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ON THE PIECEWISE SMOOTHNESS OF ENTROPY SOLUTIONS
TO SCALAR CONSERVATION LAWS

EITAN TADMOR†AND TAMIR TASSA†

Abstract. The behavior and structure of entropy solutions of scalar convex conservation laws are studied. It is
well known that such entropy solutions consist of at most countable number of C1 smooth regions. We obtain new
upper bounds on the higher order derivatives of the entropy solution in any one of its C1-smoothness regions. These
bounds enable us to measure the high order piecewise smoothness of the entropy solution. To this end we introduce an
appropriate new CN -semi norm — localized to the smooth part of the entropy solution, and we show that the entropy
solution is stable with respect to this semi-norm. We also address the question regarding the number of C1-smoothness
pieces; we show that if the initial speed has a finite number of decreasing inflection points then it bounds the number of
future shock discontinuities.

Loosely speaking this says that in the case of such generic initial data, the entropy solution consists of a finite number
of smooth pieces, each of which is as smooth as the data permits. It is this type of piecewise smoothness which is assumed
— sometime implicitly, in many finite-dimensional computations of such discontinuous problems.

1. INTRODUCTION.. We study here the behavior and structure of entropy solutions of the
single hyperbolic conservation law

(1.1a) ut + f(u)x = 0 , −∞ < x < ∞ , t > 0 ,

subject to the smooth initial condition

(1.1b) u(x, 0) = u0(x) , −∞ < x < ∞ ,

where the flux f is strictly convex

(1.2) f ′′ ≥ α > 0 .

The structure of such solutions has been determined by Oleinik [8,9,10] and Lax [6]; more refined
information was obtained by Dafermos [2]. The entropy solutions are continuous except on the union
of an at most countable set of Lipschitz continuous shock curves. The complement of the shock set is
open, [2], and from each point (x, t) in this open set one can trace a straight characteristic backward
in time to t = 0, where the initial condition is given. Since the slope of this characteristic equals
a(u(x, t)) = f ′(u(x, t)), the entropy solution is given by the implicit relation

(1.3) u(x, t) = u0(x − a(u(x, t))t) .

The Implicit Function Theorem implies that if a, u0 ∈ CN , N ≥ 1, then u ∈ CN in its region of
continuity, since in that region

1 + a′(u)u′
0(x − a(u)t)t > 0 ∀t ≥ 0,

consult [2, Theorem 5.1].

In this paper we quantify the regularity of the entropy solution using sharp upper bounds for its high
order spatial derivatives in its region of C1-smoothness, and we determine the size of the complement
set of that region, namely — the set of shock discontinuities.

In §2 we examine the behavior of |∂n
x u| ≡ |∂nu/∂xn|, 1 ≤ n ≤ N . The behavior of the first

derivative, ux, in the region where it is non-negative, has been thoroughly studied and shown to be
O(t−1) e.g., [1,4,8,12]. We derive sharp estimates for the higher order derivatives and show, in Theorem
2.1 below, that their behavior depends on the sign of ux: There exist constants, Constn, which depend
solely on initial condition, u0, such that the following holds.
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• Along characteristics where ux is positive we have, |∂n
x u| ≤ Constn(ux)n, and therefore — since

ux decays like O(t−1) along those curves, the higher order derivatives decay at a rate which
increases with n;

• Along characteristics where ux is negative we have, |∂n
x u| ≤ Constn|ux|2n−1, and therefore —

since the solution breaks in a finite time, tc, along these characteristics, |∂n
x u| tends to infinity

as t ↗ tc at a rate which increases with n;
• Finally, along characteristics where ux = 0 we have, ∂n

x u ≤ Constntn−2, t > 1.

These estimates on the spatial high order derivatives can be converted into an appropriate stability
estimate on the piecewise smoothness of the entropy solution. This is carried out in §3 in terms of a
suitable CN semi-norm which is localized to the C1-smoothness part of the entropy solution. Theorem
3.1 shows that the solution operator of the convex conservation law (1.1) is stable with respect to that
semi-norm. In this context we refer to DeVore & Lucier, [3], for a different type of high order regularity
result which manifests itself in terms of an high-order spatial Besov stability estimate.

Finally, for the sake of completeness we discuss in §4 the complement of the C1-smoothness part of
the entropy solution, that is, we determine the size of the set of shocks. Theorem 4.1 asserts that this
set is equivalent to the set of negative minima of a(u0)′. Thus Theorem 4.1 complements Schaeffer’s
regularity theorem [11], by realizing the first category set of infinitely smooth initial conditions , {u0},
which evolve into entropy solutions with infinitely many shock discontinuities.

In summary we conclude that if a(u0) has a finite number of decreasing inflection points, then only
a finite number of shocks will occur. Hence, if a, u0 ∈ CN , and a(u0) has a finite number of inflection
points, then the corresponding entropy solution consists of finite number of pieces, each of which is CN ;
moreover, the regularity of these pieces is bounded by the initial regularity. It is this type of piecewise
smoothness of the entropy solution which is assumed — sometime implicitly, in many finite-dimensional
computations.

ACKNOWLEDGMENT. Research was supported in part by the Basic Research Foundation of the
Israeli Academy of Sciences and Humanities. Additional support for the first author was provided by
ONR Contract number N-00014-91-J-1076 and by NSF Grant number DMS91-03104.

2. HIGH ORDER REGULARITY ESTIMATES. We consider solutions of the single convex
conservation law (1.1) where

(2.1) u0(x) ∈ CN (<)
⋂

WN,∞(<) , N ≥ 2

and

(2.2) a := f ′ ∈ CN [inf u0, supu0] .

The behavior of the solution’s first spatial derivative has been thoroughly studied (see [1,4,8,12]): When-
ever it is non-negative it decays like O(t−1), while elsewhere it decreases unboundedly, and becomes
infinite in a finite time on the shock curves. We examine here the behavior of the higher order spatial
derivatives ∂n

x u = ∂nu/∂xn, 2 ≤ n ≤ N , the existence of which is guaranteed by (2.1-2) everywhere
apart from the singular set of shock curves.

Since the solution u is smooth in the open complement of the set of shocks, we may multiply
equation (1.1a) by a′(u) to find out that v := a(u) satisfies Burgers’ equation in that region,

(2.3) vt + vvx = 0 .

We now differentiate (2.3) n ≤ N times with respect to x to obtain the equation which governs the
evolution of wn := ∂n

x v in the smooth region:
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wn
t + ∂n

x (vvx) = 0 .

Leibnitz rule gives us

wn
t +

n∑
k=0

(
n

k

)
(∂k

xv)(∂n−k
x vx) = 0 ,

or equivalently ,

(2.4) wn
t + vwn

x = −nw1wn −
n∑

k=2

(
n

k

)
wkwn−k+1 1 ≤ n ≤ N .

Observe that all the spatial derivatives of v are governed by a first order quasi-linear equation (2.4)
with the same principal part as the governing equation for v itself in (2.3) , hence having the same
characteristic geometry. However – unlike equation (2.3) which tells us that v remains constant along
characteristics, the non-vanishing right hand side of (2.4) implies that wn changes along the character-
istics. Let the value of wn along a characteristic x(t) denoted by wn(t) = wn(x(t), t), then (2.4) implies
that

(2.5)
dwn(t)

dt
= −nw1(t)wn(t) −

n∑
k=2

(
n

k

)
wk(t)wn−k+1(t) 1 ≤ n ≤ N .

We start by examining the first derivative w1 = vx = a(u)x . Since it proves to play a significant
role in our analysis we denote it, for convenience, by w. Equation (2.5) is reduced in this n = 1 case to
the well known Riccati equation

(2.6)
dw

dt
= −(w)2

whose solution is

(2.7) w(t) =
w(0)

1 + w(0)t
.

We see that if w(0) > 0, w(t) remains positive and decays to zero like O(t−1); if w(0) = 0 then w(t) = 0
for all t > 0 and if w(0) < 0 then w(t) remains negative and decreases until it becomes infinite.

We now use (2.5) and (2.7) in order to estimate wn(t) arriving at the following.

PROPOSITION 2.1. For every 2 ≤ n ≤ N and t ≥ 0 there holds

(2.8a) |wn(t)| ≤ Cn(1 + w(0)t)−n−1 if w(0) > 0 ;

(2.8b) |wn(t)| ≤ Dn(1 + w(0)t)−2n+1 if w(0) < 0 ;

(2.8c) wn(t) = wn(0) + Pn−2(t) if w(0) = 0 .

Here the constants Cn and Dn are given recursively by

(2.9a) Cn = |wn(0)| + 1
w(0)

n−1∑
k=2

(
n

k

)
CkCn−k+1 2 ≤ n ≤ N

(2.9b) Dn = |wn(0)| + 1
|w(0)|(n − 2)

n−1∑
k=2

(
n

k

)
DkDn−k+1 2 ≤ n ≤ N
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and Pn−2(t) is a polynomial of degree n − 2 which vanishes for t = 0.

REMARKS.
1. Throughout this section we shall use the notations C, Cn, Dn etc. to denote constants which do

not depend on t, and Pn to denote polynomials of degree n. Note that these notations can stand for
different constants or polynomials in different occurrences.

2. Equality (2.7) allows us to rewrite (2.8a-b) as

(2.10) |wn(t)| ≤



C̃nw(t)n+1 w(0) > 0
t ≥ 0 ,

D̃n|w(t)|2n−1 w(0) < 0

where the constants C̃n and D̃n ,

(2.11) C̃n =
Cn

w(0)n+1
, D̃n =

Dn

|w(0)|2n−1

depend solely on the initial condition.

PROOF. Equation (2.5) may be written for n ≥ 2 as follows:

(2.12a)
dwn

dt
= −(n + 1)w(t)wn(t) + qn(t) ,

(2.12b) qn(t) := −
n−1∑
k=2

(
n

k

)
wk(t)wn−k+1(t) .

Using (2.7), the solution of (2.12a) is

(2.13) wn(t) = (1 + w(0)t)−n−1

[
wn(0) +

∫ t

0

(1 + w(0)τ)n+1qn(τ)dτ

]
.

We prove (2.8) by induction. The case n = 2 is immediate since q2 = 0 and therefore, by (2.13),

(2.14) w2(t) = (1 + w(0)t)−3w2(0) .

Hence (2.8) is proved for n = 2 with C2 = D2 = |w2(0)| (in agreement with (2.9)) and P0(t) ≡ 0.

We turn now to the proof of (2.8) for 2 < n ≤ N , assuming it holds for all 2 ≤ k < n. The proof
is separated for three cases according to the sign of w(0).

If w(0) > 0 then by (2.12b) and induction we get that

(2.15) |qn(t)| ≤
n−1∑
k=2

(
n

k

)
|wk(t)||wn−k+1(t)| ≤

n−1∑
k=2

(
n

k

)
Ck(1 + w(0)t)−k−1Cn−k+1(1 + w(0)t)−n+k−2 =

n−1∑
k=2

(
n

k

)
CkCn−k+1(1 + w(0)t)−n−3 .

Therefore, by (2.13) and (2.15)

(2.16) |wn(t)| ≤ (1 + w(0)t)−n−1

[
|wn(0)| +

n−1∑
k=2

(
n

k

)
CkCn−k+1

∫ t

0

(1 + w(0)τ)−2dτ

]
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Evaluating the integral in (2.16) proves (2.8a) and (2.9a).

Similarly, if w(0) < 0 then

(2.17) |qn(t)| ≤
n−1∑
k=2

(
n

k

)
|wk(t)||wn−k+1(t)| ≤

n−1∑
k=2

(
n

k

)
Ck(1 + w(0)t)−2k+1Cn−k+1(1 + w(0)t)−2n+2k−1 =

n−1∑
k=2

(
n

k

)
CkCn−k+1(1 + w(0)t)−2n .

Hence, by (2.13) and (2.17)

(2.18) |wn(t)| ≤ (1 + w(0)t)−n−1

[
|wn(0)| +

n−1∑
k=2

(
n

k

)
CkCn−k+1

∫ t

0

(1 + w(0)τ)−n+1dτ

]

and (2.8b),(2.9b) follow by evaluating the integral in (2.18).

Finally, if w(0) = 0, (2.13) implies that

(2.19a) wn(t) = wn(0) +
∫ t

0

qn(τ)dτ .

But, by (2.12b) and the induction assumption

(2.19b) qn(t) = −
n−1∑
k=2

(
n

k

)
(wk(0) + Pk−2(t))(wn−k+1(0) + Pn−k−1(t)) = Pn−3(t)

Therefore,
∫ t

0
qn(τ)dτ is a polynomial of degree n − 2 which vanishes for t = 0, hence (2.8c) is proved,

and that concludes the proof.

EXAMPLE. The estimates offered by Proposition 2.1 are sharp, as demonstrated by Burgers’ equa-
tion, ut + uux = 0, subject to initial condition

u(x, 0) = u0(x) =




x2−1
2 −1 < x < 1

.
0 elsewhere

Its solution along characteristics x(t) for which −1 < x(0) < 1 is given by

u(x(t), t) =
1 + x(t)t − √

1 + 2x(t)t + t2

t2
.

Therefore, for n ≥ 2 we get that

(2.20) wn(t) =
∂nu(x(t), t)

∂xn
= (−1)nCn(1 + 2x(t)t + t2)−n+ 1

2 tn−2 , Cn =
n−1∏
k=1

(2k − 1) .

Let x(t) be the characteristic which starts at x0 ∈ (−1, 1). Its speed is u0(x0) = 1
2 (x2

0−1) and therefore

(2.21) x(t) = x0 +
1
2
(x2

0 − 1)t .

For that characteristic w(0) = u′
0(x0) = x0 and therefore , by (2.21) :

(2.22) (1 + 2x(t)t + t2)
1
2 = 1 + x0t = 1 + w(0)t .
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Using (2.22) in (2.20) gives :

(2.23) wn(t) = (−1)nCn(1 + w(0)t)−2n+1tn−2 .

If x0 > 0 then w(0) > 0 and therefore, for t � w(0)−1,

|wn(t)| = Cn(1+w(0)t)−2n+1tn−2 ≈ Cn(1+w(0)t)−2n+1

(
1 + w(0)t

w(0)

)n−2

=
Cn

w(0)n−2
(1+w(0)t)−n−1 .

If x0 < 0 then w(0) < 0 and the characteristic will not exist beyond the critical time tc = 1/|w(0)|.
Therefore, by (2.23), when t → tc

|wn(t)| = Cn(1 + w(0)t)−2n+1tn−2 ≈ Cn

|w(0)|n−2
(1 + w(0)t)−2n+1 .

If x0 = 0 then w(0) = 0 and therefore wn(t) = (−1)nCntn−2 . Since w2(0) = 1 and wn(0) = 0 for
n > 2, (2.8c) is met with P0(t) ≡ 0 and Pn−2(t) = (−1)nCntn−2 for n > 2.

After establishing estimates for wn = ∂n
x a(u) we are ready to translate them into analogous esti-

mates for ∂n
x u. For that matter we observe that wn has the form (successive chain rule)

(2.24a) wn = ∂n
xa(u) = a′(u)∂n

x u +
∑

i

Kia
(mi)(u)

mi∏
j=1

∂
ri

j
x u ,

where Ki are positive integer coefficients and

(2.24b) mi ≥ 2 ; 1 ≤ ri
j ≤ n + 1 − mi ;

mi∑
j=1

ri
j = n .

We denote

(2.25) M := max
2≤n≤N

||a(n)(u)||L∞ = max
2≤n≤N

||a(n)(u0)||L∞ .

With (2.24) and (2.25) we get, using (1.2), that for n ≤ N

(2.26) |∂n
x u| ≤ 1

α


|wn| +

∑
i

KiM

mi∏
j=1

|∂ri
j

x u|

 .

Note that for Burgers’ equation α = 1 and M = 0 and (2.26) holds with an equality.
If we now denote ∂n

x u(t) := ∂n
x u(x(t), t) where x(t) is a characteristic curve, we may state the

analogue of Proposition 2.1.

THEOREM 2.1. For every 1 ≤ n ≤ N and t ≥ 0 there holds

(2.27a) |∂n
x u(t)| ≤ Cn(1 + w(0)t)−n if ∂xu(t) > 0 ;

(2.27b) |∂n
x u(t)| ≤ Dn(1 + w(0)t)−2n+1 if ∂xu(t) < 0 ;

(2.27c) ∂n
x u(t) = ∂n

xu(0) + Pn−2(t) if ∂xu(t) = 0 .

Here Cn and Dn are constants which depend on the initial condition and Pn−2(t) is a polynomial of
degree n − 2 which vanishes for t = 0.
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PROOF. Since u remains constant along its characteristics, (2.7) implies that

(2.28) ∂xu(t) =
∂xu(0)

1 + w(0)t
.

Hence, (2.27) holds for n = 1 with C1 = D1 = |∂xu(0)| and P−1(t) ≡ 0 . (2.28) and (1.2) imply that
∂xu(t), ∂xu(0) and w(0) have the same sign.

As for n ≥ 2 we proceed by induction. If ∂xu(t) > 0, (2.26) and (2.8a), together with the induction
assumption, imply that

(2.29) |∂n
x u| ≤ 1

α


Cn(1 + w(0)t)−n−1 +

∑
i

KiM

mi∏
j=1

Cri
j
(1 + w(0)t)−ri

j


 .

But, by (2.24b),

(2.30)
∑

i

KiM

mi∏
j=1

Cri
j
(1 + w(0)t)−ri

j =
∑

i

Ci(1 + w(0)t)−n = Cn(1 + w(0)t)−n .

Hence (2.27a) follows from (2.29) and (2.30).
Similarly, if ∂xu(t) < 0 then (2.26), (2.8b) and induction imply that

(2.31) |∂n
x u| ≤ 1

α


Cn(1 + w(0)t)−2n+1 +

∑
i

KiM

mi∏
j=1

Cri
j
(1 + w(0)t)−2ri

j+1


 .

Using (2.24b) we get that

∑
i

KiM

mi∏
j=1

Cri
j
(1 + w(0)t)−2ri

j+1 =
∑

i

Ci(1 + w(0)t)−2n+mi .

But mi ≥ 2 and therefore the first term on the right hand side of (2.31) is the dominant one as t tends
to the critical time, tc = 1/|w(0)| , hence (2.27b) follows.

As for the case ∂xu(t) = 0 – since u remains constant along x(t), (2.24a) implies that

wn(t) − wn(0) = a′(u)(∂n
x u(t) − ∂n

xu(0)) +
∑

i

Kia
(mi)(u)


 mi∏

j=1

∂
ri

j
x u(t) −

mi∏
j=1

∂
ri

j
x u(0)


 .

Using (2.8c) we therefore conclude that

∂n
x u(t) = ∂n

x u(0) +
1

a′(u)


Pn−2(t) −

∑
i

Kia
(mi)(u)


 mi∏

j=1

∂
ri

j
x u(t) −

mi∏
j=1

∂
ri

j
x u(0)




 .

But since by induction the term in the brackets is a polynomial of degree n− 2 and it vanishes at t = 0
, (2.27c) is proved and we are done.

REMARKS.
1. We call attention that (2.27a) is slightly different from (2.8a). This difference in the exponent

is the reason why (2.27a) holds for n ≥ 1 while (2.8a) holds only for n ≥ 2.
2. Equality (2.28) allows us to rewrite (2.27a-b) in the form announced in the Introduction:

(2.32) |∂n
x u(t)| ≤




C̃n(∂xu(t))n ∂xu(t) > 0
t ≥ 0 ,

D̃n|∂xu(t)|2n−1 ∂xu(t) < 0
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with constants

(2.33) C̃n =
Cn

(∂xu(0))n
, D̃n =

Dn

|∂xu(0)|2n−1
,

which depend solely on the initial condition.
3. The large time behavior of the second spatial derivative in (planar) rarefaction waves has been

studied before by Xin in [13]. Xin considered the scalar viscous conservation law

ut + f(u)x = εuxx

subject to the C2-smooth and bounded initial condition, u0, satisfying

(2.34) u′
0 > 0

and

(2.35) |u′′
0 | ≤ k0u

′
0 , 0 ≤ k0 = Const .

He showed that in that case there exists a positive constant K such that

(2.36) |uxx(x, t)| ≤ Kux(x, t) ; ∀x ∈ < , t ≥ 0 .

This estimate can be recovered for the inviscid hyperbolic conservation law (1.1) from our analysis. Let
us denote

(2.37) L+ ≡ max
x,t

ux(x, t) = max
x

u′
0(x) .

By (2.7) and (2.14) we get that

(2.38) w2(t) = w(t)
w2(0)

w(0)(1 + w(0)t)2
.

Therefore, since by (2.34) and (1.2) w(t) = a′(u)ux > 0, (2.38) implies that

(2.39) |w2(t)| ≤ |w2(0)|
w(0)

w(t) .

As w(0) and w2(0) are given by (consult (2.24a))

(2.40) w(0) = a′(u0)u′
0 , w2(0) = a′′(u0)(u′

0)
2 + a′(u0)u′′

0 ,

we get from (2.39) that

|w2(t)| ≤
[ |u′′

0 |
u′

0

+
|a′′(u0)|u′

0

a′(u0)

]
w(t) .

Using (1.2),(2.25),(2.35) and (2.37) we conclude that

(2.41) |w2(t)| ≤ K1w(t) , K1 ≡
(

k0 +
ML+

α

)
.

Thus, v = a(u) satisfies inequality (2.36) since, by definition, w(t) = vx(x(t), t) and w2(t) = vxx(x(t), t).
The desired inequality for u easily follows from (1.2),(2.25),(2.37) and (2.41):

|uxx|
ux

=
|w2 − a′′u2

x|
w

≤ |w2|
w

+
|a′′|
a′ ux ≤ K ≡ K1 +

ML+

α

Note that (2.36) holds even if condition (2.34) is replaced by u′
0 ≥ 0, since along characteristics

where ux = 0, uxx remains constant (by (2.27c)) which must be zero in view of restriction (2.35).

Theorem 2.1 tells us the behavior of the high order derivatives of the entropy solution along its
characteristics, depending on the sign of the first derivative there: if the first derivative is positive,
then according to (2.27a) the higher derivatives decay in time; if it is negative – the higher derivatives
tend in absolute value to infinity as the characteristic approaches the shock curve (2.27b); and along
characteristics where the first derivative is zero, the higher order derivatives experience a polynomial
growth rate indicated in (2.27c). Furthermore, the rate of decay or growth increases with the order of
the derivative.
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3. HIGH ORDER PIECEWISE STABILITY ESTIMATES. The estimates obtained in
§2, consult (2.10-11) and (2.32-33), show how the smoothness of the entropy solution depends on the
distance from the set of shock discontinuities, where this distance is measured by the size of ∂xu(t).
These estimates involve, apart from ∂xu(t), also the value of the first derivative of the initial condition,
∂xu(0).

We now turn to upper bound the higher order derivatives in regularity regions solely in terms of the
local value of the first derivative, thus extending the special case of an estimate for the second spatial
derivative of planar rarefaction waves in (2.36). Moreover, our bound will indicate the dependence of
the high order regularity on the distance from the singular set of shocks. The distance from the singular
set is measured by a lower bound of the first derivative. To quantify this dependence we define for
every L ≤ 0 the following semi-norm:

(3.1) ‖g(x)‖Cn
L
≡ sup

x∈Dg,L

∣∣∣dng

dxn

∣∣∣ , Dg,L ≡ {x :
dg

dx
(x) ≥ L} .

This is a localized version of the regular Cn (or Wn,∞) semi-norm which may be obtained from ‖ · ‖Cn
L

by letting L → −∞.
We show that the solution operator of (1.1) is stable with respect to this semi-norm. As before, we

deal first with the ”Burgerized” equation, (2.3), in the unknown v = a(u).

PROPOSITION 3.1. For every 2 ≤ n ≤ N and L < 0 there holds

(3.2) ‖v(·, t)‖Cn
L
≤ e(n+1)|L|t‖v(·, 0)‖Cn

L
+ Pn−2(|L|−1)e3(n−1)|L|t ,

where the coefficients of Pn−2 depend on {‖v(·, 0)‖Ck
L
}2≤k<n .

PROOF. We recall equation (2.12a) which governs the evolution of wn(t) along a characteristic
(x(t), t). Let (x, t) be located on a characteristic x = x(t) and assume that x(t) ∈ Dv(·,t),L , i.e.,

(3.3) vx(x(t), t) = w(t) ≥ L .

Since by (2.7) w(t) can only decrease along a characteristic, (3.3) implies that

(3.4a) w(τ) ≥ L ; 0 ≤ τ ≤ t ,

or equivalently,

(3.4b) x(τ) ∈ Dv(·,τ),L ; 0 ≤ τ ≤ t .

The solution of (2.12a) is

(3.5) wn(t) = e

∫
t

0
−(n+1)w(τ)dτ

wn(0) +
∫ t

0

e

∫
t

τ
−(n+1)w(s)ds

qn(τ)dτ .

Therefore, by (3.4a) and (3.5) we get that in Dv(·,t),L

(3.6) |wn(t)| ≤ e−(n+1)Lt

[
|wn(0)| +

∫ t

0

e(n+1)Lτ |qn(τ)|dτ

]
.

We start by dealing with n = 2 . Here q2 = 0 and (3.6) reads

|w2(t)| ≤ e3|L|t|w2(0)| ,

hence (3.2) follows with P0(|L|−1) = 0.

We proceed by induction assuming (3.2) holds for all 2 ≤ k < n,

(3.7) ‖v(·, t)‖Ck
L
≤ e(k+1)|L|t‖v(·, 0)‖Ck

L
+ Pk−2(|L|−1)e3(k−1)|L|t ,
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where the coefficients of Pk−2(|L|−1) depend on {‖v(·, 0)‖Cm
L
}2≤m<k . Clearly, since 3(k − 1) ≥ k +

1 ∀k ≥ 2 , we may rewrite (3.7) as

(3.8) ‖v(·, t)‖Ck
L
≤ Pk−2(|L|−1)e3(k−1)|L|t , 2 ≤ k < n ,

where the coefficients of Pk−2(|L|−1) in (3.8) depend on {‖v(·, 0)‖Cm
L
}2≤m≤k .

Using (3.6), (2.12b) and (3.8) we arrive at

|wn(t)| ≤ e−(n+1)Lt

[
|wn(0)| +

∫ t

0

e(n+1)Lτ
n−1∑
k=2

(
n

k

)
|wk(τ)||wn−k+1(τ)|dτ

]
≤

e−(n+1)Lt

[
|wn(0)| +

n−1∑
k=2

(
n

k

) ∫ t

0

e(n+1)LτPk−2(|L|−1)e−3(k−1)LτPn−k−1(|L|−1)e−3(n−k)Lτdτ

]
=

e−(n+1)Lt

[
|wn(0)| + P̃n−3(|L|−1)

∫ t

0

e(−2n+4)Lτdτ

]
,

where P̃n−3(·) abbreviates

P̃n−3(|L|−1) =
n−1∑
k=2

(
n

k

)
Pk−2(|L|−1)Pn−k−1(|L|−1)

which depends on {‖v(·, 0)‖Ck
L
}2≤k<n . Evaluating the last integral we arrive at

(3.9a) |wn(t)| ≤ e−(n+1)Lt
[
|wn(0)| + Pn−2(|L|−1)e(−2n+4)Lt − Pn−2(|L|−1)

]
where

(3.9b) Pn−2(|L|−1) =
1

(−2n + 4)L
P̃n−3(|L|−1) =

1
2(n − 2)|L| P̃n−3(|L|−1) .

Since L < 0 and n > 2, Pn−2(|L|−1) is positive and therefore by (3.9a) we conclude that

(3.10) |wn(t)| ≤ e−(n+1)Lt
[
|wn(0)| + Pn−2(|L|−1)e(−2n+4)Lt

]
=

e(n+1)|L|t|wn(0)| + Pn−2(|L|−1)e3(n−1)|L|t

which proves (3.2).

REMARK. It can be easily shown, in the same manner, that for L = 0

‖v(·, t)‖Cn
0
≤ ‖v(·, 0)‖Cn

0
+ Pn−2(t) ,

where Pn−2(t) depends on {‖v(·, 0)‖Ck
0
}2≤k<n . This result is not surprising in view of (2.8a) and

(2.8c).

Finally, we translate the estimates offered by Proposition 3.1 for v ≡ a(u), into analogous estimates
for u itself.

THEOREM 3.1 (Piecewise Stability). For every 2 ≤ n ≤ N and L < 0 there holds

(3.11) ‖u(·, t)‖Cn
L
≤ e(n+1)L̂t‖u(·, 0)‖Cn

L
+ Pn−2(L̂−1)e3(n−1)L̂t ,
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where L̂ = A|L|, A = ‖a′(u)‖L∞ and the coefficients of Pn−2 depend on {‖u(·, 0)‖Ck
L
}2≤k<n .

PROOF. The verification of (3.11) for n = 2 is left to the reader and we proceed by induction. Let
(x, t) be a point on the characteristic x = x(t) where x(t) ∈ Du(·,t),L . The definition of v = a(u) and
(1.2) therefore imply that

(3.12) x(t) ∈ Dv(·,t),L̃ , L̃ = a′(u(x(t), t))L .

Furthermore, by (2.7) and (2.28) we conclude that

(3.13) x(τ) ∈ Du(·,τ),L

⋂
Dv(·,τ),L̃ 0 ≤ τ ≤ t .

This together with (3.12) and (3.10) imply that

(3.14) |wn(t)| ≤ e(n+1)|L̃|t|wn(0)| + Pn−2(|L̃|−1)e3(n−1)|L̃|t .

Using (2.24a) we obtain

(3.15) |wn(0)| ≤ a′(u)|∂n
x u(0)| + C ,

where C depends on {|∂k
xu(0)|}2≤k<n . Therefore, since n + 1 ≤ 3(n − 1) we conclude from (3.14) and

(3.15) that

(3.16) |wn(t)| ≤ a′(u)e(n+1)|L̃|t|∂n
x u(0)| + Pn−2(|L̃|−1)e3(n−1)|L̃|t .

Recalling (2.24) and (2.25), the inequality (3.16) implies

|∂n
x u(t)| ≤ 1

a′(u)


|wn(t)| +

∑
i

KiM

mi∏
j=1

|∂ri
j

x u(t)|

 ≤

≤ e(n+1)|L̃|t|∂n
xu(0)| + Pn−2(|L̃|−1)e3(n−1)|L̃|t + C

∑
i

mi∏
j=1

|∂ri
j

x u(t)| .

By induction we may conclude, as we did in the proof of Proposition 3.1, that

(3.17) |∂n
x u(t)| ≤ e(n+1)|L̃|t|∂n

x u(0)| + Pn−2(|L̃|−1)e3(n−1)|L̃|t ,

and taking the supremum over x(t) ∈ Du(·,t),L in (3.17) we arrive at (3.11).

REMARKS.
1. In the case of Burgers’ equation A = 1 and therefore (3.11) reduces in that case to the stability

estimate (3.2).
2. The analogue of (3.11) for L = 0 is

(3.18) ‖u(·, t)‖Cn
0
≤ ‖u(·, 0)‖Cn

0
+ Pn−2(t) ,

where Pn−2(t) depends on {‖u(·, 0)‖Ck
0
}2≤k<n .



1642 tadmor and tassa

4. ON THE SIZE OF THE SET OF SHOCK DISCONTINUITIES. We show in this
section that generically, the set of shocks is finite, and identify the initial conditions for which an
infinite number of shock curves is generated.

The first result concerning the size of the shock set was Oleinik’s. She has shown [8,9,10] that the
shock set is countable at the most. Her result, however, still allows a very complicated structure such
as an everywhere dense shock set.

Two proceeding results have simplify the picture : Dafermos [2] has shown that in case that both
the (convex) flux and the initial condition are infinitely smooth the solution is C∞ a.e. apart from the
shock set which must be closed. Thus, the shock set cannot be everywhere dense but shocks may still
accumulate.

Schaeffer [11] has proved that, generically, the shock set is finite when the initial condition is
infinitely smooth. He has shown that if f ∈ C∞ satisfies (1.2), there exists a subset, Ω, of the first
category in Schwartz space, S(<), such that if u0 ∈ S(<) − Ω then u ∈ C∞(< × (0,∞) − Γ) where Γ
is a finite set of smooth shock curves. He furthermore gives an example of such an initial condition
u0 ∈ Ω which evolves , according to the Burgers’ equation, to an almost everywhere C∞ function with
infinitely many shock curves in a bounded region. However, we are left unable to check whether a given
initial condition is in Ω or not.

It seems to be a part of the folklore [5,7] that if u0 has a finite number of inflection points, then the
corresponding entropy solution of Burgers’ equation experiences a finite number of shock discontinuities.
In the general case the function whose inflection points are to be examined is a(u0).

THEOREM 4.1. Let u be the entropy solution of the convex hyperbolic conservation law (1.1a), (1.2),
subject to the piecewise C1 initial condition, u0, satisfying

(4.1) lim
|x|→∞

a(u0)′ = 0 .

Then the number of disjoint shock curves equals to the number of negative minima of a(u0)′.

REMARKS.
1. Since u0 is assumed to be only piecewise C1 it may be discontinuous and therefore will not have

a classical derivative. Therefore, we refer by a(u0)′ to the generalized derivative of a(u0). Hence, in
decreasing discontinuities of u0 , a(u0)′ has a negative (infinite) minimum.

2. If a(u0)′ has a continuum of negative minimal points , namely, a(u0) linearly decreases along
some interval, it is considered as one minimum.

3. Shocks which occur as a consequence of an interaction of two (or more) other shocks, are not
counted. We consider only ”original” shocks. Obviously, the number of original shocks dominates the
number of simultaneous shocks in every t ≥ 0.

COROLLARY 4.1. If a(u0) has a finite number of inflection points, then the set of shock disconti-
nuities is finite.

Theorem 4.1 implies that the set of functions u0 ∈ S(<) for which a(u0)′ has infinitely many
negative minima, is the set Ω ⊂ S(<) of the first category that Schaeffer refers to in [11].

PROOF. Denote the set of disjoint (original) shock curves by S = {Xi(t)}i∈I and the set of points
where a(u0)′ has a negative minimum by M = {xj}j∈J . We will establish an equivalence between these
two sets to prove our statement.

For every Xi(t) ∈ S let t0i denote its creation time (t0i ≥ 0) and t∞i its termination time (t0i < t∞i ≤
∞). t∞i is finite if Xi(t) collides with another shock, and infinite otherwise.

According to Lax entropy condition

(4.2) a(u(Xi(ti)−, ti)) > a(u(Xi(ti)+, ti)) , t0i < ti < t∞i .
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We choose one value of ti in that time interval,

(4.3) ti ∈ (t0i , t
∞
i )

and denote by x−
i and x+

i the two embracing points of the characteristics which impinge upon the shock
Xi(t) from both sides at t = ti . (4.2) implies that

(4.4) a(u0(x−
i )) > a(u0(x+

i )) , x−
i < x+

i .

A consequence of (4.4) is that a(u0)′ must become negative somewhere along the interval [x−
i , x+

i ]. Let
xi denote the point in that interval where a(u0)′ achieves its minimal value. The shock’s creation time
is determined by this minimum ,

(4.5) t0i = − 1
a(u0)′(xi)

.

On the other hand

(4.6) − 1
a(u0)′(x±

i )
≥ ti > t0i ,

since otherwise , the characteristics which start at (x±
i , 0) would not have lasted until t = ti. (4.5) and

(4.6) imply that

(4.7) a(u0)′(xi) < a(u0)′(x±
i )

and therefore xi is a negative local minimum of a(u0)′, i.e., xi ∈ M .
We have thus shown that to each Xi(t) ∈ S corresponds a xi ∈ M . This correspondence is

one-to-one since if Xi(t) and Xj(t) are two disjoint shocks then our choice of ti , (4.3), implies that

[x−
i , x+

i ]
⋂

[x−
j , x+

j ] = ∅

and therefore xi 6= xj .

Now we show an one-to-one correspondence from M to S to conclude the equivalence of the two
sets. Let x1, x2 ∈ M and let ξ be the point where a(u0)′ reaches its maximal value in the interval
[x1, x2]. Let xi(t) be the characteristic which starts at (xi, 0), 1 ≤ i ≤ 2, and ξ(t) be the one which
starts at (ξ, 0). The solution along xi(t) becomes discontinuous at time

(4.8) ti = − 1
a(u0(xi))′

, 1 ≤ i ≤ 2 .

Therefore, each of the points (xi(ti), ti), 1 ≤ i ≤ 2, is on a shock. By Lagrange mean value theorem
and since a(u0)′ has local minima in xi we conclude that

a(u0(xi)) − a(u0(ξ))
xi − ξ

> a(u0(xi))′ , 1 ≤ i ≤ 2 .

or, by (4.8),

(4.9) − xi − ξ

a(u0(xi)) − a(u0(ξ))
> ti , 1 ≤ i ≤ 2 .

Since the left hand side of (4.9) indicates the time when xi(t) and ξ(t) were to meet, we conclude that
x1(t1) < ξ(t1) and x2(t2) > ξ(t2). Therefore , the points (xi(ti), ti), 1 ≤ i ≤ 2, lay on two different
shocks, the first is on the left side of ξ(t) and the second is from its right side.
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Finally, we note that if a(u0)′ has a continuum of negative minimal points, i.e., if a(u0) is linearly
decreasing on some interval, [x1, x2] , this minimum creates only one shock since the characteristics
from that interval will all meet at

t = − 1

a(u0)′
∣∣∣
[x1,x2]

to start that shock.
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