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Advances in direct deconvolution modeling of
subgrid-scales for flows with discontinuities

By N. A. Adams

1. Motivation and objectives
We develop a method for a unified treatment of flow discontinuities and turbulent

subgrid flow scales using the filtering approach. For the filtered evolution equations,
the solution is smooth and can be solved for by standard central-difference schemes
without special considerations of discontinuities. The approach is based on an
approximate regularized deconvolution of the filtered solution to obtain a sufficiently
accurate representation of the smoothed nonlinear combination of discontinuous
fields, e.g., the convection term. For stable integration the evolution equations are
supplemented by a relaxation regularization based on a secondary filter operation.
We detail the approach and demonstrate its efficiency with the inviscid Burger’s
equation, the isothermal shock problem, and the one-dimensional Euler equations.

In large-eddy simulations (LES) non-resolved scales (here we restrict ourselves
to spatial scales) are removed by convolving the underlying nonlinear transport
equation with a filter. As a consequence, correlations of non-filtered quantities
arise from the nonlinear terms and require closure. A closure would be trivial if the
filtering operation could be exactly inverted. An inverse-filter operation, however,
is necessarily ill-conditioned, which reflects the fact that information about non-
resolved scales is required.

Predictions of turbulent subgrid-scale stresses by models of eddy-diffusivity type
do not correlate well with the real subgrid-scale stresses. This led recently to an
increased interest in deconvolution-type models. The first of such models was based
on Taylor expansions in the expressions for the filtered product of the velocity com-
ponents (Leonard, 1974) and on the assumption of scale-similarity (Bardina et al.,
1983). More recently, a deconvolution approach from a polynomial approximation
of the filter kernel was constructed (Shah & Ferziger, 1995, Geurts, 1997, Kuerten
et al., 1999). Another approach which clearly exhibits the deconvolution structure
was proposed by Domaradzki & Saiki (1997) where the resolved scales are decon-
volved directly. The non-resolved scales are approximated from the instantaneous
nonlinear interaction of the resolved scales. Without recourse to physical modeling,
Stolz & Adams (1999) introduced an approximate deconvolution technique (ADM)
based on truncated series expansion of the inverse-filter kernel. A priori tests for
direct numerical simulation (DNS) data of supersonic compression ramp flow give
correlations in excess of 95% for subgrid-scale stresses (Stolz et al., 1999a). Ex-
cellent agreement with DNS was demonstrated in posteriori tests for compressible
homogeneous turbulence (Stolz & Adams, 1999) and for incompressible channel flow
(Stolz et al., 1999b).

Direct or approximate deconvolution techniques lend themselves also to the re-
construction of non-turbulent subgrid scales and thus provide a way for a unified
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treatment of turbulent and non-turbulent subgrid-scales. Among the latter are
shocks, contact discontinuities, and sharp fluid interfaces, which we call genuine
subgrid-scales since they remain subgrid-scales independently of numerical reso-
lution. We address fundamental issues of approximate regularized deconvolution
following an approach suggested in Adams et al. (1998) when applied to nonlinear
transport equations which allow for discontinuous solutions. Generic test cases are
the Burger’s equation and the one-dimensional Euler equations.

For a given numerical discretization on a partitioning of the real line with con-
stant spacing h, we discern between resolved scales with wavenumbers |ξ| ≤ ξC ,
represented scales ξC < |ξ| ≤ ξN = π/h, and non-represented scales |ξ| > ξN . ξN
is the Nyquist wavenumber, the smallest scale which can be represented on the
grid. For nonlinear conservation laws the interaction of represented scales with
non-represented scales is essential to provide sufficient entropy dissipation in order
to ensure that the solution of the filtered conservation law (which can be inter-
preted as a specific discretization of the continuous non-filtered conservation law)
converges to the correct entropy solution for h→ 0, the filter-width ∆ being propor-
tional to h (Lax, 1973). This can be achieved by regularizing the filtered evolution
equation with an additional term providing entropy dissipation, often formulated as
artificial viscosity or super-viscosity, such as the von Neumann-Richtmyer artificial
viscosity, for instance (e.g., Hirsch, 1990). An illustrative example is the periodic
N-wave solution to the inviscid Burger’s equation, where insufficient entropy dissi-
pation gives rise to an incorrect positive-jump discontinuity in the wake of the main
negative-jump discontinuity. An other example is isotropic turbulence, governed by
the three-dimensional Navier-Stokes equations, in the limit of vanishing viscosity,
where the appearance of the so-called equi-partition spectrum is usually observed
for non-dissipative numerical discretizations without providing sufficient subgrid-
scale dissipation (e.g., Lesieur, 1997). The correct vanishing-viscosity solution can
be recovered in this case by adding a regularization such as a proper eddy-viscosity
term, e.g. the Smagorinsky model (e.g., Lesieur, 1997), which has a striking sim-
ilarity to the von Neumann-Richtmyer artificial viscosity. The main effect of an
eddy-viscosity regularization is to provide a sufficient amount of energy dissipation
(Jimenez & Moser, 1999, Jimenez, 1999). More refined and more elaborate forms
of subgrid-scale models have been proposed; for a recent summary refer to Moin
(1997) and Lesieur & Metais (1996).

These observations suggest a relation between subgrid-scale models which ap-
proach the closure problem from a physical point of view by incorporating into the
model as many properties known from the underlying mathematical model as pos-
sible, and numerical techniques which regularize the discretization of a conservation
law in order to ensure convergence to the correct entropy solution. We note that it
has been successfully attempted for some flow configurations to replace a subgrid-
scale model entirely by artificial viscosity introduced by the underlying numerical
method, which is then directly linked to the truncation error (Boris et al., 1992).
Detailed investigations of this approach by Garnier et al. (1999) show, however,
that it lacks general applicability.
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In our approach we try to bridge physical and numerical subgrid-scale modeling by
introducing a model which extracts from the represented scales as much information
on the resolved scales as possible and which also ensures sufficient energy dissipation.
The former is achieved by a deconvolution operation on the represented scales, the
latter by a relaxation term employing a secondary filter operation on the represented
non-resolved scales. We point out that the regularization when viewed in Fourier
dual space has a resemblance with spectral super-viscosity regularizations (Tadmor,
1993). In real space, however, it is a lower order perturbation of the underlying
equations and leaves the type of the equations unchanged. This is a considerable
advantage over higher order regularizations since the well-posedness conditions for
the underlying conservation law transfer to the regularized system (Gustafsson,
1995).

2. Accomplishments

2.1 Filtering approach
For a given generic nonlinear transport equation

∂u

∂t
+
∂F (u)
∂x

= 0 , 0 ≤ x ≤ L (1)

a filtered transport equation

∂u

∂t
+
∂F (u)
∂x

= G (2)

is obtained by convolution with a homogeneous filter

u(x) =
∫ +∞

−∞
G(x− x′)u(x′)dx′ = G ∗ u , (3)

where
G =

∂F (u)
∂x

−G ∗ ∂F (u)
∂x

is an error term due to the filtering. Eq. (2) is the modified differential equation for
ū, the solution of which would be identical to the filtered solution of (1) if G could
be computed exactly.

Numerical discretizations of (2) carry wavenumbers ξ up to the Nyquist wavenum-
ber ξN = π/h, where h = L/N is the uniform grid-spacing and N is the number
of intervals into which the domain [0, L] is partitioned. We call ξN the numerical
cutoff wavenumber. If we apply the filter operation to the solution ū = G ∗ u, we
discern between wave numbers 0 ≤ |ξ| ≤ ξC , which we consider to be resolved, and
wavenumbers ξC < |ξ| ≤ ξN , which we consider to be non resolved, and we call ξC
the subgrid cutoff wavenumber. For low-pass filters other than the spectral cutoff
filter, the determination of ξC is a matter of definition, see Eq. (8). It is obvious
that the ratio ξC/ξN should be chosen such that ξC can be considered to be well
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resolved by the underlying numerical discretization scheme. For finite-difference
schemes the relevant error measure is given by the modified wavenumber concept
(Vichnevetsky & Bowles 1982).

If we assume that u can be recovered exactly from ū at every time instant, then
the discretization of (2) reduces to a discretization of (1) with a post-processing
filter G applied during the time integration. It is known that the solution of the
discretized Eq. (2) in this case fails to converge to the correct entropy solution
(Tadmor, 1989). Accordingly, an additional regularization of Eq. (2) is required.
Tadmor (1990, 1993) proposed several spectral viscosity and spectral super-viscosity
regularizations. The disadvantage of these regularizations is that they either amount
to adding higher-order terms or to convolution operations in real space. For a non-
periodic finite domain the former can require different boundary conditions for the
modified form of (1) if the artificial viscosity does not vanish at the boundaries
(Boyd, 1998).

In this paper we propose a low order regularization in the form of a relaxation
term

R = −χ(ū−G2 ∗ ū) (4)

where χ is the inverse of the relaxation time and G2(x) is a secondary filter of
convolution type (3). The equation which is solved numerically for ū is then

∂u

∂t
+
∂F (u)
∂x

= G +R , (5)

with a suitable approximation for G.
It is illustrative to recall that filtering, de-filtering, and discretization implicitly

contain restrictions and extensions of the representing function spaces. This can
be seen easily using a Fourier dual space representation assuming that a Fourier
transform exists. The same holds, however, also for more general cases. The solution
of (1) is in H∞, which we call the space of all square-integrable functions. A
discretization of (1) which represents u by uN on a grid with spacing h restricts
the solution to HξN , the space of all functions, the Fourier-transforms of which
have a support |ξ| ≤ ξN = π/h (band-limited functions). Application of the filter
G(x) further restricts ūN toHξG , where [−ξG, ξG] is the support of the filter transfer
function, and ξG ≤ ξN . For the filter kernels used in this paper, it is always ξG = ξN .
Note that, according to our definition of ξC , it is ξC < ξN , except for a sharp spectral
cut-off. An approximate inverse solution of G ∗ u = ūN will return some ũN ∈ HξN
with u = ũN + u′, where u′ ∈ H∞. A quadratic nonlinear combination ũ2

N , e.g.,
generates scales in [−2ξN , 2ξN ] which cannot be represented on the grid. Scales
ξ /∈ [−ξN , ξN ] contribute to aliasing errors. A subsequent application of the filter
operation G restricts G ∗ (ũ2

N ) to HξG . For the primary-filter operation we choose
as kernel the Gauß function. In real space the filter is defined as

G(x) = 2

√
2
π

1
∆
e−8 x

2

∆2 (6)
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where ∆ is the filter width. The Fourier transform of (6) is given by

Ĝ(ξ) = e
−
(

∆ξ
4
√

2

)2

. (7)

We define the primary-filter width ∆ as the length at which∫ ∆

0

G(x)dx =
1
2
. (8)

The cutoff wavenumber ξC is then given by

ξC =
2π
∆

.

Ĝ2(ξ) = e
−
(

∆2ξ
4
√

2

)2p

= Gp(∆2) , (9)

where ∆2 is the filter width of the secondary filter. In general we will use ∆2 = ∆/2
and p = 6.

The real-space filter kernel can be obtained from the inverse Fourier transform

G2(x) = F−1(Ĝ2) . (10)

Since we are not going to use the analytical expressions for the filter kernels but
rather numerical approximations, we do not actually need to perform the inverse
Fourier transform.

We require the discretized representations of the filters (6) and (10) to resemble
closely the transfer function of the respective analytic filter kernels. The transfer
functions of discretizations of (3) by standard quadrature formulas (trapezoidal rule
or Simpson’s rule, e.g.) usually exhibit a considerable error, in particular at wave
numbers close to ξN . A convenient way for a more accurate numerical representation
is to use a Padé filter (Lele, 1992, Pruett & Adams, 1999). We define a filter to be
of order m if the first non-vanishing derivative of its transfer function (its Fourier
transform) is of order m at ξ = 0. Let f be an (N + 1) vector containing the values
of the grid function fi = f(xi) obtained by sampling a continuous function f(x) at
a set of equally spaced nodes xj = x0 + jh, 0 ≤ j ≤ N . Let f denote the vector
of filtered values obtained by applying the discrete filter G to f , in matrix-vector
notation f = Gf . Here, we consider the special case in which G = M−1

l Mr, and
Ml, Mr are tridiagonal matrices. A one-parameter family of filters with m = 2 is
given by

αf j−1 + f j + αf j+1 = afj +
b

2
(fj−1 + fj+1) , (11)

where a = (1/2 + α) and b = a/2. For a finite domain, various treatments are
possible at the boundary points j = 0 and j = N . We will in general impose no
filtering at domain-boundary points.
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Figure 1. Transfer functions; (a) primary filter (6): Padé discretiza-
tion, exact ∆ = 4h; (b) secondary filter (10) : Padé discretization,

exact with ∆ = 2h and p = 6.

The kernel of a Gauß filter (6) with filter width ∆ = 4h is well approximated in
Fourier space if one chooses α = −0.2, Fig. 1a. For a secondary filter (10) with
∆2 = 2h and p = 6, the exact transfer function Ĝ2(ξ) is well approximated if one
chooses α = 0.2 in (11) and defines the discrete representation of G2 by

G2 = M−1
l Mr

6∑
ν=0

(I−M−1
l Mr)ν ,

where I is the unit matrix. In the following we will call GN (x) and G2N (x) the
discrete approximations of the corresponding continuous filters G(x) and G2(x),
respectively. Note that ĜN (x) and Ĝ2N (x) are bandlimited functions and thus
have continuous real space representations GN (x) and G2N(x) using Whittaker’s
cardinal function (Vichnevetsky & Bowles 1982).

2.2 Subgrid-scale modeling

We introduce the operator PNu, which projects u ∈ H∞ onto HξN . G can then
be trivially re-written as

G =
∂f(ū)
∂x

−G ∗ ∂f(PNu)
∂x︸ ︷︷ ︸

G1

+G ∗
(
∂f(PNu)

∂x
− ∂f(u)

∂x

)
︸ ︷︷ ︸

G2

. (12)

If we find an approximate inverse operator G̃−1 for G ∗ u = ū, given ū, which
minimizes ‖PNu−PN G̃−1ū‖, the error in the computation of G1 is minimized. Since
the range of G̃−1 is HN , it is PNG̃−1ū = G̃−1ū. The exact inverse of G(x) does
not exist in general since 1/Ĝ(ξ) is unbounded by the Riemann-Lebesgue Lemma.
It exists for such u for which û(ξ)/Ĝ(ξ) is L2-integrable.
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Our approach is based on two procedures : (A) an accurate approximation of G in
(5), (B) a relaxation regularization R in (5) to provide sufficient entropy dissipation
to ensure convergence to the physically meaningful entropy solution. Procedure (A)
is accomplished by an approximate deconvolution where we construct an approx-
imate inverse of the discrete filter operator. Procedure (B) employs a secondary
higher order filter, which leaves the resolved scales |ξ| ≤ ξC unaffected. All proce-
dures are constructed such that they can be applied in a straightforward manner in
real space. However, for convenience we will use the Fourier representation in the
analysis.

The DDM approach is based on a direct deconvolution where a regularized inverse
G̃−1(x) of the filter kernel G(x) is used to obtain an approximation for u by ũ =
G̃−1ū. The transfer function ĜN (ξ) of the discretization G ofG for periodic domains
is singular since it vanishes at ξ = π/h, Fig. 1a. On periodic domains the singularity
can be removed by setting the Fourier mode ˆ̄u(π/h) to zero (truncated singular-value
decomposition). For |ξ| < π/h one then obtains the approximately deconvolved
variable ũ from

ˆ̃u =
ˆ̄u

ĜN (ξ)
, |ξ| < π/h ; ˜̄u = 0 , |ξ| = π/h .

For nonperiodic domains an inverse of the discrete filter G exists if no filtering
is imposed at the boundaries. In this case the spectrum of G is bounded away
from zero on the negative real axis. Other regularization procedures such as trun-
cated series expansion (Stolz & Adams, 1999), Tikhonov regularization, conjugate
gradient method, etc., can be readily adapted from image processing (Bertero &
Boccacci, 1998).

The term G1 in Eq. (12) can then be approximated by replacing the unfiltered
quantities in F (u) with ũ and solving the following evolution equation for u:

∂u

∂t
+G ∗ ∂F (ũ)

∂x
= 0 . (13)

To cope with term G2 in Eq. (12), we propose a new type of regularization based
on a relaxation term which employs a secondary higher-order filter operation. We
want to point out that the potential of relaxation regularizations in general has
been realized before (e.g., Jin & Xin 1995).

Here, we achieve regularization by adding a term

R = −χ(ū−G2 ∗ ū) , (14)

where χ > 0 is the inverse of the relaxation time and G2(x) is a secondary filter
of deconvolution-type (3), to the right-hand side of (2). We use for G2(x) the
secondary-filter kernel as defined by (10). The relaxation term has the following
properties: the term is bounded in terms of u :

‖I −G2‖ ≤ 1 ; (15)
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Figure 2. Solution for Burger’s equation at t = 2.5, N = 80; (a) with DDM:
ū, uex, ◦ ūex, (uex− u); (b) with N = 800; note that the domain

has been truncated for clarity.

the term vanishes asymptotically:

lim
ξ→∞

‖I −G2‖ = 0 .

These properties ensure that (5) is consistent with (1). It remains to show that (4)
provides sufficient numerical-entropy dissipation by consistency with the entropy
condition

∂η(u)
∂t

+
∂ψ(u)
∂x

≤ 0

where η(u) and ψ(u) is a convex entropy pair (Lax 1973). By condition (15) it is
obvious that the relaxation term provides entropy dissipation for χ > 0:

(ū, (I −G2) ∗ ū) = (ū, ū)− (ū, G2 ∗ ū) ≥ (ū, ū)(1− ‖G2‖) ≥ 0

using ‖G2‖ ≤ 1, where (·, ·) is a suitable inner product and ‖ · ‖ the corresponding
norm. The amount of entropy dissipation is controlled by choosing G2 and the
relaxation constant χ. The determination of χ from an entropy condition is subject
to ongoing work.

2.3 Example: Inviscid Burger’s equation
For numerical discretization a 6th order symmetric compact finite-difference scheme

is used (Lele, 1992). At interior mesh points the difference operator for a grid func-
tion fi = f(xi) is given by

f ′i−1 + 3f ′i + f ′i+1 =
1
h

(− 1
12
fi−2 −

7
3
fi−1 +

7
3
fi+1 +

1
12
fi+2) . (16)

We found that this scheme gives for all test cases better results than a second order
central finite-difference scheme. Time integration is performed with an explicit 3rd
order Runge-Kutta scheme.
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The variable u of Eq. (1) is a scalar, and the flux function is F (u) = u2/2. The so-
lution u is 2-periodic, and the initial condition is given by u0(x) = 0.3−0.7 sin(πx),
−1 ≤ x < 1. The domain is discretized into N evenly spaced subintervals. The
relaxation constant is set χ = 1/h, where h is the grid spacing. Due to the relax-
ation term, the time-step size τ for the explicit time-integration is reduced. Stable
integration is achieved with a CFL-number of CFL = 0.5. Note, however, that this
restriction may be circumvented either by using a semi-implicit time-integration (the
relaxation term is linear in the solution) or by recognizing that the relaxation term
can be implemented by using the secondary filtering every (1/χ)/τ time-steps. The
latter corresponds to a time-split discretization of the regularized transport equa-
tion (Adams, 1999). Figure 2 shows the results obtained at time t = 2.5 for 80 and
800 grid points.

3. Future plans

The determination of the relaxation constant χ using numerical-entropy consid-
erations is presently in progress. The scheme has been successfully applied also to
the one-dimensional Euler equations and the ‘slow-shock problem’ (see Adams &
Leonard, 1999, Adams, 1999). Tests and applications for two and three dimensions
are planned for the near future.
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