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Summary. We present a systematic development of energy-stable approximations
of the two-dimensional shallow water (SW) equations, which are based on the general
framework of entropy conservative schemes introduced in [Tad03, TZ06]. No arti-
ficial numerical viscosity is involved: stability is dictated solely by eddy viscosity.
In particular, in the absence of any dissipative mechanism, the resulting numerical
schemes precisely preserve the total energy, which serves as an entropy function for
the SW equations. We demonstrate the dispersive nature of such entropy conser-
vative schemes with a series of scalar examples, interesting for their own sake. We
then turn to the SW equations. Numerical experiments of the partial-dam-break
problem with energy-preserving and energy stable schemes, successfully simulate
the propagation of circular shock and the vortices formed on the both sides of the
breach.

1 Introduction

Consider a three-dimensional domain in which the homogenous fluid flows
with a free-surface under the influence of gravity. One of the widely used
approaches for the description of such unsteady free-surface flows is that of
shallow water. Under the shallow-water approximation that refers to the fact
that a horizontal scale is in excess of the depth of the fluid, the 3D Navier-
Stokes equations can be simplified to the shallow water equations with the
depth-averaged continuity equation and momentum equations. Neglecting dif-
fusion of momentum due to wind effects and Coriolis terms, we consider two-
dimensional shallow water (SW) equations in the conservative form for free-
surface compressible flow with flat frictionless bottom on two dimensional x-y
plane,
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Here, h = h(x, y, t) is the total water depth which plays the role of density,
and (u(x, y, t), v(x, y, t)) are the depth-averaged velocity components along x
and y direction. The three equations express, respectively, conservation laws of
mass and momentum in x and y direction for the shallow water flow, driven
by convective fluxes on the LHS together with eddy viscous fluxes on the
RHS. These fluxes involve the constant gravity acceleration g > 0, and ζ > 0
is the eddy viscosity. By ignoring the small scale vortices in the motion, we
calculate a large-scale flow motion with eddy viscosity ζ that characterizes
the transport and dissipation of energy into the smaller scales of the flow.

If we turn off the eddy viscosity (ζ = 0), system (1.1) is reduced to the
inviscid shallow water equations,
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The SW equations (1.1) constitute an incompletely parabolic system,
whose solutions can exhibit discontinuities associated with hydraulic jumps
and bores in flows or the propagation of sharp fronts. In this paper, we are
concerned with construction of energy-stable numerical methods for simu-
lating two dimensional flows, in which initial discontinuities associated with
partial-dam-break need to be evolved in time. The conservation of the total
energy, E = (gh2 +u2h+ v2h)/2, guarantees that such numerical simulations
of shallow water flows are nonlinearly stable and free of artificial numerical
viscosity, which may dramatically change the profiles of the solutions in long
time integration. In our computation, conservation of the total energy is en-
forced by utilizing entropy conservative fluxes which are tailored to preserve
the energy, being an entropy function for the SW equations. The resulting
numerical scheme is energy-stable, free of artificial numerical viscosity in the
sense that energy dissipation is driven solely by the eddy viscous fluxes. In
the particular case that eddy viscosity is absent, ζ = 0, our scheme precisely
preserves the total energy E.

A general framework for the construction of entropy-conservative schemes
for 1D nonlinear conservation laws is introduced in Section 3, following
[Tad03, TZ06]. We then test these entropy-conservative schemes for 1D Burg-
ers’ equation being the prototype of scalar nonlinear conservation laws in
Section 4. In Section 5, we generalize the recipe for the entropy-stable ap-
proximations of two dimensional shallow water equations with the energy
playing the role of entropy. The extension is carried out dimension by dimen-
sion. The algorithm along each dimension follows the same recipe outlined in
the one-dimensional setup. The key ingredient behind these schemes is the
construction of energy-preserving numerical fluxes. Our main results on the
2D shallow water equations are summarized in Theorem 5.1. To illustrate
the performance of the new schemes, we test a two-dimensional partial-dam-
break problem in Section 6. The numerical results, especially those of the fine
meshes, successfully simulate both the circular shock water wave propagations
and the vortices formed on both sides of the breach.
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2 Entropy dissipation - the general framework

2.1 Entropy variables

We consider a two-dimensional hyperbolic system,

∂

∂t
u +

∂

∂x
f (u) +

∂

∂y
g(u) = 0. (2.1)

We assume that it obeys an additional conservation law where a convex en-
tropy function U(u) is balanced by entropy fluxes F (u) and G(u),

∂

∂t
U(u) +

∂

∂x
F (u) +

∂

∂y
G(u) = 0. (2.2)

Note that (2.2) holds if the entropy function U(u) is linked to the entropy
fluxes F (u) and G(u) through the compatibility relations,

U>
u

fu = F>
u
, U>

u
gu = G>

u
. (2.3)

In fact, multiplying (2.1) by U>
u

on the left, one recovers the equivalence
between (2.1) and (2.3) for all classical solutions u’s of (2.1). These formal
manipulations are valid only under the smooth region. To justify these steps in
the presence of shock discontinuities, the conservation laws (2.1) are realized
as appropriate vanishing viscosity limits, u = limζ↓0 uζ, where uζ is governed
by the (possibly incompletely) parabolic system
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(2.4)
Here, ζ ↓ 0 stands for the vanishing viscosity amplitude such as the eddy vis-
cosity coefficient in the SW equations (1.1)), and Q = Q(u) is any admissible
viscosity coefficient which is H-symmetric positive-definite,

QH = (QH)> ≥ 0, H := (Uuu)−1 . (2.5)

The passage from vanishing viscosity limits to weak entropy solutions of
(2.1) is classical, [Lax73], and we refer to the more comprehensive recent books
of e.g., [Ser99, Daf00]. Here, we shall study these limits in terms of the entropy
variables, v(u) := Uu(u). We assume that the entropy U(u) is convex, so that
the nonlinear mapping u 7→ v is one-to-one. Following [God61, Moc80], we
claim that the change of variables, u = u(v), puts the system (2.1) into the
equivalent symmetric form,

∂

∂x
u(v) +

∂

∂x
f (u(v)) +

∂

∂y
g(u(v)) = 0.

The above system is symmetric in the sense that the Jacobian matrices fluxes
are,

uv(v) = (uv(v))
>
, fv(v) = (fv(v))

>
, and gv(v) = (gv(v))

>
. (2.6)
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Indeed, a straightforward computation using the compatibility relations (2.3)
shows that u(v), f (v), and g(v) are, respectively, the gradients of the corre-
sponding potential functions φ, ψx, and ψy ,

u(v) = φv(v), φ(v) := 〈v,u(v)〉 − U(u(v)), (2.7)

f (v) = ψx
v
(v), ψx(v) := 〈v, f (v)〉 − F (u(v)), (2.8)

g(v) = ψy
v
(v), ψy(v) := 〈v, g(v)〉 −G(u(v)). (2.9)

Hence the Jacobian matrices H(v) := uv(v), Ax(v) := fv(v), and Ay(v) :=
gv(v) in (2.6) are symmetric, being Hessians of the potentials φ(v), ψx(v)
,and ψy(v). Moreover, the convexity of U(·) implies thatH is positive definite,

H = (Uuu)
−1

> 0.
We now introduce the same entropy change of variables, u = u(v), into

the associated parabolic system (2.4), which reads
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∂
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)
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(2.10a)
By (2.6) and admissibility condition (2.5), the system (2.10a) is symmetric
in the sense that the Jacobian matrices involved are all symmetric, namely,
(2.6) holds and

S(u(v)) = S>(u(v)) > 0, S(v) := Q(u(v))uv(v). (2.10b)

Integrate (2.4) against the entropy variable v := Uu, employ the compatibility
relations (2.3) and use ‘differentiation by parts’ on the dissipation terms on
the RHS to find the following entropy balance statement,
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∂
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=
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x

〉
+

〈
vζ

y , S(vζ)vζ
y

〉]
≤ 0. (2.11)

Letting ζ ↓ 0, we obtain the entropy inequality, [God61, Kru70, Lax71]

∂

∂t
U(u) +

∂

∂x
F (u) +

∂

∂y
G(u) ≤ 0. (2.12)

This shows that weak solutions dissipate entropy. The precise amount of en-
tropy decay is dictated by the specific dissipation: spatial integration of (2.11)
yields the entropy decay statement,

d

dt

∫

y

∫

x

U(uζ) dxdy = −ζ
∫

y

∫

x

[〈
vζ

x, S(vζ )vζ
x

〉
+

〈
vζ

y, S(vζ)vζ
y

〉]
dxdy ≤ 0.

(2.13)

2.2 The example of the shallow water equations

We consider the 2D shallow water equations (1.1) for the conservative vari-
ables u := (h, uh, vh)> where h is the water-depth and u, v are depth-averaged
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velocity components along x and y-direction. The total energy is given by the
depth-averaged sum of the potential and kinetic energies,

E(u) :=
gh2 + u2h+ v2h

2
. (2.14a)

The total energy plays the role of an entropy function for the SW equations.
Straightforward computation gives us the following entropy fluxes, entropy
variables and potentials.

• Entropy fluxes

F (u) = guh2 +
u3h+ uv2h

2
, G(u) = gvh2 +

u2vh+ v3h

2
; (2.14b)

• Entropy variable

v(u) =



gh− u2 + v2

2
u
v


 (2.14c)

with the Jacobian matrices, H := uv and H−1 = vu, given by

H =
1

g




1 u v
u c2 + u2 uv
v uv c2 + v2



 , H−1 =
1

h




c2 + u2 + v2 −u −v

−u 1 0
−v 0 1



 ,

(2.14d)
where c :=

√
gh is the ‘sound’ speed, or wave celerity.

• The potentials of the temporal and spatial fluxes u(v), f (u(v)) and
g(u(v)) are given, respectively, by

φ(v) =
gh2

2
, ψx(v) =

guh2

2
, ψy(v) =

gvh2

2
. (2.14e)

The general statement of entropy balance, (2.13), amounts to

d

dt

∫

y

∫

x

E(u) dxdy = −ζ
∫

y

∫

x

h(u2
x+u2

y+v2
x+v2

y) dxdy, E(u) =
gh2 + u2h + v2h

2
.

(2.15)
Since h ≥ 0, we conclude that the total energy is decreasing in time,

thus recovering energy stability. In fact, the expression on the RHS of (2.15)
specifies the precise decay rate, which is dictated solely by the viscous fluxes
through their dependence on the nonnegative eddy viscosity ζ. Our objective
in this paper is to construct “faithful” approximations to the 2D shallow water
equations, which precisely reproduce the energy balance (2.15).

3 Entropy conservative schemes - the 1D setup

Setting g ≡ 0 in (2.1), we consider the one-dimensional system of hyperbolic
conservation laws,
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∂u

∂t
+

∂

∂x
f (u) = 0, x ∈ R, t > 0, (3.1)

governing the N -vector of conserved variables u = [u1, · · · , uN ]> and balanced
by the flux functions f = [f1, · · · , fN ]>. We assume it is endowed with an
entropy pair, (U, F ), such that every strong solution of (3.1) satisfies the
entropy equality

∂

∂t
U(u) +

∂

∂x
F (u) = 0, (3.2)

whereas weak solutions are sought to satisfy the entropy inequality, U(u)t +
F (u)x ≤ 0.

We now turn our attention to consistent approximations of (3.1),(3.2),
based on semi-discrete conservative schemes of the form

d

dt
uν(t) = − 1

∆x

(
fν+1

2

− fν−1

2

)
. (3.3)

Here, uν(t) denotes the discrete solution along the equally spaced grid lines,
(xν := ν∆x, t), and fν+ 1

2

is the Lipschitz-continuous numerical flux which
occupies a stencil of 2p-gridvalues,

fν+ 1

2

= f (uν−p+1, · · · ,uν+p).

The scheme is consistent with the system (3.1) if f (u,u, · · · ,u) = f (u), ∀u ∈
R

N . Making the change of variables uν = u(vν), we obtain the equivalent form
of (3.3)

d

dt
u(vν(t)) = − 1

∆x

(
fν+ 1

2

− fν−1

2

)
. (3.4)

The essential difference lies with the numerical flux, fν+1

2

, which is now ex-
pressed in terms of the entropy variables,

fν+1

2

= f (vν−p+1, · · · ,vν+p) := f (u (vν−p+1) , · · · ,u (vν+p)) ,

consistent with the differential flux, f (v,v, · · · ,v) = f (v) ≡ f (u(v)). The
semi-discrete schemes (3.3) and (3.4) are completely identical. The entropy
variables-based formula (3.4) has the advantage that it provides a natural or-
dering of symmetric matrices, which in turn enables us to compare the numer-
ical viscosities of different schemes, consult [Tad87] for details. In particular,
we will be able to utilize the so called entropy conservative discretization of
[Tad03] for the convective part of the system of conservation laws (3.1), and
thus recover the precise entropy balance dictated by physical dissipative terms
of the underlying original systems.

The scheme (3.3) is called entropy-conservative if it satisfies a discrete
entropy equality,

d

dt
U (uν(t)) +

1

∆x

(
Fν+1

2

− Fν−1

2

)
= 0, (3.5)

where Fν+ 1

2

= F (uν−p+1, · · · ,uν+p) is a consistent numerical entropy flux,

F (u,u, · · · ,u) = F (u), ∀u ∈ R
N . Entropy conservative schemes will play
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an essential role in the construction of entropy stable schemes, by adding a
judicious amount of physical viscosity.

The key step in the construction of entropy conservative schemes for the
systems of conservation laws is the choice of an arbitrary piecewise-constant
path in phase space. We shall use the phase space of the entropy vari-
able v to connect two neighboring gridvalues, vν and vν+1, at the spatial
cell [xν , xν+1], through the intermediate states {vj

ν+ 1

2

}N
j=1. To this end, let

{rj ≡ r
j

ν+ 1

2

}N
j=1 be an arbitrary set of N linearly independent N -vectors, and

let {`j ≡ `
j

ν+ 1

2

}N
j=1 be the corresponding orthogonal set. We introduce the

intermediate gridvalues, {vj

ν+1

2

}N
j=1, which define a piecewise constant path

in phase space across the jump ∆vν+ 1

2

:= vν+1 − vν,






v1
ν+ 1

2

= vν

v
j+1

ν+ 1

2

= v
j

ν+ 1

2

+
〈
`j, ∆vν+ 1

2

〉
rj, j = 1, 2, · · · , N − 1,

vN+1
ν+ 1

2

= vν+1

. (3.6)

Theorem 3.1. [Tad03, Theorem 6.1] Consider the system of conservation
laws (3.1). Given the entropy pair (U, F ), then the conservative scheme

d

dt
uν(t) = − 1

∆xν

(
f ∗
ν+ 1

2

− f ∗
ν−1

2

)
(3.7)

with a numerical flux f ∗
ν+ 1

2

f ∗
ν+1

2

=

N∑

j=1

ψ
(
v

j+1

ν+ 1

2

)
− ψ

(
v

j

ν+ 1

2

)

〈
`j , ∆vν+1

2

〉 `j (3.8)

is an entropy-conservative approximation, consistent with (3.1),(3.2). Here,
v = Uu(u) are the entropy variables associated with the entropy U , and
ψ(v) := 〈v, f (u(v))〉 − F (u(v)) is the entropy potential.

The proof is based on the fact that the entropy equality (3.5) holds if and

only if
〈
∆vν+ 1

2

, f ∗
ν+1

2

〉
equals a conservative difference,

〈
∆vν+1

2

, f ∗
ν+1

2

〉
= ∆ψν+1

2

, ∆ψν+ 1

2

:= ψ(vν+1) − ψ(vν ). (3.9)

Indeed, (3.9) is equivalent to (3.5),

〈
vν , f

∗
ν+1

2

− f ∗
ν−1

2

〉
= Fν+ 1

2

− Fν− 1

2

, (3.10a)

where the numerical entropy flux Fν+1

2

is given by

Fν+ 1

2

=
1

2

[〈
vν + vν+1, f

∗
ν+1

2

〉
−

(
ψ(vν ) + ψ(vν+1)

)]
(3.10b)
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A straightforward manipulation of the numerical flux (3.8) confirms the de-
sired equality (3.9),

〈
∆vν+ 1

2

, f ∗
ν+1

2

〉
=

N∑

j=1

ψ
(
v

j+1

ν+ 1

2

)
− ψ

(
v

j

ν+ 1

2

)

〈
`j , ∆vν+1

2

〉
〈
`j , ∆vν+ 1

2

〉

=

N∑

j=1

ψ
(
v

j+1
ν+ 1

2

)
− ψ

(
v

j

ν+ 1

2

)
= ψ

(
vN+1

ν+ 1

2

)
− ψ

(
v1

ν+ 1

2

)
= ∆ψν+1

2

.

Although the recipe for constructing entropy-conservative fluxes in (3.8)
allows an arbitrary choice of a path in phase space, inappropriate choices of the
path may cause the computed intermediate values to lie outside the physical
space, say h < 0. A ‘physically relevant’ choice is offered by a Riemann path
which consists of {uj

ν+ 1

2

}N
j=1, stationed along an (approximate) set of right

eigenvectors, {r̂j}, of the Jacobian fu(uν+ 1

2

). Set v
j

ν+ 1

2

= v(uj

ν+1

2

), j =

1, 2, . . . , N , and let `j ’s be the orthogonal system to {vj+1 − vj}N
j=1. This

will be our choice of a path for computing entropy stable approximations of
shallow water equations in Section 5 below. The construction of the entropy
conservative flux f ∗

ν+ 1

2

follows [TZ06, Algorithm 1] which states,

Algorithm 3.1 If uν = uν+1 then f ∗
ν+1

2

= f (vν); else

• Set u1
ν+ 1

2

:= uν and compute recursively the intermediate states,

u
j+1

ν+1

2

= u
j

ν+1

2

+
〈
̂̀

j , ∆uν+1

2

〉
r̂j, j = 1, 2, 3. (3.11)

Here, {̂̀j} and {r̂j} are the left and right eigensystems of an averaged Ja-

cobian Ãν+ 1

2

, given by the Roe matrix, Ãν+ 1

2

= Ã(uν,uν+1) (see [Roe81]).

• Set rj := v(uj+1

ν+1

2

) − v(uj

ν+ 1

2

) and compute {`j}3
j=1 as the corresponding

orthogonal system. (Note that {rj, `j} is the eigen-path in v-space, corre-

sponding to the eigen-path in u-space, {r̂j, ̂̀j}.)
• Compute the entropy-conservative numerical flux,

f ∗
ν+ 1

2

=

3∑

j=1

ψ(vj+1

ν+ 1

2

) − ψ(vj

ν+ 1

2

)
〈
`j, ∆vν+1

2

〉 `j. (3.12)

4 Scalar problems

We test our entropy stable schemes with the prototype example of inviscid
Burgers’ equation. Though very simple, the inviscid Burgers’ equation is often
used as the testing ground for numerical approximations of nonlinear conser-
vation laws.
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4.1 Entropy conservative schemes

We consider the inviscid Burgers’ equation,

∂u

∂t
+

∂

∂x
f(u) = 0, f(u) =

1

2
u2. (4.1)

Any convex function U(u) serves as an entropy function for the scalar Burgers
equation. The solutions of (4.1) satisfy, at the formal level,

∂

∂t
U(u) +

∂

∂x
F (u) = 0. (4.2)

These are additional conservation laws balanced by the corresponding entropy
flux functions F (u) satisfying the compatibility relation U ′f ′ = F ′. Spatial
integration then yields the total entropy conservation (ignoring boundary con-
tributions) ∫

x

U(x, t) dx =

∫

x

U(x, 0) dx. (4.3)

We now turn to the discrete framework. Discretization in space yields the
semi-discrete scheme,

d

dt
uν(t) +

1

∆x

(
fν+ 1

2

− fν− 1

2

)
= 0. (4.4)

Clearly,
∑
uν(t)∆x is conserved. We seek a consistent numerical flux fν+ 1

2

,
that is entropy conservative in the sense of satisfying the discrete analogue of
(4.2),

d

dt
U(uν(t)) +

1

∆x
(Fν+ 1

2

− Fν−1

2

) = 0,

so that we have the additional conservation of entropy
∑
U(uν(t))∆x. Accord-

ing to Theorem 3.1, consult (3.9), such 2-point scalar entropy conservative
fluxes are uniquely determined, fν+ 1

2

= f∗
ν+ 1

2

, by

fν+ 1

2

= f∗
ν+ 1

2

:=
ψ(uν+1) − ψ(uν)

v(uν+1) − v(uν)
. (4.5)

Recall that v(u) := U ′(u) is the entropy variable associated with the entropy
pair (U, F ), and ψ(u) := v(u)f(u) − F (u) is the potential function of the
flux f(u(v)). We demonstrate the constructions of above entropy conservative
numerical flux with two different choices of entropy functions.

• We begin with the logarithmic entropy U(u) = − lnu together with the
entropy flux F (u) = −u. We use the entropy variable v(u) = −1/u. The
entropy flux potential in this case is ψ(u) = −1/2v = u/2. The entropy
conservative numerical flux (4.5) then reads,

f∗
ν+ 1

2

:=
ψ(uν+1) − ψ(uν )

v(uν+1) − v(uν )
=

1

2
uνuν+1.

This numerical flux yields the entropy conservative schemes
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d

dt
uν(t) = uν(t)

uν+1(t) − uν−1(t)

2∆x
.

This scheme was discussed by Goodman and Lax in [GL88], Hou and Lax
in [HL91], and Levermore and Liu in [LL96] in their study of the dispersive
oscillations arising in numerical solutions of the conservative schemes for
the inviscid Burgers’ equation.

• Next, we consider the family of entropy functions,

Up(u) = u2p, p = 1, 2, · · · , (4.6)

with the corresponding entropy flux functions Fp(u) = 2pu2p+1/(2p+ 1).
Using the entropy variable v(u) := U ′(u) = 2pu2p−1 and the potential

function ψ(u) := v(u)f(u)−F (u) = p(2p−1)
2p+1 u2p+1, we compute the entropy

conservative flux

f∗
ν+ 1

2

:=
ψ(uν+1) − ψ(uν)

v(uν+1) − v(uν)
=

2p− 1

2(2p+ 1)
· u

2p+1
ν+1 − u2p+1

ν

u2p−1
ν+1 − u2p−1

ν

. (4.7)

The resulting scheme (4.4), (4.7) is entropy conservative in the sense that the
discrete analogue of total entropy conservation (4.3) is satisfied,

∑

ν

u2p
ν (t)∆x =

∑

ν

u2p
ν (0)∆x.

Thus, for each p we obtain its own Up-entropy conservative scheme.

Remark 4.1. Although these schemes with the entropy-conservative flux (4.7)
admit the dispersive oscillations shown in the numerical results of Section 4.3,
we expect the amplitude of these oscillations to be reduced for increasing p’s,
as the conservation of entropies Up,

[
∑

ν

u2p
ν (t)∆x

] 1

2p

=

[
∑

ν

u2p
ν (0)∆x

] 1

2p

(4.8)

approaches the maximum principle, ||uν(t)||L∞ ≤ ||uν(0)||L∞ (the inequality
reflects the small amount of dissipation due to time discretization). Indeed,
as p ↑ ∞, the entropy-conservative schemes based on (4.7) approach the first-
order entropy stable Engquist-Osher scheme [EO80].

4.2 Entropy dissipation

To recover the physical relevant entropy inequality, that is

∂tUp(u) + ∂xFp(u) ≤ 0,

one can add numerical dissipation,

d

dt
uν(t)+

1

∆x

(
f∗

ν+ 1

2

− f∗
ν−1

2

)
=

ε

(∆x)2

(
d(uν+1)−2d(uν)+d(uν−1)

)
, ε > 0.

(4.9)
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This serves as an approximation to the vanishing viscosity regularization

ut + f(u)x = εd(u)xx, d′(u) > 0, ε > 0.

Sum this scheme (4.9) against the entropy variable vν to find

d

dt

∑

ν

Up(uν(t))∆x+
∑

ν

vν

(
f∗

ν+ 1

2

− f∗
ν− 1

2

)
= ε

∑

ν

vν

d(uν+1) − 2d(uν) + d(uν−1)

∆x
.

(4.10)
According to (3.10a), the second term on the left of (4.10) vanishes,

∑ (
Fν+ 1

2

−
Fν−1

2

)
∆x = 0. Summation by parts on the RHS of (4.10) yields

ε
∑

ν

vν

d(uν+1) − 2d(uν) + d(uν−1)

∆x
= − ε

∆x

∑

ν

(
vν+1 − vν

)
·
(
d(uν+1) − d(uν)

)
≤ 0,

since d′(v) = d′(u)u′(v) > 0, and hence (vν+1 − vν) · (d(uν+1) − d(uν)) > 0.
The resulting entropy balance that follows reads,

d

dt

∑

ν

Up(uν(t))∆x = − ε

∆x

∑

ν

∆vν+ 1

2

∆dν+1

2

≤ 0. (4.11)

Observe that the amount of entropy dissipation on the right is completely
determined by the dissipation term εd(u). No artificial viscosity is introduced
by the convective term. If we exclude any dissipative mechanism (ε = 0), then
we are back at the entropy conservative schemes of Section 4.1.

4.3 Numerical experiments

Time discretization

To complete the computation of a semi-discrete scheme, the semi-discrete en-
tropy conservative scheme (4.4), (4.7) needs to be augmented with a proper
time discretization. To enable a large time-stability region and maintain sim-
plicity, the explicit three-stage third-order Runge-Kutta (RK3) method will
be used, Consult [GST01] for more detail of its strong stability-preserving
property, 





u(1) = un +∆tL(un)

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1))

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2))

(4.12a)

where

[L(u)]ν := − 1

∆x
(f∗

ν+ 1

2

− f∗
ν− 1

2

). (4.12b)

We note that this explicit RK3 time discretization produces a negligible
amount of entropy dissipation. For a general framework of entropy conserva-
tive fully discrete schemes, consult [LMR02].
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Fig. 4.1. 1D Burger’s equation, sine initial condition, entropy-conservative schemes,
200 spatial grids, U(u) = u2p
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Continuous initial conditions

We first solve the inviscid Burgers equation (4.1) in the domain x ∈ [0, 1]
with initial condition, u(0, x) = sin(2πx) and subject to periodic boundary
conditions u(t, 1) = u(t, 0). In figure 4.1 we display the numerical solutions
for (4.12a)-(4.12b) with the numerical flux (4.7) for different choices of p.
For small values of p, the dispersive oscillations become noticeable after the
shock is generated due to the absence of any dissipative mechanism in the
entropy-conservative scheme. As p increases, the amplitude of the spurious
dispersive oscillations decreases which reflects the control of L2p-norm through
the entropy-conservation (4.8) for each p.

Discontinuous initial conditions

We solve the 1D inviscid Burgers equation (4.1) in the domain x ∈ [0, 1] with
the discontinuous initial condition,

u(0, x) =

{
2, x ∈ [0, 0.5]

1, x ∈ (0.5, 1]

The boundary values are extrapolated from the interior points.Since we are
only interested in the propagation of the shock wave in the computational
domain [0, 1], there is intercation with the boundary values which do not vary
in the time interval under consideration. In figure 4.2, we display the numerical
solutions for (4.12a)-(4.12b) with the numerical flux (4.7) for different choices
of p. Those solutions show the same pattern as the sin(2πx) initial condition.
Diminishing amplitude of the dispersive oscillations demonstrates the control
of the L2p-norm of the solution with each p.

5 2D shallow water equations

5.1 Energy stable schemes

We turn to the construction of entropy/energy-stable schemes for the 2D
shallow water equations,

∂

∂t
u+

∂

∂x
f (u)+

∂

∂y
g(u) = ζ

∂

∂x

(
h
∂

∂x
d(u)

)
+ζ

∂

∂y

(
h
∂

∂y
d(u)

)
, u =




h
uh
vh



 ,

(5.1)
with convective fluxes f = [uh, u2h + gh2/2, uvh]>, g = [vh, uvh, v2h +
gh2/2]>, and additional diffusive terms d = [0, u, v]>.

The second-order semi-discrete entropy conservative schemes (3.7), (3.8)
can be extended to two dimensional shallow water equations (5.1) in a
straightforward manner. Recall that E denotes the total energy which is serv-
ing as an admissible entropy function with the corresponding entropy fluxes
(F,G) associated with the two dimensional shallow water equations, v := Uv
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are the corresponding entropy variables (2.14c), and (ψx, ψy) are the potential
pair (2.14e). We discretize the convective fluxes on the LHS using the entropy-
conservative differences indicated in 1D setup dimension by dimension. For
the dissipative terms on the RHS, we employ the centered differences, while
the intermediate h-values are taken to be the arithmetic mean of two neigh-
boring grid-points, ĥν+ 1

2
,µ := (hν+1,µ + hν,µ)/2. We then obtain the entropy

stable semi-discrete schemes

d

dt
uν, µ(t) +

1

∆x
(f ∗

ν+ 1

2
, µ

− f ∗
ν− 1

2
, µ

) +
1

∆y
(g∗

ν, µ+ 1

2

− g∗
ν, µ− 1

2

)

=
ζ

∆x

(
ĥν+ 1

2
, µ

dν+1, µ − dν, µ

∆x
− ĥν−1

2
, µ

dν, µ − dν−1,µ

∆x

)

+
ζ

∆y

(
ĥν, µ+ 1

2

dν, µ+1 − dν, µ

∆x
− ĥν, µ− 1

2

dν, µ − dν, µ−1

∆x

)
, (5.2a)

with the entropy-conservative fluxes f ∗
ν+ 1

2
, µ

and g∗
ν, µ+ 1

2

outlined in (3.12)

along x and y direction, respectively,

f ∗
ν+1

2
, µ

=

3∑

j=1

ψx
(
v

j+1

ν+ 1

2
,µ

)
− ψx

(
v

j

ν+ 1

2
,µ

)

〈
`xj

, ∆vν+1

2
,µ

〉 `xj

=
g

2

3∑

j=1

(hj+1
ν+ 1

2
, µ

)2uj+1
ν+ 1

2
, µ

− (hj

ν+ 1

2
, µ

)2uj

ν+1

2
, µ〈

`xj
, ∆vν+ 1

2
, µ

〉 `xj
, (5.2b)

g∗
ν, µ+ 1

2

=

3∑

j=1

ψy
(
v

j+1

ν,µ+ 1

2

)
− ψy

(
v

j

ν,µ+ 1

2

)

〈
`yj
, ∆vν,µ+ 1

2

〉 `yj

=
g

2

3∑

j=1

(hj+1

ν, µ+ 1

2

)2vj+1

ν, µ+ 1

2

− (hj

ν, µ+ 1

2

)2vj

ν, µ+ 1

2〈
`yj
, ∆vν, µ+ 1

2

〉 `yj
, (5.2c)

Here, uν, µ(t) denotes the discrete solution at the grid point (xν, yµ, t) with
xν := ν∆x, yµ := µ∆y, ∆x and ∆y being the uniform mesh sizes, and dν, µ :=
d(uν,µ). The numerical flux f ∗

ν+1

2
, µ

and g∗
ν, µ+ 1

2

are constructed separately

along two different phase paths dictated by two sets of vectors {`xj
} and {`yj

}.
Finally, {uj}, {vj}, and {hj} are intermediate values of height and velocities
along paths in the phase space. The physical relevance of the intermediate
solutions along the paths needs to be maintained. To this end, we choose
to work along the paths which are determined by (approximate) Riemann
solvers. Specifically, we use the eigensystems of the Roe matrix in the x and
y directions, [Roe81, Gla87],
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Ãx =




0 1 0
c̄2
ν+ 1

2
, µ

− ū2
ν+ 1

2
, µ

2ūν+ 1

2
, µ 0

−ūν+ 1

2
, µv̄ν+ 1

2
, µ v̄ν+ 1

2
, µ ūν+ 1

2
, µ


 ,

Ãy =




0 0 1
−ūν, µ+ 1

2

v̄ν, µ+ 1

2

v̄ν, µ+ 1

2

ūν, µ+ 1

2

c̄2
ν, µ+ 1

2

− v̄2
ν, µ+ 1

2

0 2v̄ν, µ+ 1

2


 . (5.3a)

Here ū, v̄, and c̄ are the average values of the velocities u, v and the sound
speed c :=

√
gh at Roe-average state,

ū =
uR

√
hR + uL

√
hL√

hR +
√
hL

, v̄ =
vR

√
hR + vL

√
hL√

hR +
√
hL

, c̄ =

√
g(hR + hL)

2
,

(5.3b)

where the subscripts (·)R and (·)L represent two neighboring spatial grid-
points. The vector sets {r̂xj

}3
j=1 and {r̂yj

}3
j=1 are chosen to be the right

eigenvectors of the x- and y-Roe matries (5.3a) (omitting the sub/superscripts
of all averaged variables)

r̂x1
=




1
ū− c̄
v̄


 , r̂x2

=




0
0
c̄


 , r̂x3

=




1
ū+ c̄
v̄


 , (5.3c)

r̂y1
=




1
ū

v̄ − c̄



 , r̂y2
=




0
−c̄
0



 , r̂y3
=




1
ū

v̄ + c̄



 , (5.3d)

with the corresponding left eigenvector sets {̂̀xj
}3

j=1 and {̂̀yj
}3

j=1 given by

̂̀
x1

=




ū+ c̄

2c̄

− 1

2c̄
0


 , ̂̀

x2
=




− v̄
c̄

0
1

c̄


 , ̂̀

x3
=




−ū+ c̄

2c̄
1

2c̄
0


 , (5.3e)

̂̀
y1

=




v̄ + c̄

2c̄
0

− 1

2c̄


 , ̂̀

y2
=




ū

c̄

−1

c̄
0


 , ̂̀

y3
=




−v̄ + c̄

2c̄
0
1

2c̄


 . (5.3f)

We now are able to form the intermediate paths along x and y directions in
u-space as in (3.6): starting with u1

ν+ 1

2
, µ

= u1
ν, µ+ 1

2

= uν, µ, we proceed with

u
j+1
ν+1

2
, µ

= u
j

ν+ 1

2
, µ

+
〈
̂̀

xj
, ∆uν+ 1

2
, µ

〉
r̂xj

, j = 1, 2, 3, ∆uν+1

2
, µ := uν+1, µ − uν, µ,

u
j+1

ν,µ+ 1

2

= u
j

ν,µ+ 1

2

+
〈
̂̀

yj
, ∆uν,µ+ 1

2

〉
r̂yj
, j = 1, 2, 3, ∆uν,µ+ 1

2

:= uν, µ+1 − uν, µ.

The construction of the entropy-conservative numerical fluxes f ∗
ν+1

2
, µ

and

g∗
ν, µ+ 1

2

follows the algorithm indicated in Algorithm 3.1.
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Remark 5.1. We point out that in the case
〈
̂̀

j , ∆u
〉

= 0 for certain j’s in

u-space, which may cause 〈`j, ∆v〉 = 0 in v-space, hence fail Algorithm 3.1.
Arguing along the same line as [TZ06, Remark 3.5], we compute the corre-
sponding entropy-conservative numerical fluxes using the alternate formulas,

f ∗
ν+ 1

2
, µ

=
∑

{j|ξxj
6=0}

ψx(vj

ν+ 1

2
, µ

+ ξxj
rxj

) − ψx(vj

ν+ 1

2
, µ

)

ξxj

`xj
, ξxj

:=
〈
`xj

, ∆vν+1

2
, µ

〉
,

g∗
ν, µ+ 1

2

=
∑

{j|ξyj
6=0}

ψy(vj

ν, µ+ 1

2

+ ξyj
ryj

) − ψy(vj

ν, µ+ 1

2

)

ξyj

`yj
, ξyj

:=
〈
`yj
, ∆vν, µ+ 1

2

〉
,

where the right and left eigensystems {rxj
}3

j=1 {ryj
}3

j=1 and {`xj
}3

j=1 {`yj
}3

j=1

are constructed as the precise mirror images of the Roe-paths in v-space,

rx
j := [H ]−1

ν+1

2
, µ

r̂xj
, `

x
j := [H ]ν+1

2
, µ

̂̀
xj
, j = 1, 2, 3

r
y
j := [H ]−1

ν, µ+ 1

2

r̂yj
, `

y
j := [H ]ν, µ+ 1

2

̂̀
yj
, j = 1, 2, 3

where [H ]ν+1

2
, µ and [H ]ν,µ+ 1

2

denote the averaged symmetrizers such that

∆uν+1

2
, µ = [H ]ν+1

2
, µ∆vν+ 1

2
, µ and ∆uν, µ+ 1

2

= [H ]ν,µ+ 1

2

∆vν, µ+ 1

2

.

We summarize our main result on 2D shallow water equations in the following
theorem.

Theorem 5.1. Let E = (gh2 + u2h + v2h)/2 be the total energy of the 2D
shallow water equations (5.1). Then, the semi-discrete approximation (5.2a)
with entropy conservative fluxes f ∗

ν+1

2
, µ

and g∗
ν, µ+ 1

2

given in (5.2b), (5.2c),

(5.3), is energy stable, and the following discrete energy balance is satisfied,

d

dt

∑

ν, µ

E(uν, µ(t))∆x∆y = −ζ
∑

ν, µ

{
ĥν+ 1

2
, µ

[(
∆uν+1

2
, µ

∆x

)2

+

(
∆vν+ 1

2
, µ

∆x

)2
]

+ĥν, µ+ 1

2

[(
∆uν,µ+ 1

2

∆y

)2

+

(
∆vν, µ+ 1

2

∆y

)2
]}

∆x∆y. (5.4)

Observe that no artificial viscosity is introduced in the sense that the energy
dissipation statement (5.4) is the precise discrete analogue of the energy bal-
ance statement (2.15).

Proof. Multiply (5.2a) by [Uu]>ν,µ = v>
ν, µ, and sum up all spatial cells to

get the balance of the total entropy,



84 Eitan Tadmor and Weigang Zhong

d

dt

∑

ν, µ

E(uν, µ(t))∆x∆y+
∑

ν, µ

〈
vν, µ, f

∗
ν+1

2
, µ

− f ∗
ν−1

2
,µ

〉
∆y+

∑

ν, µ

〈
vν, µ, g

∗
ν, µ+ 1

2

− g∗
ν,µ− 1

2

〉
∆x

= ζ
∑

ν, µ

〈
vν, µ, ĥν+1

2
, µ∆dν+1

2
, µ − ĥν−1

2
,µ∆dν−1

2
,µ

〉 ∆y

∆x

+ ζ
∑

ν, µ

〈
vν, µ, ĥν, µ+ 1

2

∆dν,µ+ 1

2

− ĥν,µ− 1

2

∆dν,µ−1

2

〉 ∆x
∆y

(5.5)

Since the numerical fluxes f ∗
ν+1

2
, µ

and g∗
ν, µ+ 1

2

are chosen as the entropy con-

servative fluxes in x and y directions respectively, they satisfy the entropy
conservative requirement (3.10a), so that their v-moments on the left of (5.5)
amount to perfect differences,

〈
vν, µ, f

∗
ν+ 1

2
, µ

− f ∗
ν−1

2
, µ

〉
= Fν+ 1

2
, µ − Fν−1

2
, µ, (5.6a)

〈
vν, µ, g

∗
ν, µ+ 1

2

− g∗
ν, µ− 1

2

〉
= Gν, µ+ 1

2

−Gν, µ− 1

2

, (5.6b)

with consistent entropy fluxes given by (consult (3.10b)),

2Fν+ 1

2
, µ =

〈
(vν, µ + vν+1, µ), f ∗

ν+ 1

2
, µ

〉
− (ψx(vν, µ) + ψx(vν+1, µ))

2Gν, µ+ 1

2

=
〈
(vν, µ + vν, µ+1), g

∗
ν, µ+ 1

2

〉
− (ψy(vν, µ) + ψy(vν, µ+1)) .

On the other hand, summation by parts and explicit computation using the
entropy variable (2.14c) on the RHS of (5.5) yield

ζ
∑

ν, µ

〈
vν, µ, ĥν+1

2
, µ∆dν+1

2
, µ −ĥν− 1

2
,µ∆dν−1

2
,µ

〉 ∆y

∆x

= −ζ
∑

ν, µ

〈
∆vν+ 1

2
, µ, ĥν+1

2
, µ∆dν+1

2
, µ

〉 ∆y

∆x

= −ζ
∑

ν, µ

[
1

(∆x)2
ĥν+ 1

2
, µ

(
(∆uν+ 1

2
, µ)2 + (∆vν+ 1

2
, µ)2

)]
∆x∆y (5.7a)

ζ
∑

ν, µ

〈
vν, µ, ĥν, µ+ 1

2

∆dν, µ+ 1

2

−ĥν,µ− 1

2

∆dν,µ−1

2

〉 ∆x
∆y

= −ζ
∑

ν, µ

〈
∆vν, µ+ 1

2

, ĥν, µ+ 1

2

∆dν, µ+ 1

2

〉 ∆x
∆y

= −ζ
∑

ν, µ

[
1

(∆y)2
ĥν, µ+ 1

2

(
(∆uν,µ+ 1

2

)2 + (∆vν, µ+ 1

2

)2
)]
∆x∆y (5.7b)

By (5.6),(5.7), the semi-discrete energy balance statement (5.4) now follows,
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d

dt

∑

ν, µ

E(uν, µ(t))∆x∆y = −ζ
∑

ν, µ

{
ĥν+ 1

2
, µ

[(
∆uν+1

2
, µ

∆x

)2

+

(
∆vν+ 1

2
, µ

∆x

)2
]

+ĥν, µ+ 1

2

[(
∆uν, µ+ 1

2

∆y

)2

+

(
∆vν, µ+ 1

2

∆y

)2
]}

∆x∆y.2

5.2 Energy preserving schemes

In the case that the eddy viscosity is absent, ζ = 0, all the dissipation terms
on the RHS of the difference scheme (5.2a) vanish,

d

dt
uν, µ(t) +

1

∆x
(f ∗

ν+ 1

2
, µ

− f ∗
ν−1

2
, µ

) +
1

∆y
(g∗

ν, µ+ 1

2

− g∗
ν, µ− 1

2

) = 0. (5.8)

The resulting scheme serves as an energy preserving approximation to the
inviscid shallow water equations (1.2) with the discrete energy equality,

d

dt

∑

ν, µ

E(uν, µ(t))∆x∆y = 0.

Remark 5.2. We note that energy preserving semi-discrete scheme (5.2),(5.3)
may allow a substantial increase of the potential enstrophy, 1

2

∑
η2

ν, µ/hν, µ,
especially for the flow over steep topography, due to spurious energy cascade
into smaller scales, consult [AL77, AL81]. Here, η is the sum of the relative
vorticity vx − uy and the Coriolis parameter at that latitude. After a long
term integration, a significant amount of energy is transferred into the small-
est resolvable scales, where truncation error becomes relevant. It would be
desirable to adapt our energy stable discretization to retain the additional
conservation of enstrophy, advocated in [Ara97, AL81].

6 Numerical experiments for 2D shallow water equations

6.1 Boundary conditions

The numerical treatment of boundaries is intended to be as physically rel-
evant as possible. We describe two basic types of boundary conditions that
are applicable to the two dimensional shallow water problems: the first type
simulates a boundary at infinity or a transmissive boundary; the second type
applies in the presence of solid fixed walls.

Transmissive boundaries

These are cases in which boundaries are supposed to be transparent in the
sense that waves are allowed to pass through. The inflow and outflow con-
ditions need to be described, hence the method of characteristics in two di-
mension follows. The local value of the Froude number Fr := V/

√
gL deter-

mines the flow regime and, accordingly, the number of boundary conditions
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to apply. Here V and L denote the characteristic velocity and length scales
of the phenomenon, respectively. For subcritical flow, two external boundary
conditions are required at inflow boundaries, whereas only one boundary con-
dition is required at outflow boundaries. Two dimensional supercritical flow
requires three inflow boundary conditions and no boundary condition at out-
flow boundaries where the flow is only influenced by the information coming
from the interior nodes.

Reflective boundaries

This is a particular case in which the flow is confined inside a fixed field
by solid walls where we impose the reflective boundary conditions. Since our
testing problems in next section are concerned with the flow in a square basin,
without losing generality, we consider the computational domain in the upper-
right corner with the solid boundaries along x and y-direction as shown in
figure 6.1. By the three-point stencil used in our semi-discrete scheme, we try
to impose the value of one computational grid point added outside boundary.

Fig. 6.1. Right-hand boundary

The reflection is incorporated by changing the sign of the normal com-
ponent of the velocity, while the water depth is unaltered. The values at all
the (ν, N + 1) points on the right-hand side of the wall are replaced by the
values at interior (ν, N) points and sign of the normal velocity component u
is switched,

hν, N+1 = hν, N , uν, N+1 = −uν, N , vν, N+1 = vν, N ;

the values at all the (N + 1, µ) points on the top of the wall are replaced by
the values at interior (N, µ) points and sign of the normal velocity component
v is switched
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hN+1, µ = hN, µ, uN+1, µ = uN, µ, vN+1, µ = −vN, µ;

the values at all the (N + 1, N + 1) point in the upper-right corner are given
by

hν+1, N+1 = hν, µ, uν+1, N+1 = −uν, µ, vν+1, N+1 = −vν, µ.

6.2 Time discretization

Similar to the time discretizations of the Burgers’ equation, we integrate the
entropy stable scheme (5.2)-(5.3) with the explicit three-stage Runge-Kutta
method (4.12a) by its high-order accuracy, large stability region and simplic-
ity. 





u(1) = un +∆tL(un)

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1))

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2))

(6.1a)

where

[L(u)]ν,µ = − 1

∆x
(fν+ 1

2
, µ − fν−1

2
, µ) − 1

∆y
(gν, µ+ 1

2

− gν, µ− 1

2

)

+
ζ

∆x
(ĥν+ 1

2
, µ

dν+1, µ − dν, µ

∆x
− ĥν−1

2
, µ

dν, µ − dν−1,µ

∆x
)

+
ζ

∆y
(ĥν, µ+ 1

2

dν, µ+1 − dν, µ

∆x
− ĥν, µ− 1

2

dν, µ − dν, µ−1

∆x
). (6.1b)

6.3 Numerical results

We test our entropy-stable schemes with the two dimensional frictionless
partial-dam-break problem originally studied by Fennema and Chaudhry in
[FC90]. It imposes computational difficulties due to the discontinuous initial
conditions. It also involves other computational issues like boundary treat-
ments and positive-water-depth preserving solver.

As shown in figure 6.2, the simplified geometry of the problem consists of a
1400×1400 m2 basin with a idealized dam in the middle. Water is limited by
the fixed, solid, frictionless walls in this square basin. To prevent any damping
by the source terms, a frictionless, horizontal bottom is used. All walls are
assumed to be reflective. The initial water level of the dam is 10m and the tail
water is 9.5m high. Central part of the dam is assumed to fail instantaneously
or the gate in the middle of the dam is opened instantly. Water is released
into the downstream side through a breach 280m wide, located between y =
560 and y = 840, forming a wave that propagates while spreading laterally.
A negative wave propagates upstream at the same time. For simplicity, the
Coriolis force is ignored in the computation. The acceleration due to gravity
is taken to be 9.8m/s2. Although there is no analytical reference solution for
this test problem, other numerical results of similar problems are available in
[FC90, CK04].
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Fig. 6.2. Geometry configuration and initial setting of 2D Partial-Dam-Break prob-
lem

In the following figures, we display the numerical solutions for the fully
discrete scheme (6.1a)-(6.1b) with the numerical fluxes (5.2b)-(5.2c). The sum
of potential and kinetic energy serves as the generalized entropy function in
the design of our numerical schemes,

E(u) =
gh2 + u2h+ v2h

2
.

Uniform space and time grid sizes, ∆x = ∆y and ∆t are used. The com-
putational model is run for up to 50 s after the dam broke when the water
waves haven’t reached the boundaries. Both inviscid and viscous cases are
explored. For the viscous cases, the eddy viscosity is taken to be 10m2s−1.
We use different spatial resolutions for the same problem, and adjust time
step according to the CFL condition.

We first solve the inviscid and viscous shallow water equations on the
computational domain consisting of a 50×50 cell square grid with∆x = ∆y =
28m. We group our numerical results of inviscid shallow water equations along
the left column of figure 6.3. For comparison, the results of viscous shallow
water equations with eddy viscosity ζ = 10m2s−1 are summarized on the
right column. The first and second row of figure 6.3 depict the perspective
plots of water surface profiles at t = 25s and t = 50s respectively. Remnants
of the dam are represented by jumps near the middle of the plot. The vertical
scale is exaggerated with respect to the horizontal scales. We observe that the
numerical solutions of the water depth in figures 6.3(a) and 6.3(c) successfully
simulate both the circular shock water wave propagations and the vortices
formed on the both sides of the breach. The undershoots are also developed
near sharp corners of the remanent dam. These steep degressions in the water
surface are noticeable downstream of the breach at t = 50 s. Similar numerical
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tests were done in [CK04] by the second-order central-upwind schemes, which
were originally proposed in [KT00].

For the inviscid shallow water equations, dispersive errors of the numerical
schemes, in the form of spurious oscillations in the mesh scale, are noticeable
near the breach in figures 6.3(a) and 6.3(c). For the viscous shallow water
equations, as shown in figure 6.3(b) and 6.3(d), the presence of eddy viscosity
causes the oscillations to be dramatically reduced around the breach. In ad-
dition to eliminating the wiggles, the eddy viscosity terms also single out the
undershoot near sharp corners of the remnants of dam without damping it.

We display the total entropy scaled by 104 versus time in figure 6.3(f).
Compared with the same entropy plot of the inviscid problem in figure 6.3(c),
the plot of total energy in figure 6.3(f) reveals a O(1) energy decay due to
the presence of eddy viscosity, while the negligible amount of energy decay
introduced by RK3 time discretization for the inviscid shallow water equations
is not detectable under the same scale in figure 6.3(c).

Next, in figure 6.4, we display the numerical solutions of the same problem
in the refined spatial mesh with ∆x = ∆y = 14m. Following the same pattern
as in figure 6.3, figure 6.4 presents the perspective plots and total energy versus
time. For the inviscid case, the profiles of the water elevation in figure 6.4(a)
and 6.4(c) demonstrate smoother numerical solutions due to the decrease
of the grid size, while the spurious oscillations in the mesh scale are still
detectable near the breach because of the energy-preserving shallow water
solver with the increase of the total enstrophy. For the viscous case with
ζ = 10m2s−1, figures 6.4(b) and 6.4(d) show the smoother solutions than
inviscid solutions in figure 6.4(a) and 6.4(c). The amplitude of those wiggles
near the breach are significantly reduced though they are still detectable.
Further refinement of the mesh from (100×100) to (200×200) generates very
smooth solutions of the water depth h in figures 6.5(a) and 6.5(b), when the
oscillations are limited in the very small mesh scale.
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