3.2. Let uε(x, t) be the viscosity solutions of (1.1)–(1.2) and u(x, t)
be the entropy solution of (1.3)–(1.4). If the entropy solution has finitely many shock
discontinuities, S(t) = {(x, t)|x = Xk(t)}Kk=1, then the following error estimates hold:

• For a weighted distance function φ, φ(x) ∼ min(|x|, 1),

|(uε − u)(x, t)|
K∏
k=1

φ
(
|x−Xk(t)|

)
= O(ε).(3.41)

• In particular, if (x, t) is away from the singular support of u, then

|(uε − u)(x, t)| ≤ C(h)ε for dist(x, S(t)) ≥ h.(3.42)

• Since the weighted function φ(x) ∼ |x|, it follows from (2.1) and (3.41) that

|(uε − u)(x, t)| ∼ ε dist(x, S(t))−1.(3.43)

This implies that the thickness of the shock layer is of order O(ε).
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Ω_1 Ω_2 Ω_3

X(t) Y(t)

x=0

Fig. 2. Solution structure for one rarefaction wave.

Remark. With, say, γ = 1, our above arguments show that (3.43) holds in the
restricted range where δ(x) := dist(x, S(t)) ≥ √ε. Yet, by Lemma 2.1, the one-sided
interpolation estimate in (2.1) tells us that |(uε−u)(x, t)| < Const{ε/δ(x)+δ(x)} ∀x’s,
and one recovers (3.43) in the remaining portion of the shock layer where δ2(x) ≤ ε,
as asserted. Integration of (3.43) then yields

‖uε(·, t)− u(·, t)‖L1 =

∫
{x|dist(x,S(t))>ε}

O(ε)

dist(x, S(t))
dx+

∫
{x|dist(x,S(t))≤ε}

O(1)dx

≤ O(ε| log ε|).
Thus, our pointwise error estimate is sharp enough to recover the underlying L1

convergence estimate of order (essentially) one—an enjoyable sharpness. (A similar
argument applies to the case γ < 1.)

4. Piecewise smooth solutions with rarefaction waves. In this section we
assume that the entropy solution of (1.3)–(1.4) is piecewise C2 smooth, with finitely
many rarefaction waves (due to initial positive jumps). In this case it is proved in [25]
that

‖u(•, t)− uε(•, t)‖L1(R) ≤ Cε | log ε| .(4.1)

Since the viscosity solution has initial positive jump, ‖u0‖Lip+ = +∞, the Lip+

estimate (3.3) gives

uε(x, t)− uε(y, t)
x− y ≤ 1

βt
, x, y ∈ R, t > 0.(4.2)

For simplicity, we consider the case with only one initial positive jump at the origin.
The case with finitely many rarefaction waves can be handled using ideas similar to
those given in sections 3.2 and 3.3. It is known that there exist two straight lines
x = X(t) and y = Y (t), starting from the origin, such that u(·, t) is given as a
rarefaction fan

u(x, t) = (f ′)−1
(x
t

)
for X(t) < x < Y (t).(4.3)

The rarefaction set is denoted by

R(t) = {(x, t) |x = X(t) or x = Y (t)}.
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The structure of the solution is given in Figure 2. It follows from (4.2) and (4.3) that
‖uε‖Lip+ ∼ t−1 and ux ∼ t−1 inside the rarefaction fan. Outside the rarefaction fan,
we have ux ∼ O(1). These observations, together with the interpolation inequality
(2.3) and the L1 bound (4.1), yield

|uε(x, t)− u(x, t)| ≤ C
√
ε| log ε| t−1/2 for dist(x,R(t)) ≥

√
εt| log ε| .(4.4)

We now turn to upgrade the error estimate of e(x, t) = uε(x, t)−u(x, t) for (x, t) away
from the rarefaction set R(t), using a similar bootstrap argument used before.

4.1. Pointwise estimates outside the rarefaction fans. We only consider
the right domain of the rarefaction fan Ω3. The pointwise error estimate for points on
the left side of the rarefaction fan, Ω1, can be obtained similarly. Along the lines for
the case of one shock, we define the weighted error function

E(x, t) = φ(x− Y (t)) e(x, t), (x, t) ∈ Ω3 ,(4.5)

where φ satisfies (3.10)–(3.12). By direct calculation we obtain the form (3.6):

Et + h(x, t)Ex − εExx = p(x, t)E + q(x, t)ε,

where the coefficient of the convection term is given by

h(x, t) = f ′(uε) + 2ε
φ′

φ
,(4.6)

and the functions p := p1 + p2 and q are given by

p1(x, t) := f ′′(•)eφ′φ + 2ε
(
φ′

φ

)2

,

p2(x, t) := −f ′′(•)ux + f ′′(•)ux(ζ1) (x−Y (t))φ′

φ ,

q(x, t) := φuxx − φ′′ e .

(4.7)

The main difference between the current discussion and the treatment of the shock
discontinuity in section 3.1 lies in the different choices for the boundaries of domain
of smoothness D. In section 3.1, the boundary of the domain of smoothness consists
of x’s such that dist(x, S) ∼ C(ε). In this subsection, however, the boundary of the
domain of smoothness is located at dist(x,R) ∼ C(ε, t). The dependence on t in
the rarefaction case highlights the singularity of the local error bound (4.4). More
precisely, inside the region Ω3 we let

D :=
{

(x, t)
∣∣∣ x ≥ Y (t) + γ

√
ε t | log ε| , 0 ≤ t ≤ T

}
,(4.8)

where γ is a constant to be determined later. For (x, t) ∈ D, it follows from the
property of φ, xφ′(x) ≤ αφ, that

0 ≤ φ′

φ
≤ α

x− Y (t)
≤ α

γ
(ε t | log ε|)−1/2 .

This and the pointwise error bound (4.4) lead to

p1(x, t) ≤
(
Cα

γ
+
Cα2

γ2

)
t−1 for (x, t) ∈ Ω3.
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Using the piecewise smoothness assumptions on u and properties for φ, we obtain the
uniform boundedness of p2 and q. Hence, for γ sufficiently large,

p(x, t) ≤ 1

2
t−1 + C, |q(x, t)| ≤ C for (x, t) ∈ Ω3 .(4.9)

On the left boundary of D, we have x− Y (t) ∼ (ε t | log ε|)−1/2, which together with
|φ(x)| ≤ xα and the local error bound (4.4) lead to

|E(x, t)| ≤ C(ε t | log ε|)α/2
√
ε | log ε| t−1/2.

Since E vanishes on the right and bottom boundaries of D, this indicates that for
α = 1,

max
(x,t)∈∂D

|E(x, t)| ≤ Cε | log ε|.(4.10)

It follows from the transport (3.6), the upper bounds (4.9), and the boundary error
estimate (4.10) that

|(uε − u)(x, t)φ(x− Y (t))| ≤ Cε | log ε| for x− Y (t) ≥ O(
√
ε t | log ε|) .(4.11)

Here, φ(x) ∼ min(|x| , 1). Error bounds similar to (4.11) hold for x ≤ X(t) −
O(
√
ε t | log ε|).

Remark. Again, the main application of the (nonoptimal) local error estimate,
(4.4), in the rarefaction case, is to upper bound the expression f ′′(•) e φ′/φ for p1.

4.2. Pointwise estimates inside the rarefaction fan. The present case re-
quires a special treatment since unlike our previous discussion in section 4.1, deriva-
tives are no longer uniformly bounded in Ω2. It follows from (4.3), the representative
formula for u, that

0 < ux(x, t) =
1

f ′′(u) t
, |uxx(x, t)| ≤ Ct−2, (x, t) ∈ Ω2 .(4.12)

Another feature for points inside the rarefaction fan is that

|x− y| ≤ (f ′(u0(0+))− f ′(u0(0−)))t for any (x, t), (y, t) ∈ Ω2 .(4.13)

The weighted error function is defined by

E(x, t) = φ(x−X(t))φ(Y (t)− x)e(x, t), (x, t) ∈ Ω2,

where e(x, t) = uε(x, t) − u(x, t). The basic idea of the pointwise error estimate in
this subsection is as follows:

• Step I. We show that the weighted error function satisfies

Et + h(x, t)Ex − εExx = pE + q1 + q2 ε for (x, t) ∈ Ω2 .(4.14)

• Step II. A subdomain D ⊂ Ω2, which satisfies dist(∂D, R(t)) ≥ O(ε) will be
chosen. Inside this subdomain, it will be shown that

p(x, t) ≤ t−1, |q1(x, t)| ≤ Cε | log ε|, |q2| ≤ C.(4.15)
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• Step III. We show that on the boundary of D,

max
(x,t)∈∂D

|E(x, t)| ≤ Ctε | log ε| .(4.16)

We point out that the upper bound for p in (4.15) cannot be replaced by Ct−1 with
C < 1. Once (4.14)–(4.16) are obtained, the standard Gronwall inequality argument
will lead to the desired estimate

max
(x,t)∈D

|E(x, t)| ≤ Cε| log ε|2 .(4.17)

To begin with, let φ1 := φ(x − X(t)) and φ2 := φ(Y (t) − x). It follows from
φ(x) ≤ xα and (4.13) and the fact that

φ(x−X(t)) ≤ Ctα, φ(Y (t)− x)) ≤ Ctα, (x, t) ∈ Ω2 .(4.18)

Direct calculation using the definition of the function E gives us

Et + f ′(uε)Ex − εExx=(et+f
′(uε)ex − εexx)φ1φ2︸ ︷︷ ︸

M1

+(−X ′(t) + f ′(uε))φ′1φ2e︸ ︷︷ ︸
M2

(4.19)

+
(
Y ′(t)− f ′(uε))φ1φ

′
2e︸ ︷︷ ︸

M3

−2ε
(
φ′1φ2 − φ1φ

′
2

)
ex

− ε(φ′′1φ2 + 2φ′1φ
′
2 + φ1φ

′′
2

)
e.

We now estimate Mj , 1 ≤ j ≤ 3. Using (1.1) and (1.3) we find

M1 = (−f ′(uε)ux + f ′(u)ux + ε uxx)φ1φ2

= −(f ′(uε)− f ′(u))uxφ1φ2 + ε φ1φ2uxx

= −(f ′′(u)e+
1

2
f ′′′(•)e2)uxφ1φ2 + ε φ1φ2uxx

= −t−1 e φ1φ2 − 1

2
f ′′′(•)e2uxφ1φ2 + ε φ1φ2uxx ,

where in the second-to-last step we have used the Taylor expansion for f ′(uε), and
in the last step we have used the first equation in (4.12). Since the curve x = X(t)
is a straight line, we have X ′(t) = X(t)t−1. It follows from the explicit formula,
u(x, t) = (f ′)(−1)(x/t), that

M2 = (−X(t)t−1 + xt−1 − f ′(u) + f ′(uε))φ′1φ2 e

= t−1(x−X(t))φ′1φ2 e+ f ′′(•)e2φ′1φ2.

Similarly, we can obtain

M3 = t−1(Y (t)− x)φ1φ
′
2 e− f ′′(•)e2φ1φ

′
2 .

Using the above results, together with the definition of E, we end up with (4.14),
where

h = f ′(uε) + 2ε

(
φ′1
φ1
− φ′2
φ2

)
,(4.20)

p = −t−1 + t−1(x−X(t))
φ′1
φ1

+ t−1(Y (t)− x)
φ′2
φ2

,(4.21)
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Y(t)X(t)

x=0

D

Fig. 3. Solution structure inside the rarefaction region.

q1 = f ′′(•) e2 φ′1 φ2 − f ′′(•) e2 φ′2 φ1 + 2ε

(
φ′1
φ1
− φ′2
φ2

)2

,

φ1 φ2 e− 1

2
f ′′′(•)ux e2 φ1φ2,(4.22)

q2 = φ1φ2uxx −
(
φ′′1φ2 − 2φ′1φ

′
2 + φ1φ

′′
2

)
e .(4.23)

This completes our Step I. We introduce two curves

Γ1 : x = X(t) +
√
ε t | log ε| , Γ2 : x = Y (t)−

√
ε t | log ε| , 0 ≤ t ≤ T ,(4.24)

and define the following points:

P1 :
(
X(t) +

√
ε t | log ε|, t

)
, P2 :

(
Y (t)−

√
ε t | log ε|, t

)
with t = 4ε/(γ2 | log ε|),

P3 :
(
Y (t)−

√
ε t | log ε|, t

)
, P4 :

(
X(t) +

√
ε t | log ε|, t

)
with t = T.

Here γ is defined by

γ := f ′(u0(0+))− f ′(u0(0−)) > 0.(4.25)

These four points, together with curves Γ1,Γ2, t = 4ε/(γ2 | log ε|), and t = T, form a
domain, denoted by D; see Figure 3. In order that the domain D is meaningful, the
following must hold:

Y (t)−
√
ε t | log ε| > X(t) +

√
εt | log ε| for 4ε/(γ2 | log ε|) < t < T.

In fact, the above inequality is valid since Y (t)−X(t) = γt.
Using the fact that xφ′(x) ≤ αφ we find

p(x, t) ≤ (2α− 1)t−1 for (x, t) ∈ D.(4.26)

It follows from the local error estimate (4.4), the bounds in (4.18) asserting φ1 ≤
Ctα, φ2 ≤ Ctα, and the properties of the weighted function φ, that the following hold:

|q1(x, t)| ≤ Cε | log ε| t−1+α + Cε

{(
φ′1
φ1

)2

+

(
φ′2
φ2

)2
}
φ1 φ2

√
ε | log ε| t−1/2
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+Cε | log ε| t−2+2α

≤ Cε | log ε| t−1+α + Cε

{
φ′1
φ1
φ′1 φ2 +

φ′2
φ2
φ1φ

′
2

}√
ε | log ε| t−1/2

+Cε | log ε| t−2+2α

≤ Cε | log ε| tα−1 + Cε

{
1

(x−X(t))
+

1

(Y (t)− x)

}
tα
√
ε | log ε| t−1/2

+Cε | log ε|t−2+2α.

Inside the domain D where dist(x,R(t)) ≥√εt | log ε|, the above inequality yields

|q1(x, t)| ≤ Cε | log ε| (tα−1 + t2α−2).(4.27)

Using the properties of φ and the fact that uxx ∼ t−2 we find

|q2(x, t)| ≤ Ct2α−2 + C for (x, t) ∈ D.(4.28)

The above bounds suggest that the required estimate (4.15) in Step II is satisfied by
choosing α = 1. Finally, we observe that

|E(x, t)| ≤ C(x−X(t))α (Y (t)− x)α
√
ε | log ε| t−1/2 .

On either the left or right boundaries of D we have

|E(x, t)| ≤ C(
√
εt | log ε|)α tα

√
ε | log ε| t−1/2

≤ Ct(3α−1)/2(ε | log ε|)(1+α)/2 .

The same result holds for the bottom of D. Therefore,

max
(x,t)∈∂D

|E(x, t)| ≤ Ct(3α−1)/2 (ε | log ε|)(1+α)/2 .(4.29)

Step III is then verified for α = 1. We conclude that the pointwise error bound of
order O(ε| log ε|2) holds for the weighted function inside the rarefaction fan.

Remark. Inside the rarefaction fan, the main application of the (nonoptimal)
local error estimate (4.4) is to bound the q1 term in (4.22).

Combining the results in sections 4.1 and 4.2, we arrive a pointwise error bound for
uε − u away from the singular support of u. Using an idea similar to that in section
3.3, this error bound can also be extended to the case of finitely many rarefaction
waves. We summarize what we have shown by stating the following.

Theorem 4.1. Let uε(x, t) be the viscosity solutions of (1.1)–(1.2) and u(x, t) be
the entropy solution of (1.3)–(1.4). If the entropy solution has finitely many rarefac-
tion waves, R(t) = {(x, t)|x = Xk(t)}Kk=1, then the following error estimates hold:

• For a weighted distance function φ, φ(x) ∼ min(|x|, 1),

|(uε − u)(x, t)|
K∏
k=1

φ
(
|x−Xk(t)|

)
= O(ε log2 ε).(4.30)

• In particular, if (x, t) is away from the singular support of u, then

|(uε − u)(x, t)| ≤ C(h)ε log2 ε for dist(x,R(t)) ≥ h.(4.31)

• Since the weighted function φ(x) ∼ |x|, it follows from (4.30) that

|(uε − u)(x, t)| ∼ dist(x,R(t))−1ε log2 ε .(4.32)

This implies that the thickness of the rarefaction layer is of order O(ε log2 ε).



POINTWISE ERROR ESTIMATES FOR SCALAR CONSERVATION LAWS 1757

5. Concluding remarks. In this work we have used an innovative idea which
enables us to convert a global L1 error estimate into a local error estimate. Using this
local error estimate and a bootstrap argument we have proved that the viscosity ap-
proximation satisfies a pointwise error estimate of order O(ε) for all but finitely many
neighborhoods of shock discontinuities, each of width O(ε). Similarly, an O(ε| log ε|2)
pointwise estimate holds outside finitely many rarefaction neighborhoods of width
O(ε| log ε|) (optimal error estimates inside these neighborhoods can be found in [8]).
In particular, integrating these estimates overall in the computational domain we find
that our pointwise error estimates are sharp enough to recover (an almost) first-order,
O(ε log ε) L1 error estimate.

Finally we note that the framework introduced in this work applies, in principle,
to finite difference schemes and relaxation approximations, which will be considered
in a future work.
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