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A spectral collocation method is used to solve an atmospheric gravity
wave simulation problem, modelled by the non-linear, inviscid, two-
dimensional Euler equations including gravity. The non-linear transfer
of energy to higher frequencies will destroy the long-time calculations
if no energy dissipation mechanism is introduced in the numerical
method. The spactral viscosity method is applied for this purpose, and
we discuss implementation aspects, effects on the resulting system of
ordinary differential equations, tuning of parameters, and evaluation of
results. An implementation is found that works well also for larger
simulations, and guidelines for the application of the method are
given, € 1934 Academic Press, Inc.

1. INTRODUCTION

Spectral methods have been highly successful in simula-
tions of fluid flow where high accuracy is required. Among
the reasons for this success js the non-dissipative and non-
dispersive character of the methods, which makes it possible
to do calculations over large scales and long times and still
retain high accuracy. However, the absence of numerical
dissipation also introduces problems, which is the issue of
this paper.

We consider an atmosphere modelled by the inviscid,
compressible Euler equations with a gravity term included.
The density and pressure of the steady-state solution decay
exponentially with the height, and this stratification gives
rise to increasing amplitudes of gravity waves and sound
waves with height. Gravity waves are belicved to play an
important role in the energetics of the atmosphere [8]. The
system of partial differential equations expressing the
metion in an ideal fluid is non-linear and hyperbolic, a com-
bination which often introduces shocks in the solution. In
the atmosphere, the sound waves will in some special situa-
tions appear as shock waves while the gravity waves will
develop vortices and turbulent structures as the non-
tincarities become important. The situation studied in this
paper does not involve shocks, but the non-linear terms in
the equations will transfer energy to higher frequencies. The
natural dissipation scale in this case is much smaller than

the typical length scale of the phenomena of interest, so
it is presently beyond reach to represent both scales in a
caiculation.

In a numerical simulation using a spectral method, the
energy that is transferred to the highest frequencies will,
unless it is taken care of in some way, be reflected back to
the lower frequencies and destroy even the large-scale struc-
tures of the solution. This problem can be approached by
trying to model the effects of the physical processes acting
on smaller scales than those represented in the simulation
(e.g., [6. 17, 18]}, or by trying to solve the original hyper-
bolic equations as accuralely as possible (c.g., [3, 22]).

This paper contains an application of the spectral
viscosity (SV) method to the simulation of gravity waves.
The SV method was introduced by Tadmor in [22] and is
a way to stabilize spectral solutions of non-linear hyperbolic
PDEs by adding small artificial, frequency-dependent
viscosity terms to the equations. We hope that the results
and conclusions presented in the present paper wili be
valuable in applications of the SV method.

The basic numerical method is a two-dimensional spec-
tral collocation method [4] with a Fourier expansion in the
horizontal direction, which is assumed periodic, and a
Chebyshev expansion in the vertical direction. The SV
method with Chebyshev basis functions has previously been
less studied than with Fourier and Legendre expansions.
The computational domain is divided into two subdomains
using characteristic interface conditions to match the
solutions and open boundary conditions based on
characteristics which are applied at the upper and lower
boundaries [24]. The solution is advanced in time by a
sccond-order Runge-Kutta method with variable time-
steps, which also serves as an important tool to monitor the
calculations and to aid thc tuning of spectral viscosity
paramcters.

The paper is organized as follows. The background for
the physical model and the processes acting in the situation
that is used as a test case in this paper are presented in
Section 2. The basic numerical method is outlined in
Section 3, and the spectral viscosity method is described
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in Section 4. Section 5 discusses the system of ordinary
differential equations resulting {rom the spectral discretiza-
tion in space, suitable solution methods, and the effect of
spectral viscosity. Results from numerical calculations,
together with discussions of parameter tuning and other
guestions encountered in the application of the SV method
are presented in Section 6, while Section 7 contains the
conclusions.

2. THE PHYSICAL MODEL

The physical model problem which we will use as a test
case for the numerical algorithms is a strongly non-linear
gravity wave/wind shear interaction problem (7]. Consider
a stratified fluid containing a horizontal wind with a verti-
cally increasing speed such that at a certain height &, the
velocity is V.. Consider a gravity wave with horizontal
phase speed V', = V.. An observer moving with the fluid at
level i, will see a stationary medium. As described in detail
in [7] the energy and momentum of the wave is piled up
below the level h = h, called the critical level. The speed V',
is called the critical speed. The wind shear acts as a filter
blocking the waves, with neglectable transmission and
reflection of energy upwards and downwards. As the energy
and momentum density increases, non-linear effects become
increasingly more important. The amplitude and the shear
of the wave field increases until instabilities set in and cause
the wave field to break up. The ultimate state of develop-
ment of this process is turbulence.

The physical evolution of turbulence as a result of gravity
wave breaking is correctly described only in three dimen-
sions [1], but for experiments with the numerical method it
is sufficient to consider a two-dimensional model. The
model presented here consists of the equations for conserva-
tion of mass, momentum, and energy describing non-linear
dynamics in an inviscid, compressible, plane parallel,
stratified fluid, where the motion-is assumied to be adiabatic:

dp
- 4+V. =0
5T (pv)=0,
dv
—=-V F, 1
P ptpgt+ (1)
dp
= v=0
m+w7v ,

Here v is the velocity, p is the density, p is the pressure, g is
the acceleration of gravity (|g| = g), and y is the ratio of
specific heats. We have non-dimensionalized all variables
with respect to the density scale height H, the sound-speed
c,, with ¢2=vgH, a time scale Hjc,, and reference tem-
perature T, density p,, and pressure p, all compuied at the
lower boundary of the model. With these choices, the
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isothermal Brunt-Viisili frequency squared become N =
(v— /.

The pressure and density are related to temperature
through the equation of state for an ideal gas, p = pRT, and
we use the potential temperature 8 = T(po/p)~/* as a tracer
of fluid motion. The reason that this can be used is that for
adiabatic motion, the potential temperature is preserved for
each fluid element. The potential temperature is constant
for an atmosphere in adiabatic equilibrium, for which the
gradient dT/dz= — gfc, =« When the gradient becomes
super-adiabatic (d7/dz <), the atmosphere becomes
convectively unstable and df/dz < 0. When a gravity wave
breaks, some local patches of its field may become super-
adiabatic. Then df/dz changes value to negative in these
patches and this is seen as “overturning” of the isojines of 8,
as seen in Fig. 3. The isolines of & outlines the phaselines of
the material displacement in the gravity wave field as long
as the motion is adiabatic.

Cartesian coordinates (x, z) are used, with the x axis
pointing along the horizontal direction while z points
vertically opposite to the direction of g. We consider a
computational domain that is four scale heights wind and
five and a half scale heights high.

To excite the waves, a force F = f(x, z, t) Z is smoothly
turned on, held at a constant amplitude and smoothly
turned down to zero. This is done to avoid transients in the
solution. The function f1s given by the expression

f fo~/1/10.0 expl —(z — 8)*/c*} sin{ew? — kx},
0= <100,

foexp{ —(z~ 8)*/6°} sin{wt —kx},
100 < ¢ £ 50.0,

Jo /(500 — 1)/10.0 exp{ —(z — 8)%/0?}

xsinf{wr—kx}, 500 <:<60.0,
\0.

60.0 < ¢.

Here f;=0.02 is the forcing amplitude, 4 =3 is the height
from the lower boundary of maximum force, and o =0.5
expresses the width of the force. The frequency is w = n/10,
which is well below N to make sure that the waves are inter-
nal gravity waves, and the wavenpumber is k = n/2, making
the hotizontal phase speed V,=0.2.

As the initial condition we assume a horizontal mean
motion

f(xazs 1‘):

P

a, 0xz<4,
wt=0)=Ug(z) =< 0.2(1 + cos{n(i+ ($(55-2)/1.5)},
4<zg55

This function is selected such that the velocity Uy(z)atz=35
is equal to the horizontal phase speed ¥, of the generated
waves to form a critical level. The instability and the region
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of development of the non-linear phenomena is then
positioned well within the boundaries of the domain.
It is assumed that the fluid is initially isothermal and in
hydrostatical equilibrium described by

9 _
dz

z

ie, p(z)=gpoe ™~

plzy=poe™7,
(2)

The strong non-linear effects occurring around the critical
level lead to a fast cascade of energy from large to small
scales. In nature the cascade continues until a viscous scale
is reached and the energy is dissipated. When modelling the
atmosphere and ocean, the variety of scales from the largest,
where energy is injected {buoyancy scales, which are the
scales of internal waves} down to the smallest scales
(viscous scales), where the energy is dissipated, is very large.
Therefore we have to limit the treatment to scales which can
be handled and hopefully are of importance for the problem.
That is, to the buoyancy scale and at best to some of the
inertial scale, where the turbulence is generated.

Equations (1) could contain dissipation terms V(v - Vv}in
the momentum equation and V{(x - VT') in the energy equa-
tion: v is the kinematic viscosity coefficient, k is the thermal
diffusion coefficient, and the ratic of these is the Prandtl
number, ¢ = v/x, which is x0.7 for the earth’s atmosphere
[13]. As explained above, the physical values of v and x as
measured for air are too small to make any impact on the
numerical calculations. 1f larger values are assigned in order
to stabilize the numerical scheme, we proceed as follows to
retain a sensible “numerical” Prandtl number: The non-
linear effects dominate at a height of five from the lower
boundary of the model, and the requirement of damping is
therefore strongest at this height. All variables are scaled
according to values at the lower boundary of the model. The
diffusion equations u,~vV?u and p,~x V?T determines
the magnitude of the damping. For gravity waves with small
amplitudes we can write T= 1/y+ (1 — 1/y) e”?, and the
pressure perturbation goes like de =2 To give a uniform
thermal damping, x should vary like x(z)=x,e~ % From
the diffusion equation for velocity it is apparent that the
viscosity is scaled to be the same at all heights. To scale the
“numerical” Prandtl number to around 0.7 at the lower
boundary, we should have v(z=5)/k(z=5)=v,/kpe &
0.7¢% = 104. I a constant value of x is used, the ratio v/x
should therefore be around 100 to obtain a good balance of
the dissipation terms at z ~ 5.

3. THE NUMERICAL METHOD

We use a spectral collocation method [4], where the
numerical solution is sought in the function space 1, y=
Sy ®Py, where S, =span{e™ | —-M/2<m<M/2—1}
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and Py=span{x"|0<m<N}. A function in V, , is
denoted by a superscript ¥ and can be represented by its
values at the collocation points

X, =2kn/M, 0<hk< M, 3)
z2,=cos(In/N), 0<ILN,
given by the double sum
Mi2—1 N )
W)= 3 Y Gue™T(z), (4)

m=—M{2 n=0

where T,{z)=cos(rarc cos(z)) is the Chebyshev polyno-
mial of order .

The physical situation described in the previous section
suggests this use of periodic basis functions in the herizontal
(x) direction, because the background wind profile is con-
stant in x, and the generated gravity waves can naturally be
considered periodic. The vertical (z) direction is aperiodic
due to the gravity, therefore the Chebyshev basis is chosen.
Chebyshev polynomials are preferred to Legendre or other
sets of orthogonal polynomials because of the possibility of
using fast Fourier transforms in the implementation.

The numerical approximations of the physical variables
are denoted p*, »%, v, and p¥, and the equations to be
solved can be written in vector form as
G110 au” B au’
at T4 dx + 8z

b, (5)

where

e o @ 0 1jp”
1o 0o & 0 [
0 yw¥ 0 ¥
w0 p¥ o0
v
B 0 v OV OV ’
0 0 v 1/

0 0 ¥ v

4

h= (05 01 — & O)T:

with given initial conditions, and boundary conditions
described below at the upper and lower boundaries. The
space derivatives in (5) are calculated by exact differentia-
tion of the components of /¥, and when we require (5} to
be satisfied at the coliocation points (3), (5) define a coupled
system of 4M({N+ 1) ordinary differential equations for
the grid peint values (or, equivalently, for the spectral
coefficients). The solution of this ODE-set is discussed in
Section 5.
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To reduce the amount of work needed to calculate the
space derivatives, the computational area is split into two
domains, one above the other. This domain decomposition
permits the use of higher resolution in the area around the
critical level than in the more regular areas of the flow. The
same effect could be achieved by a coordinate trans-
formation, but the decomposition is computationally more
efficient. This is because the calculation of each of the spatial
derivatives in the vertical direction requires @(N log N)
operations even with FFT (and @(N?) with matrix multi-
plication), but also because the stability restriction on the
time-steps is of order 1/N* when N is the number of colloca-
tion points in the Chebyshev direction. Of course, the
resolution in both domains must be sufficient to resolve the
important features of the solution. We know that two grid
points per wavelength are needed in the periodic direction,
and if the Chebyshev direction contains » wavelengths the
number of grid points should be at least nn [9]. The next
section discusses how to avoid underresolved calculations,
and as long as this is achieved we follow the discussion in
[4] and neglect aliasing errors.

At the domain interface we consider a quasi-one-dimen-
sional linearization of Egs. (1}, where horizontal derivatives
are ignored and the coefficients are frozen at each time-step.
This system of equations is on the form

U+ BU,=b,
where B is the matrix of the frozen coefficients. This system

has the following cigenvalues {A;}}_, and characteristic
variables {y}7_:

A]_:U_d, ;’-2:;13=f5, Aq=ﬁ+é, (6)
Illl= _ﬁ&v+Ps '\[’2=us (7)
Ws=p—p/a®,  da=pav+p.

The hats indicate values at the previous time-step, and
d=./vp/p is the sound-speed at the previous time-step.
After each time-step of the ODE-integration, a boundary
correction procedure is invoked, where the characteristic
variables are calculated using values from the “upstream”
domain (determined by the sign of the corresponding
eigenvalues). Equation {7} then gives four equations for
the determination of the four physical variables at each
boundary point.

The same principle is used at the upper and lower
boundaries. We want these boundaries to be open, such that
waves approaching the boundaries will leave the computa-
tional domain without reflections. As discussed in [24],
incoming “fast” characteristics (corresponding to the eigen-
values 4, or A,) arc given their hydrostatic background
values from (2). “Slow” incoming characteristics (corre-
sponding to the eigenvalues A, and A,) are given values
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from the interior points closest to the boundary points.
This boundary treatment works well for sound waves
{demonstrated for circular sound waves in [24]), but it
gives some reflections for large amplitude gravity waves.
However, this is not a problem in the physical situation we
consider here, because downwards propagating gravity
waves are exponentially damped by the stratification of the
atmosphere, and the critical level formed by the shear flow
acts as a barrier for the upward propagation of gravity
waves. As a result, only small amplitude gravity waves reach
the upper and lower boundaries, and they are handled
satisfactorily by these boundary conditions.

4, THE SPECTRAL VISCOSITY METHOD

We will briefly describe the spectral viscosity method in
this section. For non-linear conservation laws, the solution
of the standard spectral method does not converge to the
correct entropy solution if the solution contains shocks.
Some small artificial viscosity can be added to the model
such that the solution will converge to the exact and physi-
cally relevant solution as the viscosity tends to zero. If the
viscosity coefficient decreases as the number of grid points
increases, a finite degree of accuracy can be obtained.
Tadmor [22] introduced the spectraily vanishing viscosity,
which in addition acts oniy on frequencies higher than a
certain threshold frequency, and it was shown that the
method did converge to the unique entropy solution for the
inviscid Burgers’ equation, assuming that the solution was
uniformly bounded. Spectral accuracy was obtained by
letting the threshold frequency increase with the number of
points. Further studies of the convergence of the method
mcludes [15, 16, 19, 21], and the conditions are given in
{237 as follows:

Consider the 2n-periodic system of conservation laws

Ju(x, t)

0f(u)

=0,

T E u(x,0)=ulx),  (8)
together with a given entropy condition, and apply the SV
method on the form .

™ 3 N d du”
Gt P e (04 55),

wV(x, 0y =u(x),  (9)

where u"=u"(x, )=3)_ , a(t)e™ is the numerical
solution and P, is a projection operator upon the space of
trigonometric polynomials of degree N. The right-hand side
of (9) involves the convolution of the spectral viscosity
kernel

Q=0(x.t)= Y  kQ)e* (10)

mys |kl N
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and the first derivative of «”. In spectral space, this right-
hand side is caiculated as

—ey z

my< kil N

K20,(1) a(r) e, (11)

The parameters in the SV method are the viscosity
amplitude &, the coefficients ,(¢), and the frequency m,,
where the viscosity starts to act. The dissipation introduced
through the spectral viscosity term must be large enough to
ensute that %" converges to the entropy solution of (8) as
N = oo and smali enough to retain spectral accuracy. If
is uniformly bounded ({/4”|| ;. ,, < C), then convergence is
obtained if

.

exz /N, -
N

O, = Const —

The spectral viscosity term (11) is kept spectrally small and
spectral accuracy is retained, if

(13)

By~ —

1
5 and  m,~N¥, ﬁ<§.

The SV method with Chebyshev polynomials has not yet
been fully analysed, but the following implementation of the
viscosity term has been suggested by Tadmor (private
communication) [20]:

Ey O u?
————{ R *
w(x)” 53‘( W(x)q)
N

HJ= Z

w(x)fl my <i< N

with R+ Rb(1) T,

(14)

In (14), w(x)= (1 — x*)~ ' is the Chebyshev weight func-
tion, the exponents p and g are parameters to be chosen
later, and 3. , (1) T, is the Chebyshev representation of
the weighted first derivative I/w(x)” u?Y. The parameters
can be chosen as [20]

1
8N~_!

N

My~ N

(15)
. my\2
szlﬁ(—f-') for k>m,.

To apply the SV method to the problem (1), spectral
viscosity terms must be added to Eqgs. (5). These terms are
denoted by tildes and subscripts xx or zz, where

(16)
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Different kinds of spectral viscosity terms can be added to
the inviscid model (5), and a straightforward choice is to
add the following vector at the right-hand side:

4

xx

~ ¥ ~ ) ~p ~ ¥ ~
(EMpxx+8Np225 EMuxx+SNu::5 Epl

+€NE:st8Mﬁ_l:x+BNﬁr)T' (17}

Another possibility is to mimic the physical diffusion terms
and use

~ ~ ~ ~ sl d T VAT
(0’ SMux.r+£Nuz:’ anxx+gNDz:= K Tx.r+ Ky Tzz) >

(18)

where TV=p¥/p" is the normalized temperature, and
Ky, Ky are Sspectral thermal diffusion” amplitudes.
Regardless of the physical origins of the diffusion terms, like
viscosity or heat diffusion, they will be called spectral
viscosity terms in the following. The use of (17} and (18) are
compared in the numerical experiments in Section 6.

5. THE ODE-SOLUTION

In this section we will describe the application of
ODE-solvers to the ODE-system resulting from a spectral
discretization in space and discuss accuracy and stability
properties with and without spectral viscosity.

As a model problem consider the linear hyperbolic system
AeR¥*E

u,+ Au,=b, (19)

and its discretization by spectral collocation with A points:

u¥+(A® D)yu™ =B, u” e RV, (20}
where D is the derivative matrix, see, e.g., [ 4]. The operator
® is the Kronecker product, see, e.g., [12, Chap. 12].

The Jacobian of this ODE-systemis J= -4 & D and it is
well known that J is full and that the spectral radius is
p(N)=0(N?) in the Chebyshev case and O(N) in the
Fourier case, thus indicating stiffness for large N. In two
space dimensions the Jacobian is of the form:

A,RLAD A+ A4,0D,R1,,

where A,, A, are coefficient matrices, D, and D, are
derivative matrices in the x- and y-direction, respectively,
and I, 1, are identity matrices. We sec that the spectral
radius of this Jacobian is not larger than the sum of the spec-
tral radii for the on¢-dimensional problems. The choice
between explicit or implicit methods is not trivial for
spectral discretizations. Using a conventional implicit
ODE-solver with modified Newton iteration to solve the
non-linear equations is very time-consuming, because the
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Jacobian and hence the Newton matrix is full. For large N
the method is not useful in practice since most ODE-so6lvers
use direct methods to solve the linear equations in the
Newton iteration. In [14] we have shown how to use an
implicit solver with an iterative solver for the linear systems.
This seems to work well, provided one can find appropriate
preconditioners. For some test problems the time-steps
using an implicit solver were much Jlarger than for an
explicit method, see [14], so if the ODE-system is stifl in a
large part of the integration interval such implicit methods
can be an interesting alternative. If the solution vanes
rapidly throughout the integration interval, explicit
methods will usually be more efficient since they are much
cheaper computationaily and the time-step is often
constrained by accuracy rather than stability.

One additional point to this discussion is the boundary
treatment. As explained above, a boundary correction
technique is used, correcting the boundary values after per-
forming a time-step. Such a procedure is not meaningful for
implicit methods. This point is addressed in [5] and further
analysed in [ 2], where the resulting ODE-system including
the boundary conditions is given in a closed form for
general quasi-linear hyperbolic systems.

In the following we will discuss the use of explicit solvers
only. There exist quite a few good codes based on explicit
methods; some of them are mentioned in [10]. We use the
following terminelogy: For a generic ODE-system

U=/, U);

the term function evaluation means the evaluation of the
right-hand side of the ODE-system. Important issues in
choosing ODE-solvers are the accuracy requirements and
the cost of a function evaluation. In our case the acuracy
requirements are moderate in the ODE sense (error
tolerances set to 10~*-107%, say) and the cost of a function
evaluation is high, hence pointing to a low order method.
We have to use a one-step method because of the boundary
correction procedure. The widely used Runge-Kutta codes
RKF45 and DOPRI5(4) (see [10]) uses 6- and 7-function
evaluations per step, respectively, which we regard as too
costly. We have chosen to use the second-order improved
Euler scheme, here called RK2, with the following Butcher
tableau:

(21)

We want to use variable time-steps, and since the first stage
of the method is a forward Euler step we may use embed-
ding and local extrapolation (see [10, SectionIl.4])
denoted by RK2(1). However, for our purposes we prefer to
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use the RK2(3) scheme, with Butcher tableau shown below,
because the time-steps chosen were larger than for RK2(1),
giving a smaller total cost in terms of CPU time:

0o

IS

172 | 174 174 (22}
b 172172

b | 1/6 1/6 4/6

If y, . is the result of the improved Euler step and §, ,  is
the result of the error estimation, the logic for determination
of the time-step is based on the size of the error indicator
lens il =1¥ns1— Fnsill with an appropriate norm (for
examples of this technique, see [10, Appendix ]).

The stability plot of the basic scheme is shown in Fig, 1,
As mentioned above, p(J)= O(N?) and with the stability
region as shown, the typical and well-known stability
restriction on the time-step is O(N ~2).

In order to study the accuracy characteristics for the
RK2(3) scheme in more detail, we compute the error term
for the model problem. Let M =A4® D, denote by U, the
vector of unknowns at time ¢, and let 4 be the current
time-step: k=1, , —t,. The stage values are

Y1= U",

h
Y,=U,~5 MU, +5,

h h h
Y;= U,,+Z(—2MU,,+2B+5M2U,,-»§MB).

Im
1
2 -1 Re
FIG. 1. Stability plot for RK2.
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The error term is now

h3
rer =5 ks 4y = 2h) = M~ MU, + B), (23)
where k;= f{r, ¥,) (cf. the generic ODE-system).
Looking at a single equation
U,+alU=8, aeC, (24)
the time-step is chosen such that
h3
EiwlaP U, +la|* Bl zatol +rtol |U,,]. {25)

where arol and rtol arc the absolute and relative error
tolerances, respectively. Letting 8 =0, we see that

(12 rto)!/?

atol €rtol |U,| = h, =~ o (26)
a
12 ato\ ' 1
atol » rtol (U, =h z( ) — 27
(U, =h, A ] 27)

We want to choose the error tolerances such that the time-
step will be the largest possible. Note that for an ODE-
system we may choose the error tolerances individually for
each component, so it is appropriate to discuss the scalar
case. We see that pure relative error control is not efficient
for [U,| small, since |U,| does not enter in the expression
(26). The time-step ki, 1s larger than A, for |U,] small and
atol ~ rtol; hence mixed error or absolute error control is to
be preferred. In the case B # 0 we will reach almost the same
conclusion: The mixed error control is the most efficient.

If the Jacobian is diagonalizable, the ODE-system in (20)
can be transformed into a set of scalar ODEs of the form
(24) where o represents the eigenvalues of the Jacobian.
From (26) and (27) we then see that the time-step is deter-
mined by the equation with the largest |a] in this set with
non-negligibie solution component. For example, if com-
ponents with large |g] (“high frequency”} have small
amplitudes in the first phase of the integration, but will
obtain larger amplitudes in a later phase, the time-step will
drop, provided that the time-step is accuracy-bounded. This
explains the drop in time-step in a non-linear system in a
phase where “energy” is transferred from low to high
frequencies. On the other hand, the time-step restriction by
stability is independent of the amplitude of the solution
components; this constraint is in action throughout the
integration interval.

To sum up, the time-step behaviour is determined by
the stability restrictions as well as the “frequency” and
amplitude of each solution component,

Consider now the behaviour of the different solution

58i/110/2-5
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components during a typical simuiation run, using an
explicit method for time integration. The acoustic waves
{which are of no interest in the present context) will deter-
mine a stability restriction throughout the integration inter-
val. The time-steps are accuracy-bounded by the acoustic
waves in the transient region, i.e., until these waves have left
the simulation domain. The amplitudes of the gravity wave
components are fairly small before the more turbulent state
is eached and these components will not restrict the time-
step in this region. With an implicit ODE-solver we may
expect to obtain larger time-steps in the (comparatively
long) interval where the time-step is mainly stability-
restricted. When the turbulent state is reached, components
with high spatial frequencies increase in amplitude and, if no
damping mechanism is introduced, the time-step will be
dropping because of the accuracy requirements of these
components.

Before we discuss the time integration aspects of the 8V
method, let us briefly present the quasi-linear model
problem:
ue R¥

u,+ Au)u,=b, {28)

If we discretize in space by spectral coliocation, we obtain

{dlag(ag(u )) Lj=1 (llc@D)uN:B' (2‘9)

Note that a;(u") have values in R" such that the matrix
diag(a,-j(u“’ ))is a kN x kN diagonal matrix. The Jacobian is
now

J = —{diaglay(™)},_, - (L ®D)

N
_{diag( S Dul O 6 ; ))} , (30)
—1 Li=1

where u™ = [uV, .., u}]), u¥ e R”, and © denotes the com-
ponientiwise product of two vectors in R”, The non-linearity
enters in the second term, and in general it is difficult 1o
determine whether its contribution is significani. Two
important issues in this context are how fast the solution
components vary and the form of the derivatives in the term.

Spectral viscosity is a means to reduce the buildup of
solution components with high spatial frequency, and we
can therefore expect a less dramatic time-step reduction
when the unperturbed problem contains solutior com-
ponents with high frequency.

We consider the SV method of the form {14) applied to
the model problem,

u+A(uN)al=—gﬂ—i(R y )+B (31)
éx  w{x)” dx wix)?
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where

u? .-
R* X = Z R,;.kak.

w(x)q my<k <N

(32)

w(x} is the Chebyshev weight function, and ¥.%_, BT, is
the Chebyshev representation of the weighted first
derivative 1/w(x)? u?.

We will now express the spectral viscosity term in matrix
form in order to find the Jacobian matrix for the discretized
systemn. Let wl = {{uy(x;)} 7o, - {5 (x)} 7.0} ) Then
we have w¥={(/,®@F ~'}b, where b is the vector of
Chebyshev coefficients and & is the (nonsingular) trans-
formation matrix. Hence we obtain b= (/,® %) u®. The
spectral derivative is computed as ' = (£, ® D) u” and the
viscosity second derivative corresponding to the convolu-
tion above is denoted by &Y, = (I, ® D} - (I, ® D) u™.

From the definition we have: #% =(,®D).
(LRF 1-(b (3 R}, where (O denotes the componentwise
product. Then

il=®@D)- (L@F (L, @F) - ([,®D)u" OR)
=(,®D)-(1,®@F ") -diag(R) - (L ® F D) u"

=(,®D)-&-(I,@D)u", (33)
where £ =(I, ® # ~*) . diag(R)- ([, @ F).

For the quasi-linear model problem we then obtain the
spectral discretization

ul + {diag(a, (u" N} (I, ® D)y u™

=,®D)-&-(I,@D)u"+B. (34)
The contribution to the Jacobian from the spectral viscosity
term is {for both linear and quasi-linear problems):
(L,@D) - &-(I,®D). The question is now what spectral
properties this modified Jacobian has, because that deter-
mines the stability restrictions for the ODE-solution. It
seems difficult to try to determine the spectrum of the
modified Jacobian directly, so we will investigate it numeri-
cally as a part of the experiments reported in Sectien 6.

We may also compute the error term for the quasi-linear
model problem, but it is not given here because it is fairly
complicated and no further insight seems to be gained from
that complicated expression. The derivation is entirely
similar to the linear case.

If we write the Jacobian with spectral viscosity as

Jegy=Jo+ep I @D)- & (I, @ D), (35)

where J, is the Jacobian given in (30) and &, € R, we can
regard the spectral viscosity term as a perturbation to the
original matrix: J{ey)=Jy + enJ,. We can thercfore use a
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theorem due to Motzkin, see [11, p. 967, saying that if J(¢ )
is diagonalizable for all e, then ‘

A(H(en)) = AJo) +enild, ). (36)
Hence the problem reduces to find A(J,) {which is far from
trivial) since it is assumed that we know A(J,). In the cases
where & is small (say 1/N or smaller) the centribution to
the spectrum from the perturbation will be modest. As the
parameters in {15) suggest and from what the numerical
experiments below show, &, have to be fairly small in order
not to perturb the solution. Hence we can expect that the SV
method will not alter the stability restriction significantly;
its main effect will be to prevent energy from being built up
on higher frequencies.

6. NUMERICAL RESULTS

The numerical method described in the previous sections
is applied to the problem of gravity wave/wind shear inter-
action outlined in Section 2. The two computational
domains are illustrated in Fig. 2. Gravity waves are
generated in the forcing layer in the lower domain, and the
wind profile is chosen such that the critical level is formed
in the middile of the upper domain. All results presented will
be from the upper domain, where the most interesting
features of the solution are found.

We first present calculations with the inviscid modet {3}.
The evolution of potential temperature with 128 x 129
collocation points in each of the two domains is shown in
Fig. 3. Initiaily, the level curves are equidistant horizontal
straight lines, but at ¢/ = 40 they are almost vertical in a part
of the domain, indicating adiabatic equilibrium (df/dz = 0).
As the simulation proceeds, the waves “break™ and local
convective instabilities occur, leading to a more complex
pattern. Figure 4 shows the time-steps chosen by the adap-
tive ODE-solver for calculations with different numbers of

-l
b

Q, Wind shear

Forcing layer

S

@ ]
X

FIG. 2. ‘The two computational domains of the numerical calcula-
tions, with forcing layer and area of wind shear.
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Inviscid, 128x128, t= 20.00
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Inviscid, 128x129, t= 40.00

Inviscid, 128x129, t= 64.00

FIG. 3. Level curves for the logarithm of potential temperature, inviscid model.

points. In the first phase of the calculations, the time-steps
are chosen according to stability considerations, and we
obtain At~ 6/N? where N is the number of points in the
vertical {Chebyshev) direction. But as the instabilities start
to dominate, the time-steps are restricted by accuracy
requirements, and drop quickly. The stability-restricted
" period is longer for finer grids, but when the time-steps start
to drop they drop faster for the finer grids, because higher

—‘157
24x25
—2p{ T -
g 48x49
Eopso______4Bx49 el e )

%] N
! .

E K N
= -3.04 96x87 * :

o A .

° s
T35+ \‘.
]

—4.0-
—~4.5 T T l T T T Y 1t

0 10 20 3 4D S0 B0 70 8D

FIG. 4. Time-steps for different numbers of points, inviscid modei.

frequencies become more dominating than for the coarse
grids, ef. the time-step restrictions given by (26) and (27).
An inviscid “reference” solution would be desirable for
comparisons with the spectral viscosity results presented
below, but even with 128 x 129 points the inviscid simulation
broke down after just above 66 time units.

To tllustrate the problem of energy transfer, Fig. 5 shows
the logarithm of the amplitude of the spectral coelficients
(@} y_o from (4) for the physical variables after 58 time
units. Coefficients from a simulation with 24 x 25 points are
represented by crosses, and the corresponding part of the
specirum from the 128 » 129-calculation is shown by circles.
The lower coefficients are similar in the two simulations,
but the higher coeficients from the 24 x 25-simulation are
larger because the energy cannot be transferred to higher
frequencies.

We now turn to the application of the SV method. Unless
otherwise noted, the spectral viscostty terms (18) are added
to the right-hand side of inviscid equations (3). To evaluate
different forms of the spectral viscosity terms and the choice
ol parameters, we shall examine the numerical solution, its
spectral coefficients, and the time-steps chosen by the adap-
tive ODE-solver. The numerical solution should neither
contain non-physical oscillations nor excessive damping,
and it should be in accordance with solutions with higher
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t=58.00

Density

0 5 10 15 20
Pressure
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Hor.vel.
0.0
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Vert.vel

FIG. 5. The logarithm of the coefficients {a,,, .}, for N =24 (crosses) and N = 128 (circles) at 7= 58, inviscid model.

resolution and with the inviscid “reference” solution as far
as this could be calculated, The spectral coefficients for
low frequencies, carrying most of the energy, should be
influenced as little as possibie by the spectral viscosity
terms, but the amplitudes should decay at the high end of
the spectrum to indicate that energy is not artificially piled
up at the highest frequencies. The time-steps should be
restricted only by stability considerations in the first part of
the simulations, and then drop according to the accuracy
requirements, but level out at an acceptably low level when
the spectral viscosity terms balance the non-linear energy
cascade. To be abie to do lots of experiments at a reasonable
cost, the spectral viscosity tests were mainly run with
24 % 25 or 32 x 33 points in each domain.

Experiments were carried out with different values of the
exponents p and g in the Chebyshev spectral viscosity terms
from (16);, p >0 means that the equations become hyper-
bolic at the upper and lower boundaries, which means that
the boundary and interface conditions from the inviscid case
can be left unchanged. Time-steps from two typicai simula-
tions (32 x 33 points) with g=0 and ¢g= 1, respectively
{p=1 in both cases), are shown in Fig. 6. We observe that

the time-steps are slightly smaller during most of the simula-
tion for g = 1, which indicates that g =0 gives a more well-
behaved ODE-system. In particular, the time-steps for g =1
are not in equilibrium at the stability limit in the first part
of the simulation, when the spectral viscosity terms should

—22eee

1 !
Il I
w -

1 1

|
g
=
1

Log,, of time—sleps

-2.74

-28 T — T — T b
o] 20 40 60 80 100

FIG. 6. Time-steps for typical simulations with different values of the
Chebyshev weight function exponents.
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FIG. 7. Three different flters.

be of small importance. The numerical solutions from these
simulations are almost indistinguishable, but we can
observe some small wiggles near the upper and lower
boundaries for ¢ = 1, which is ¢xplained by the fact that the

Density t=66.00
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x X
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-10.0

0 5 10 15 20
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weight functions reduce the effect of the spectral viscosity in
these arcas. The calculations presented below are run with
p=1,g=0.

The viscosity amplitudes, threshold frequencies, and

viscosity coefficients for the x-direction are chosen
according to (12), (13) as
£M=£/M! KM=-'FC/M, mM=CxM1"2=
o 0, 0|k <1y,
= 37a
Cr {1—(mM/k)2, my<id<nmpn, O
and for the z-direction, according to {15), as
8N=£/N, KN:'K/Ns mN:C:NUZ:
E] 0, 0 "-<..l"-<...mN7
R,= 37b
l {1-("%;/1)2, my<I<N. (376)

This leaves us with the parameters ¢, x, C ., and C, to vary.
The argument in Section 2 concerning the “numerical”
Prandtl pumber indicated that e/x = 100 should be a good
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FIG, 8. The logarithm of the coefficients {a,,, , }2. o from runs with 24 x 25 points and the spectral viscosity parameters (38a) (Case 1) are shown
with crosses. Corresponding coefficients from an inviscid simulation with 128 x 129 points are shown with circles.
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choice, and this i1s confirmed by numerical experiments.
Keeping this ratio, we shall present results for three different
combinations of parameters:

Casel, C,=10, C.,=20, £=001, x=00010,
(38a)

Case2, C,=15 C,=30, £=004, x=0.0004,
(38b)

Cased, C.=24, C.=40, =010, «=0.0001,
(38¢)

The Chebyshev filter coefficients R, multiplied by ¢ for these
three cases are shown in Fig. 7 for N = 24. The right balance
between viscosity amplitude and threshold frequency must
be found, Figures 8-10 show the amplitude of the spectral
coefficients {a,. .}, _, from (4) for the four physical
variables at ¢ = 66, with 24 x 25 points and the three sets of
parameters given above. The corresponding coefficients

i Density 1= 66.00
0.0
]
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j x X
S.O—LK xx;‘x ., .
3 XXX =X . N
] RN DUV
1 x X
-7.5- x X X
-10.0*|rz||—r:|r;l||r||1—rrirl|.
o Y 10 15 20
R Pressure
oloﬂ
_{
2.5
-5,03‘ x
x
4% XX g .
3 inixi..
75 x s ee L
7 x* % X x
- X x P
] * x
RIS M E i oo o e e s s e S ) A S N D S S B e
o] 5 10 15 20
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from the 128 x129 points simulation without spectral
viscosity are plotted as circles for comparison.

For Case 1 (Fig 8), it looks as though the viscosity
amplitudes could have been reduced, because most of the
coefficients are smaller than for the inviscid run, but reduced
amplitudes resulted in smaller time-steps and no improve-
ment of the solution. For Case 3 (Fig. 10), we see the
damping effect on the highest coefficients, but the middle
part of the spectrum contains more energy than the corre-
sponding part of the inviscid spectrum, as if a reflection of
energy in spectral space has taken place. This indicates that
a strong damping at the high end of the spectrum only is not
favourable. Case 2 (Fig. 9) represents a middle way between
Case 1 and Case 3, and here the lower 3 of the coefficients
are close to the inviscid values, while the upper third decay
faster.

Time-step information for the three cases are shown in
Fig. 11, and we obtain another indication of insufficient
damping in Case 3 from the shorter time-steps towards the
end of the simulation. An inviscid run with 24 x 25 points
is also included, and the typical difference in time-step
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0 5 10 15 20

FIG. 9. The logarithm of the coefficients {a,; , }Y_, from runs with 24 x 25 points and the spectral viscosity parameters (38b) (Case 2) are shown
with crosses. Correspending coefficients from an inviscid simulation with 128 x 129 points are shown with circles.
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FIG. 11. Time-steps from runs with the three sets of spectral viscosity

parameters {382)-(38c) and an inviscid run, 24 x 25 points.

behaviour is clearly demonstrated. The time-steps from the
SV simulations stay for a longer time at the stability limit,
and they level out in less structured behavior at a later stage
when the inviscid simulation breaks down. The SV method
as implemented here involves 350% more transforms
between physical and spectral space than the inviscid
method in order to calculate the filtered second derivatives.
As the transforms are the main time-consuming ¢lements in
the code, the SV method requires about 1.5 times the com-
puter time of the inviscid method per time-step. However,
from Fig. 11 we see that the time-steps from the SV method
are roughly a factor two larger than for the inviscid method
when they are dropping, and this phase involves many more
time-steps than the first phase with stable time-sieps. A
closer study of the time-steps shows that for these simula-
tions, the SV method (Case 2) with the same number of
points is more effective than the inviscid method for integra-
tion of more than around 60 time units, i.c., even before the
latter really breaks down. We also mention that the exira
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24x25, Case 1, t= 66.00
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24x25, Case 2, t= 66.00

24x25, Case 3, t= 66.00

FIG. 12. Level curves for the logarithm of the potential temperature at r=§6 from runs with the three sets of spectral viscosity parameters
(38a)438c) with 24 x 25 points and an inviscid “reference” run with 128 x 129 points.

transforms required can be done in parallel with the original
transforms.

The potential temperature at ¢ = 66 with the same three
sets of parameters are plotted in Fig. 12, together with the
inviscid 128 x 129 “reference” solution which required
about 200 times as much computer time. Of course the
results obtained with only 24 x 25 points are quite rough,

—— sv18
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FIG. 13. Time-steps for runs with different spectral viscosity

implementations.

but the important thing is to check which of the SV runs
that has captured most of the main features correctly. We
observe that much of the overturning of the wave is lost in
Case 1 as a result of too much smoothing, while Case 3
clearly suffers from too little smoothing. The figure also
shows the numerical oscillations that occur at this final
stage of the inviscid calculation.
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FIG. 14, Time-steps for runs with same parameters, different numbers
of points.
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24x25, t= 70.00
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48x49, = 70.00

24x25, = 102.00

FIG. 15. Level curves for the logarithm of the potential temperature at { = 70 and 1 = 102 for 24 x 25 and 48 x 4% points, Spectral viscosity parameters

{38b) (Case 2).

As mentioned in Section 4, the spectral viscosity terms
{17) could be used instead of (18). With (17) and the
parameters from Case 2 (where x is no longer used and the
same ¢ is used in all four equations), the results are very
similar to the previous ones, both in terms of time-steps (see
Fig. 13) and the solution itself. With the spectral viscosity
terms (17}, second derivatives of p and p instead of T must
be calculated, but because the spectral representation of p
and p already is calculated, the total number of transforms
between physical and spectral space remains the same in our
code. We believe that the terms (18), which are connected to
the physics of the problem, is a good choice.

Numerical experiments mentioned in { 23] indicated that
the viscosity coefficients should vary smoothly from zero for
|k| < m, to their vaiues in the viscous part of the spectrum,
Therefore viscosity coefficients of the form

g, O-Slklé,mm

Qi = (ki — M/2)? {39a)
exp{— (|k|—mM)2}’ n < k| < M/2,
0, OSI’SWN,

R,= (39b)

my<I<N,

were tested. The coefficients (39) and parameters,

C.=10, C.=20, £=0028, «x=000028, (40)
give filters that are similar to those with (37) and the
parameters from Case 2 (38b), but with more smooth func-
tional forms. Again, as seen from the time-steps displayed in
Fig. 13, the effects of this change were small. The numerical
solution is slightly smoother with (39), (40}, but it is difficult
to judge which of the soiution is the better.

Finally, to test the robustness of the method we used the
set of parameters (38b), which was found by lots of
experiments to be a good choice for 24 x 25 points, with dif-
ferent numbers of points. Time-steps for different numbers
of points are shown in Fig. 14. The effect of the SV is,
first, that the phase with stability-restricted time-steps is
extended, and, second, that a second phase with stable or
growing time-steps occurs, whereas the time-steps continue
to drop in the inviscid cases. In this last part of the simula-
tion the time-steps are accuracy-bounded and are therefore
determined by the largest eigenvalue of the Jacobian of the
ODE-system that has non-negligible amplitude, according
to (26) and (27}. It is natural that this eigenvalue (a) and the
amplitude (U,) of the corresponding solution component
vary according to the dynamics of the system, leading to
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some variations in the time-steps as the simulations
proceed. From calculated mean values of the time-steps in
this phase we estimate the time-steps to be O(N ~°%). The
fact that the time-steps for each simulation seem to end up
in som¢ limited interval indicate that the choices of
parameters were successful. We can also see from Fig. 15,
which shows the potential temperatures at ¢=70 and
t =102 for 24 x 25 and 48 x 49 points, that the main features
in the plots are the same, even though the coarse resolution
in the first case limits the details that can be captured.

7. CONCLUSIONS

A physical situation occurring in simulation of waves in
a stratified atmosphere has been used as a test problem
for calculations with spectral methods. Straightforward
spectral collocation simulation of the non-linear inviscid
Euler equations suffers from unphysical oscillations in the
numerical solution due to the absence of dissipation in the
calculations and will eventually break down.

The spectral viscosity method has been applied to over-
come this problem and seems to be a simple way to stabilize
the calculations for long-time simulations. The spectral
viscosity method involves some parameters which must be
given appropriate values to obtain good results. These
parameters decide the form and amplitude of the viscosity
kernels, and to find good values for the parameters we have
run a large number of low-resolution simulations. The
results were evaluated by inspecting the numerical solution
for the physical variables in terms of smoothness and corre-
spondence with simulations with higher resolutions, by
examining the spectra of the numerical solutions and by the
measuring the time-steps chosen by an adaptive algorithm
for the solution of the resulting system of ordinary diffcren-
tial equations.

The main results concerning the tuning of parameters
were that a rather heavy damping of the highest frequencies
were not sufficient and the pileup of energy occurred at
lower frequencies instead, On the other hand, damping of a
large part of the spectrum could also be nsufficient if the
amplitude was small or inefficient, in terms of time-steps for
larger amplitudes. The best results were obtained when
these situations were avoided, applying a viscosity kernel
that started to act lightly on the frequencies below the
highest crucial ones and growing to make stronger impact
on the highest frequencies. '

When the best set of parameters had been determined by
these low-resolution experiments, the same values were used
in simulations with higher resolution and were produced
satisfying results. The theoretical basis for the spectral
viscosity method incorporates the effects of changing the
number of points, so a full new tuning of the parameters
when the resolution is changed should be unnecessary.
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The spectral viscosity method for expansions in
Chebyshev polynomials has been subject to less work both
in terms of analysis and numerical experiments than for
Fourier or Legendre expansions, but the method is working
well with the same amount of spectral viscosity applied in
the Fourier and Chebyshev directions. The only additional
concern is the role of the Chebyshev weight functions, where
two alternatives have been tested in this work.,

Regarding the time-step restrictions for the ODE-system
resulting from the spectral viscosity method, we have found
that the stability restriction for this system is left unchanged.
The two main differences from the inviscid system for our
model problem is first that the initial phase of stability-
restricted time-steps lasts longer and second that the severe
accuracy restrictions occurring later in the calculations are
loosened, due to the reduced buildup of energy at high
frequencies. Instead of reaching a point where the required
accuracy can no longer be obtained, the simulation with
spectral viscosity continues with time-steps within an inter-
val determined by the level of detail that is possible to
resolve with a given number of grid points. A result of this
behaviour of the ODE-system is that the additional 50 %
computational work required by the 5V method due to
extra transforms between physical and spectral space, can
be won back through larger time-steps for a large part of the
simulation.

The method described in this paper has been successfully
extended to do three-dimensional simulations of gravity
wave/wind shear interactions, where 48 to 96 points are
used in each direction. This will be described in a later

paper.

ACKNOWLEDGMENTS

We thank Eitan Tadmor for his advice on the form of the Chebyshev SV
terms and comments on a draft of this paper. Computer time on the CRAY
at SINTEF in Trondheim were provided by the Norwegian Research
Council for Science and the Humanities (NAVF).

REFERENCES

1. @. Andreassen, Numerical problems in gravity wave simulation, in
Proceedings, NATO Advanced Research Workshop on Coupling
Processes in the Lower and Middle Atmosphere, edited by E. V. Thrane
et al, NATO ARW Series (Klower Academic, Boston, 1993.)

2. M. Bjerhus, Technical Report FFI/RAPPORT-91/7011, Norwegian
Defence Research Establishment, P.Q. Box 25, N-2007 Kjeller,
Norway, July 1991; SI4M J. Sci. Star. Comput., submitied.

3. W. Cai and C.-W. Shu, ICASE Report No. 91-26, NASA Langley
Research Center, Hampton, Virginia 23665-5225, March 1991;
J. Compur. Phys. 107, 84 (1993).

4. C, Canuto, M, Y. Hussaini, A. Quartereni, and T. A, Zang, Spectral
Methods in Fluid Dynamics (Springer-Verlag, New York, 1988).

5. C. Canuto and A. Quarteroni, J. Comput. Phys. 71, 100 (1987).

- G. Erlebacher, M. Y. Hussaini, C. G. Speziale, and T. A. Zang, [CASE

=2}



SPECTRAL VISCOSITY SIMULATION OF GRAVITY WAVES

Repart No. 90-76, NASA Langley Research Center, Hampton,
Virginia 23665-5225, October 1990; J. Fluid Mech., to appear.

. D.C. Fritts, J, Atmos. Sci. 35, 397 (1978).
. D. C. Fritts, Pure Appl. Geophys. 130, 343 (1989).

9. D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods:

10.

i1

15.

Theory and Applications (SIAM, Philadelphia, 1977).

E. Hairer, §. P. Norsett, and G. Wanner, Solving Ordinary Differential

Equations I, Nonstiff Problems (Springer-Verlag, New York, 1987).

T. Kato, Perturbation Theory for Linear Operators {Springer-Verlag,

New York, 1986).

. P. Lancaster and M. Tismenetsky, The Theory of Matrices, 2nd ed.
{Academic Press, Orlando, FL, 1985).

. L. D. Landau and E. M. Lifshitz, of Course of Theoretical Physics.
Yol. 6, Fluid Mechanics. (Pergamon Press, London, 1959).

. LI Lie, Technical Report FFI/Rapport-89/7017, Norwegian Defence

Rescarch Establishment, P.O. Box 25, N-2007 Kjeller, Norway,

November 1989; SIAM J. Sci. Stat. Comput., to appear.

Y. Maday, S. M. Ould Kaber, and E. Tadmor, Technical Report 91035,

Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie,

Paris, France, 1991; STAM J. Numer. Anal, to appear.

. Y. Maday and E. Tadmor, SIAM J. Numer. Anal. 26, §54 (1989).

1.

8.

22,

. E. Tadmor, “Shock Capturing by the Spectral Viscosity Method,” in

24.

273

P, 8. Marcus, “Numerical Modeling of Subgrid-Scale Flow in
Turbulence, Rotation, and Convection,” in Astrophysical Radiation
Hydrodynamics, edited by K.-H. A. Winkler and M. L. Norman
(Reidel, Dordrecht, 1986), p. 387.

P. Moin, K. Squires, W. Cabot, and S. Lee, Phys. Fluids A 3(11), 2746
£1951).

. 8. Schochet, STAM J. Numer. Anal. 27, 1142 (1990},
20.
21

E. Tadmor, private communication.

E. Tadmor, ICASE Report No. 88-41, NASA Langley Research
Center, Hampton, Virginia 23665-5225, July 1988 (unpublished).

E. Tadmor, SIAM J. Numer. Anal. 26, 30 (1989).

Spectral and High Order Methods for Partial Differential Equations,
edited by C. Canuto and A. Quarteroni (North-Holland, Amsterdam,
1990), p. 197; Compui. Methods Appl. Mech. Eng. 80 (1990).

C. E. Wasberg and @. Andreassen, “Pscudospectral Methods with
Open Boundary Cenditions for the Study of Atmospheric Wave
Phenomena,” in Spectral and High Order Methods for Pariial Differen-
tial Eguations, edited by C. Canute and A. Quarteroni (North-
Holland, Amsterdam, 1990), p. 459; Comput. Methods Appl. Mech.
Eng. 80 (1990).



