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Fourier spectral methods have proven to be powerful tools that are frequently
employed in image reconstruction. However, since images can be typically
viewed as piecewise smooth functions, the Gibbs phenomenon often hinders
accurate reconstruction. Recently, numerical edge detection and reconstruction
methods have been developed that effectively reduce the Gibbs oscillations while
maintaining high resolution accuracy at the edges.While the Gibbs phenomenon
is a standard obstacle for the recovery of all piecewise smooth functions, in
many image reconstruction problems there is the additional impediment of
random noise existing within the spectral data. This paper addresses the issue
of noise in image reconstruction and its effects on the ability to locate the edges
and recover the image. The resulting numerical method not only recovers piece-
wise smooth functions with very high accuracy, but it is also robust in the
presence of noise.

KEY WORDS: Fourier reconstruction; Gibbs phenomenon; edge detection;
Gegenbauer polynomials; noise.

1. INTRODUCTION

High quality image reconstruction from Fourier spectral data is an impor-
tant aspect in many scientific disciplines. The ability to visualize compli-
cated structures is an essential diagnostic tool that impacts discoveries and
technological advances in fields such as astrophysics, computer science,
medicine, and biology. Due to their very accurate results and ease of imple-
mentation, Fourier spectral methods have proven to be powerful tools and
are frequently employed in image reconstruction. These images can typi-
cally be viewed as piecewise smooth functions, giving rise to the infamous
Gibbs phenomenon that both produces spurious oscillations at the jump
discontinuities as well as drastically reduces the overall convergence rate.
The effectiveness of image reconstruction as a diagonostic tool is hence



severely limited, since it is unclear whether actual features or noisy artifacts
of the image are being visualized. Recent work has been instrumental in
developing methods that effectively combat Gibbs oscillations without
causing undesirable blurring at the feature edges of the image.
Another important component of image reconstruction is edge detec-

tion. All high resolution reconstruction methods require a priori knowledge
of the jump discontinuity locations to determine intervals of smoothness in
which the function can be reconstructed. Once the edges of the image are
located, Gibbs reduction techniques can be successfully applied.
While the Gibbs phenomenon is a standard obstacle for all piecewise

smooth function reconstructions, in many applications there is the addi-
tional impediment of randomnoise existingwithin the spectral data. Typically
this noise is difficult to quantify and can not be systematically removed. In
this paper we address the issue of noise in image reconstruction and its
effects on the ability to locate the edges and recover the image. The result-
ing numerical method for edge detection and reconstruction not only
recovers piecewise smooth functions with very high accuracy, but is also
robust in the presence of noise. The paper is organized as follows: In
Section 2 we describe the edge detection method developed in [7] and [8]
and further developed in [2]. We also briefly review the Gegenbauer
reconstruction method [10] for piecewise smooth functions. In Section 3 a
modification to the edge detection procedure is introduced to combat the
effects of noise. Numerical examples for the edge detection and Gegenbauer
reconstruction of images with noise are provided.

2. HIGH RESOLUTION IMAGE RECONSTRUCTION

2.1. Edge Detection

As mentioned in the introduction, all high resolution reconstruction
methods for piecewise smooth functions require a priori knowledge of the
locations of the discontinuities. Additionally, the locations and amplitudes
of jump discontinuities provide valuable information in many scientific
applications. For instance, in magnetic resonance imaging (MRI), the
locations and amplitudes of edges are necessary in determining tissue type
and density [12]. The concentration method, developed in [7] and [8],
and later modified in [2], successfully detects edges and their correspond-
ing heights in a robust and simple manner. Furthermore, as will be dis-
cussed in Section 3, the method is readily adaptable to data containing
noise, a crucial development allowing the method to be viable for practical
applications.
To briefly summarize the concentration method, let us define a jump

function of a piecewise smooth and periodic function f(x) as [f](x) :=
f(x+)−f(x−), where f(x±) are the right and left side limits of the
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function at x. When the continuous Fourier coefficients f̂k are known, the
concentration method is equivalent to solving [7]

SsN[f](x)=ip C
N

k=−N
sgn(k) s 1 |k|

N
2 f̂ke ikpx (2.1)

It was shown in [7] that if the concentration factors s(t) satisfy

s(t)
t

¥ C2[0, 1] and F
1

0

s(t)
t
dt=1 (2.2)

then the following concentration property holds:

SsN[f](x)0 [f](x), as N0. (2.3)

The analogous case for the discrete Fourier coefficients, f̃k, implemented as

TyN[f](x) :=ip C
N

k=−N
sgn(k) y 1 |k|

N
2 f̃ke ikpx, y(t)=s(t)

2 sin 1tp
2
2

tp

(2.4)

admits a concentration property akin to (2.3) ensuring convergence of (2.4)
to [f](x). Several examples of admissible concentration factors are discussed
in [7]. One particularly effective factor is the exponential concentration
factor,

se(t)=Const ·te
1

at(t−1) , ye(t)=se(t)
2 sin 1tp

2
2

tp
(2.5)

where Const=>1− EE exp( −1
ag(g−1)) dg for E ’ O( 1N) with typical a % 6.

Although the concentration method tends to the singular support of
the function, it must be further enhanced to pinpoint the jump disconti-
nuity locations. This has been achieved in [8] by separating the vanishing
scales in the smooth regions from the O(1) scales in the neighborhoods of
the jump discontinuities. Specifically, if {xg

j }
M
j=1 denote the locations of the

jump discontinuities of f(x), then for admissible concentration factors in
(2.4), the separation of scales is enhanced by computing

E :=Nq/2(TyN[f](x))
q
Q
˛N

q/2([f](xgj ))
q, if x=xgj ,

O(N−q/2), if x ] xgj

leading to the enhanced concentration method,

EN(T
y
N[f](x))=˛

TyN[f](x), if |E| > Jcrit,
0, if |E| < Jcrit

(2.6)
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Here Jcrit is an O(1) global threshold parameter signifying the minimal ampli-
tude for the jump discontinuity not to be negligible. The jump location is
the point corresponding to the largest value in an O(E(N)) neighborhood.
The nonlinear enhancement procedure (2.6) works well enough for

images that have edges far enough apart, e.g., more than O(E(N)), but the
oscillations resulting from the concentration method (2.4) in the neigh-
borhoods of discontinuities make it very difficult to locate discontinuities
that are close together [2]. This issue is of upmost importance in many
scientific applications, since there is not enough resolution to guarantee
that the discontinuities are located far enough apart. The concentration
method has since been further developed [2] in order to successfully locate
edges that are very close together. The approach applies the simple idea of
subtracting out a saw tooth function from a piecewise smooth function to
create an analytic function, an idea currently utilized in several reconstruc-
tion techniques [4–6]. Specifically, consider f(x) to be a periodic piecewise
smooth function. Then

h(x) :=f(x)− C
M

i=1

ai
2
g(x; xg

i )

is a periodic smooth function, where g(x; xgi ) is the saw tooth function

g(x; xg
i )=˛

−(1+x) if −1 [ x [ xg
i ,

1−x if xg
i < x [ 1

Here x={xgi }
M
i=1 are the jump locations with corresponding jump values

[f](xgi )=ai. Since [h](x)=0, the concentration property (2.3) establishes
the minimization problem,

min
M, ai, xi*

max
x
|TyN[h](x)| := min

M, ai, xi*
max
x

:TyN[f](x)− C
M

i=1

ai
2
TyN[g](x; x

g
i ) :

(2.7)

to yield the size and positions of the jump discontinuities. The enhance-
ment results from (2.6) serve as good initialization parameters. For higher
dimensional images, the procedure is performed dimension by dimension.
Algorithmic details can be found in [2].
We note that although knowing the heights of the jump discontinuities is

not necessary to reconstruct piecewise smooth functions, it is of vital impor-
tance in many scientific applications. Many images have very complicated
structure where various features are seen across only a few pixels. In places
where the image lacks resolution, high order reconstruction is replaced by
connecting information from one edge to another, making knowledge of
the correct jump heights imperative.
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2.2. Gegenbauer Reconstruction

Much research has been devoted to developing reconstruction techniques
for piecewise smooth functions. The Gegenbauer reconstruction method,
developed in [11] and extended in a series of articles listed in [10], reco-
vers piecewise smooth functions with spectral accuracy up to the edges
in each smooth interval. It can therefore be used to completely eliminate
the Gibbs oscillations without compromising high resolution at the edges.
A detailed analysis of the Gegenbauer reconstruction method can be found
in [10].
Let f(x) be a piecewise smooth function in [−1, 1] that is analytic in

a sub-interval [a, b]. The truncated (pseudo-) spectral Fourier expansion
on [a, b], given by

fN(x)= C
N

k=−N
f̂ke ikpx (2.8)

can be used to approximate the Gegenbauer coefficients as

ĝll, E=
1
hll

F
1

−1
(1−g2)l−

1
2 Cll (g) fN(x(g)) dg (2.9)

where hll=`p C
l
l (1)

C(l+1/2)
C(l)(l+l) and the local variable g ¥ [−1, 1] is defined

such that x(g)=Eg+d with E=b−a
2 and d=

b+a
2 . The Gegenbauer partial

sum approximation, based on the orthogonal Gegenbauer polynomials
Cll (g), is computed as

glm(x(g))=C
m

l=0
g1ll, EC

l
l (g) (2.10)

It was shown in [10] that (2.10) provides an exponentially convergent
approximation to f(x) in [a, b] in the maximum norm provided that
l, m ’ EN [10]. Hence the poorly performing Fourier approximation (2.8)
is turned into an exponentially converging approximation for a piecewise
smooth function f(x) in [−1, 1] by applying the Gegenbauer reconstruc-
tion method, (2.9) and (2.10), in each smooth sub-interval [a, b] and then
‘‘gluing’’ the results together. The boundaries of each sub-interval are first
determined by the edge detection procedure described in Section 2.1.
Although computation of (2.9) appears somewhat formidable, exploi-

tation of the relationship [3]

ĝll, E=d0lf̂0+C(l) i
l(l+l) C

0 < |k| [N
Jl+l(pkE) 1

2
pkE
2l f̂ke ikpd (2.11)

allows employment of the FFT in the calculation of the Gegenbauer
coefficients (2.9).
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Fig. 1. (a) Filtered Fourier reconstruction of the Shepp Logan brain phantom with
exponential filter of order p=4 and (b) the Gegenbauer reconstruction with m=l % EN

8 on
128×128 data pixels.

To close this section, we use Fig. 1 to illustrate the efficacy of the edge
detection procedure described in Section 2.1 and the Gegenbauer recon-
struction method for the Shepp Logan phantom brain image (see, e.g., [9]
and [12].) Figure 1(a) shows the standard filtered Fourier approximations
of the Shepp Logan image, where it is evident that the filtered Fourier
reconstruction produces undesirable blurring at the edges. The results of
the edge detection procedure, comprised of (2.4), (2.6), and (2.7), are used
to determine each smooth sub-interval. This enables the application of
the Gegenbauer reconstruction method which yields the high resolution
reconstruction of the Shepp Logan phantom image displayed in Fig. 1(b).

3. NOISE CHARACTERISTICS IN THE DATA DOMAIN

In the development and testing of image reconstruction techniques, it
is common to assume certain characteristics about the signal, namely that
the signal can be modeled by a stochastic process. Described below is the
study of noise from a random variable perspective, [12], which will be used
to develop techniques in noise reduction. Suppose that a signal (Fourier
coefficient) can be modeled as the correct spectral data plus the corruption
in the spectral data,

f̄k=f̂k+t̂k (3.1)

We further assume that t̂k is a complex additive noise coming from an
ergodic, stationary, uncorrelated, white noise process with zero mean
E{t̂k}=0, and standard of deviation ŝt̂ > 0 as defined by the variance,
Var(t̂k) :=E{[t̂k−E{t̂k}] · [t̂k−E{t̂k}]g}=ŝ

2
t̂
. The image noise is given

by

tN(x)= C
N

k=−N
t̂ke ipkx (3.2)
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Several properties are derived directly from (3.2), given in [12] as

1. The mean of the image noise is zero, E{tN(x)}=0,
2. The variance of the image noise is given by s2N=(2N+1) ŝ

2
t̂
,

3. The image noise is uncorrelated from data point to data point,
E{tN(x) tN(y)}=0 for x ] y.

The Fourier reconstructed image with noise can now be written as

IN(x)= C
N

k=−N
f̄ke ikpx= C

N

k=−N
(f̂k+t̂k) e ikpx=fN(x)+tN(x)

implying that the image will be the sum of the Fourier reconstruction of the
correct spectral data and the image noise (3.2). The calculation of the
expectation of the reconstructed image,

E{IN(x)}=E 3 C
N

k=−N
(f̂k+t̂k) e ikpx4=E{fN(x)}+E{tN(x)}=fN(x)

demonstrates that the average value of the reconstructed image is the
standard Fourier reconstruction of the image without noise. Hence the
Fourier reconstruction of the image is an unbiased estimator of the Fourier
reconstruction of uncorrupted data. The variance is computed as

Var(IN(x))=E 35 C
N

k=−N
(f̂k+t̂k) e ikpx−E{IN(x)}6

·5 C
N

j=−N
(f̂j+t̂j) e ijpx−E{IN(x)}6

g4

=E 35 C
N

k=−N
t̂ke ikpx6 ·5 C

N

j=−N
t̂je ijpx6

g4

= C
N

k=−N
C
N

j=−N
E{t̂k t̂

g
j } e

ikpxe ijpx

= C
N

k=−N
E{t̂k t̂

g
k} e

2ikpx=(2N+1) ŝ2
t̂
=s2N

The closer the variance is to zero, the more precise the estimate is to the
Fourier reconstruction of the uncorrupted spectral data, fN(x). To reduce
the variance, one can either decrease the total number of (pseudo-)spectral
coefficients, or decrease the standard deviation of the correct spectral data.
The value of the standard deviation of the correct spectral data is generally
uncontrollable, and since high resolution reconstruction typically requires
as many coefficients as possible, the variance cannot be reduced when the
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standard Fourier reconstruction method is applied. The impact of noise
can be seen in both the edge detection and Fourier reconstruction methods.
Therefore, in order to improve the overall quality of the reconstructed
image, the variance must be reduced in the edge detection procedure, and
a different method must be utilized for reconstruction.

3.1. Reduction of Variance in Edge Detection

In order to reduce the variance of the edge detection method, we must
first look at the impact that the corrupted Fourier coefficients (3.1) have on
the expected value and variance of the concentration method (2.4). It is not
difficult to show that

E{TyN[f](x)}=E 3 ip C
N

k=−N
sgn(k) y 1 |k|

N
2 (f̂k+t̂k) e ikpx4=TyN[f](x)

which indicates that the average value of the concentration method is
unaffected by noise. On the other hand, the variance of the concentration
method,

Var(TyN[I](x))=E 35ip C
N

k=−N
sgn(k) y 1 |k|

N
2 (f̂k+t̂k) e ikpx−E{TyN[f](x)}6

·5ip C
N

j=−N
sgn(j) y 1 |j |

N
2 (f̂j+t̂j) e ijpx−E{TyN[f](x)}6

g4,

=E 35ip C
N

k=−N
sgn(k) y 1 |k|

N
2 t̂ke ikpx6

·5ip C
N

j=−N
sgn(j) y 1 |j |

N
2 t̂je ijpx2

g6,

=p2 C
N

k=−N

1sgn(k) y 1 |k|
N
222 ŝ2

t̂
=p2ŝ2

t̂
C
N

k=−N
y 1 |k|
N
22 (3.3)

depends both on the variance of the noise, ŝ2
t̂
, as well as the concentration

factor y(|k|N). A careful choice of appropriate concentration factors will help
to reduce the variance of the concentration method.
As is evident from the discussion in Section 2.1, the edge detection

method, consisting of (2.4), (2.6), and (2.7), adequately resolves the loca-
tions of the jump discontinuties. However, in the presence of noise, the
edge detection method might classify a point as a jump discontinuity that is
really a continuous data point. Conversely, an edge may go undetected
because it might appear as artificial noise in the image reconstruction. It is
therefore useful to introduce another admissible concentration factor that
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Fig. 2. (a) Example of a piecewise smooth function and (b) with noise added to the N=80
Fourier coefficients by (3.1).

reduces the variance of the concentration method (3.3) in the presence of
noise, given by

sn(t)=Const ·te−
t2

2a2 , yn(t)=sn(t)
2 sin 1tp

2
2

tp
(3.4)

Here Const= `2

a`p
−(1−F(1a)) where F is the cumulative distribution func-

tion of a standard normal and a=30. In this case, yn represents an admis-
sible concentration factor that better captures the jump discontinuities
in the presence of noise, basically by extracting out the high frequency
Fourier coefficients. This Gaussian smoothing concentration factor can
be used as a secondary test to ensure that the jump discontinuities are
correctly identified by the concentration method. In fact, the possibility of
the occurence of both types of misidentification discussed above is reduced
by applying the concentration method twice, first with a concentration
factor such as ye (2.5), and then by using yn.
To demonstrate the effects of noise on edge detection and the reduc-

tion of error by applying the concentration method in this way, consider
the example displayed in Fig. 2. The effects of noise causes the misidentifi-
cation of a jump discontinuity, as exhibited in Fig. 3(a). After evaluating
the edges with ye (2.5), it appears that there are three discontinuities. But
the second application of the edge detection method on these identified
points using yn (3.4), depicted in Fig. 3(b), greatly reduces the size of the
misclassified jump discontinuity. As a result, one would conclude that this
point is not a true jump discontinuity of the function. The possibility of
edges going undetected in the presence of noise due to the interference of
the scaling of the noise with the small scale of the jump discontinuities is
similarly handled [1].
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Fig. 3. Edge detection applied to the example in figure using the concentration factor given
by (a) ye and (b) yn.

4. REDUCTION OF VARIANCE IN RECONSTRUCTION
In order to reduce the variance for image reconstruction, we must first

look at how the corrupted spectral data (3.1) impacts reconstruction. Since
the variance cannot be further reduced in the standard Fourier reconstruction
method, let us instead consider the filtered Fourier reconstruction,

fhN(x)= C
N

k=−N
hkf̂ke ikpx

where hk denotes a standard filter, for example the exponential filter,
hk=e−a

1 |k|
N
2p
. The expectation of the filtered Fourier reconstruction of the

image,

E{IhN(x)}=E 3 C
N

k=−N
hk(f̂k+t̂k) e ikpx4=fhN(x)

is simply the result of the filtered Fourier reconstruction, implying that the
filtered Fourier reconstructionmethod is an unbiased estimator. The variance
is calculated as

Var(IhN(x))=E 35 C
N

k=−N
hk(f̂k+t̂k) e ikpx−E{I

h
N(x)}6

·5 C
N

j=−N
hj(f̂j+t̂j) e ijpx−E{I

h
N(x)}6

g4 ,

=E 35 C
N

k=−N
hk t̂ke ikpx6 ·5 C

N

j=−N
hj t̂je ijpx6

g4= C
N

k=−N
h2kŝ

2
t̂
,

=ŝ2
t̂

C
N

k=−N
h2k=ŝ

2
t̂
Ḡ(N, a, p)

suggesting that it is indeed possible to reduce the variance by filtering.
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The Gegenbauer reconstruction method is another possible way to
reduce variance in the presence of noise. The expectation is computed as

E{glm(IN(x(g)))}=E 3 C
m

l=0

1
hll
1F 1
−1
(1−g2)l−

1
2 Cll (g) fN(x(g)) dg

+F
1

−1
(1−g2)l−

1
2 Cll (g) tN(x(g)) dg2 Cll (g)4 ,

=C
m

l=0
ĝll, E C

l
l (g)=g

l
m(x(g))

Thus the Gegenbauer method is also an unbiased estimator. If we define

t̂ll=F
1

−1
(1−g2)l−

1
2 Cll (g) tN(x(g)) dg

then the variance is given as

Var(gl(IN(x(g)))=E{[g
l
m(IN(x(g)))−E{g

l
m(IN(x(g)))}]

·[glm(IN(x(g)))−E{g
l
m(IN(x(g)))}]

g},

=E 35 C
m

k=0
t̂lkC

l
k(g)6 ·5C

m

l=0
t̂llC

l
l (g)6

g4,

=C
m

k=0
C
m

l=0
E{t̂lk · [t̂

l
l ]

g} Clk(g) C
l
l (g),

=ŝ2
t̂
C
m

k=0
C
m

l=0

1d0kd0l+C2(l) ik−l(k+l)(l+l)

× C
0 < |j| [N

Jk+l(pjE) 1
2
pjE
22l Jl+l(pjE) e2ijpd2 Clk(g) Cll (g).

=ŝ2
t̂
Ḡ(g, m, l, N)

Hence the variance depends on the particular approximation location, x(g).
Figure 4 compares the results of the filtered Fourier and Gegenbauer
reconstruction methods for the example in Fig. 2 when random noise is
added to the coefficients. As depicted in Figs. 4(a), 4(b), and 5(a), the
Gegenbauer reconstruction method is more effective at reducing the overall
error. Yet it is clear in Fig. 5(b) that the variance for the Gegenbauer
reconstruction method is not reduced near g=±1. This discrepancy will
be the topic of future papers. Clearly heavier filtering and lower order
Gegenbauer polynomial reconstruction will reduce the variance, but only
by allowing undesirable smoothing of the finer features of the function.
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Fig. 4. Reconstruction of the example in figure using (a) filtered Fourier (p=4, a=16) and
(b) Gegenbauer methods (m=l=4).
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Fig. 6. Reconstruction of the Shepp Logan phantom in the presence of noise using (a) filtered
Fourier with p=4 and (b) Gegenbauer with m=l % EN

8 reconstruction techniques.
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To conclude this section, we once again return to the example of the
Shepp Logan brain phantom to illustrate the efficacy of the edge detection
procedure and Gegenbauer reconstruction method in the presence of noise.
As shown in Fig. 6(a), the effects of noise to the Shepp Logan image is
reduced by applying a standard exponential filter, but only at the cost of
blurring near the edges. The image reconstruction is greatly improved when
applying the Gegenbauer reconstruction method, as seen in 6(b).

5. CONCLUDING REMARKS

In this paper we demonstrated how the edge detection and Gegenbauer
reconstruction methods are not only effective for reconstructing piecewise
smooth functions from Fourier spectral data, but they are also robust in
the presence of noise. Specifically, the edge detection method can be
modified to consider data contaminated by random noise. Although the
reduction of the variance of reconstruction by the Gegenbauer method is
difficult to quantify, numerical evidence strongly supports that this is the
case. We note that the edge detection and Gegenbauer reconstruction
methods both take advantage of the FFT algorithms, making the method
computationally comparable to standard imaging techniques for rectilinear
coordinates [12]. However, computational efficiency of the minimiza-
tion problem (2.7) must be further addressed, as well as manipulation of
the Gegenbauer reconstruction method to reduce the variance of the
reconstructed image. These will be topics of future work.
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