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Abstract. In this article, we propose high-order finite difference schemes for the equations of relativistic hydrodynamics,
which are entropy stable. The crucial components of these schemes are a computationally efficient entropy conservative
flux and suitable high-order entropy dissipative operators. We first design a higher-order entropy conservative flux. For the
construction of appropriate entropy dissipative operators, we derive entropy scaled right eigenvectors. This is then used
with ENO-based sign-preserving reconstruction of scaled entropy variables, which results in higher-order entropy-stable
schemes. Several numerical results are presented up to fourth order to demonstrate entropy stability and performance of
these schemes.
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1. Introduction

The equations of relativistic hydrodynamics are used to model astrophysical flows when the fluid is
moving with speed comparable to the speed of light, or the flow is under the influence of large gravitational
potentials such that relativistic effects cannot be ignored. Some examples are gamma-ray burst, relativistic
jets from Galactic sources, core-collapse supernovae and extragalactic jets from active Galactic nuclei (see
[5,6,20,27,39]).

In this article, we consider the equations of special relativistic hydrodynamics (RHD henceforth) with
the ideal equation of state. The system of equations is hyperbolic conservation laws. So, the solutions of
the system can exhibit discontinuities, even for the smooth initial data (see [15]). Therefore, we consider
weak solutions of the systems which are characterized by the Rankine–Hugoniot jump condition across
the discontinuities. However, the weak solutions of the system can be non-unique; hence, an additional
criterion in the form of entropy inequality is imposed to choose the physically appropriate solution.
However, more recently, it has been shown that even the entropy-stable solutions are not unique (see [9]).
Still, entropy stability is one of the few nonlinear stability estimates available for the solutions.

Due to nonlinearity in the flux, the analytic study of the equations is difficult. Hence, we rely on
computational methods for various applications. The computational methods for hyperbolic conservation
laws are often based on the finite volume (or finite difference) methods. These methods are based on
evolving the cell averages of the state variables by approximating the numerical fluxes across the cell
interfaces. Higher order is achieved by reconstructing the solution at the cell edges, using TVD-, ENO-
and WENO-based approximations (see [13,17,19,32]). To prove the entropy stability of these schemes is,
however, highly non-trivial, especially for the higher-order schemes.

For the RHD equations, one of the first attempts to solve the system computationally was made by
[35]. Using an artificial viscosity technique to capture the shock solution, the author designed a Eulerian
explicit finite difference scheme. However, the approach did not capture the flows accurately in the cases
where the numerical value of the Lorentz factor was larger than 2 (see [7]). Another approach based on the
van Leer schemes is presented in[11]. Schemes based on the piece-wise parabolic reconstruction methods
are designed in [2,22,26]. In [10], authors designed a numerical scheme based on the TVD reconstruction.
In [25], authors have designed an HLLC solver for the equations. More recently, in [36], authors have used
the WENO reconstruction to obtain a high-order accurate physical-constraints-preserving finite difference
scheme for RHD. Also, in [37], a physical-constraints-preserving DG scheme is designed. A comprehensive
overview of the numerical schemes for RHD equations is presented in [14].

In this article, we aim to design higher-order entropy-stable numerical schemes for the RHD equations.
We proceed as follows:

• First, we present entropy framework for the RHD equations at the continuous level.
• Following the work of [8], we then construct a second-order entropy conservative numerical flux.

This can then be made arbitrary higher even-order accurate by following [21].
• We then design an appropriate higher-order entropy diffusion operator by following [12]. This is

based on the higher-order sign-preserving reconstruction of the scaled entropy variables. The scaled
entropy variables are obtained by deriving the expressions for the entropy scaled right eigenvectors
(see Appendix B).
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• Combining entropy conservative flux with the entropy diffusion operator, we get entropy-stable
numerical schemes for the RHD equations.

The rest of the paper is organized as follows. In Sect. 2, we introduce the relativistic hydrodynamics
equations and entropy framework. In the next section (Sect. 3), we present entropy-stable numerical
schemes for the RHD equations. This includes the derivation of the entropy conservative numerical flux
and the construction of the entropy diffusion operator. In Sect. 4, we present numerical experiments in
one and two dimensions.

2. Equations of relativistic hydrodynamics

For an ideal fluid, the special relativistic hydrodynamics equations, in the laboratory frame of reference,
can be written as a system of conservation laws for mass density, momentum density and the total energy
density in the following form (see [3,20,33]):

∂D

∂t
+ ∇ · (Du) = 0,

∂m

∂t
+ ∇ · (mu + pI) = 0,

∂E

∂t
+ ∇ · m = 0,

(1)

where the conserved quantities D, m and E are the fluid mass density, momentum density and the total
energy density, respectively. The primitive quantities ρ, u and p are the proper mass density, fluid velocity
vector and isotropic gas pressure, respectively. The vector of conservative variables, U = (D,m, E), and
primitive variables, w = (ρ,u, p), are connected via relations

D = Γρ, m = ρhΓ2u, E = ρhΓ2 − p.

Here, h is the special enthalpy and Γ is the Lorentz factor, given by,

Γ =
1√

1 − u2
, with |u| < 1. (2)

A key difficulty for the numerical schemes is the need to convert conservative variables to primitive
variables and vice versa. In the case of RHD equations, for deriving velocity from the conservative
variables, we need to solve a nonlinear equation. We describe the process in Appendix A.

In conservative variables U, the RHD system (1), for the two-dimensional case, can be written in the
conservative form as,

∂U
∂t

+
∂fx

∂x
+

∂fy

∂y
= 0. (3)

Here, the fluxes are given by,

fx =

⎡
⎢⎢⎢⎢⎣

Dux

mxux + p
myux

mzux

mx

⎤
⎥⎥⎥⎥⎦

, and fy =

⎡
⎢⎢⎢⎢⎣

Duy

mxuy

myuy + p
mzuy

my

⎤
⎥⎥⎥⎥⎦

.

The system is closed using the ideal equation of state (EOS henceforth), for which the special enthalpy
h is given by

h = 1 +
γ

γ − 1
p

ρ
, (4)
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where γ is the specific heat ratio. For the solution to be physically meaningful, we need to have positive
density, positive pressure and magnitude of velocity to be less than the speed of light, which is assumed
to be unity. Therefore, we consider the following solution set of physical states,

Ω = {U = (D,m, E), ρ > 0, p > 0, |u| < 1} .

Following [3,29], we have the following result:

Lemma 2.1. The system (3) is hyperbolic for the states U in Ω with real eigenvalues and a complete set
of eigenvectors.

The eigenvalues and a complete set of right eigenvectors are presented in Appendix B. We now
introduce entropy function U and associated entropy flux F i for the system (3) as follows:

U = − ρΓs

γ − 1
and F i = −ρΓsui

γ − 1
, i = x, y; (5)

where s = ln(pρ−γ). The pair (U ,F i), U ,F i as in (5), is called an entropy–entropy flux pair. We now
have the following result:

Proposition 2.2. The smooth solutions of (3) satisfy the entropy equality,

∂ts + ux∂xs = 0. (6)

As a corollary, for any smooth function H(s), we have,

∂t(ρΓH(s)) + ∂x(ρΓuxH(s)) = 0. (7)

In particular, smooth solutions will satisfy entropy equality,

∂tU + ∂xFx = 0. (8)

To prove Proposition 2.2, we will first prove the following two lemmas:

Lemma 2.3. The smooth solutions of (3) satisfy the identity

1
Γ2

∂tp = ∂tp + ux∂xp +
(

ρh

Γ

)
(∂tΓ + ∂x(Γux)) − ρh∂xux. (9)

Proof. For the one-dimensional case, the RHD system (3) simplifies to the following set of three equations

∂t(ρΓ) + ∂x(ρΓux) = 0, (10)

∂t(ρhΓ2ux) + ∂x(ρhΓ2u2
x) + ∂xp = 0, (11)

∂t(ρhΓ2) − ∂t(p) + ∂x(ρhΓ2ux) = 0. (12)

Using the product rule, Eq. (11) simplifies to

∂t(ρhΓ2ux) + (ρhΓ2ux)∂xux + ux∂x(ρhΓ2ux) + ∂xp = 0.

Now, substituting the value of ∂x(ρhΓ2ux) from Eq. (12) to get:

∂t(ρhΓ2ux) + (ρhΓ2ux)∂xux + ux∂tp − ux∂t(ρhΓ2) + ∂xp = 0.

Using the product rule, this simplifies to

(ρhΓ2)∂tux + (ρhΓ2ux)∂xux + ux∂tp + ∂xp = 0.

Multiplying this with ux leads to,

(ρhΓ2ux)(∂tux + ux∂xux) + u2
x∂tp + ux∂xp = 0. (13)

Note that Γ2 = 1
1−u2

x
; thus, we get

∂tΓ = Γ3ux∂tux and ∂xΓ = Γ3ux∂tux. (14)

Substituting (14), along with the value of u2
x (in terms of Γ), in Eq. (13) results in the identity (9). �
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Lemma 2.4. The smooth solutions of the system (3) satisfy the equation

(∂tp + ux∂xp) +
pγ

Γ
(∂tΓ + ∂x(Γux)) = 0. (15)

Proof. Applying product rule on Eq. (12), we get

∂tp = (∂tΓ + ∂x(Γux))(ρhΓ) + Γ∂t(ρhΓ) + Γux∂x(ρhΓ).

Using Eq. (10), we obtain,

∂tp = (∂tΓ + ∂x(Γux))(ρΓ) + (∂tΓ + ∂x(Γux))
γ

γ − 1
pΓ − Γ∂x(ρuxΓ)

+ Γ
(

γ

γ − 1

)
∂t(pΓ) + Γux∂x(ρΓ) + Γux

(
γ

γ − 1

)
∂x(pΓ).

Using the product rule, we get,

∂tp = (∂tΓ + ∂x(Γux))(ρΓ) + 2(∂tΓ + ∂x(Γux))
γ

γ − 1
pΓ +

(
γ

γ − 1

)
Γ2∂tp − ρΓ2∂xux

+
(

γ

γ − 1

)
uxΓ2∂xp −

(
γ

γ − 1

)
pΓ2∂xux.

(16)

Multiplying both sides of Eq. (16) by
(

γ−1
Γ2γ

)
results in,

∂tp + ux∂xp =
γ − 1
Γ2γ

∂tp − (∂tΓ + ∂x(Γux))
ρ

Γ
γ − 1

γ
− 2(∂tΓ + ∂x(Γux))

p

Γ
+ ρ

γ − 1
γ

∂xux + p∂xux.

Substituting the value of 1
Γ2 ∂tp, from Eq. (9), results in the identity

(∂tp + ux∂xp) +
pγ

Γ
(∂tΓ + ∂x(Γux)) = 0.

�

Proof of Proposition (2.2). Recall that s = ln(pρ−γ), therefore

∂ts =
1
p
∂tp − γ

ρ
∂tρ and ∂xs =

1
p
∂xp − γ

ρ
∂xρ. (17)

We simplify Eq. (10) using the product rule to obtain

1
ρ
(∂tρ + ux∂xρ) = − 1

Γ
(∂tΓ + ∂x(Γux)). (18)

Combining Eqs. (15) and (18), we get

1
p
(∂tp + ux∂xp) − γ

ρ
(∂tρ + ux∂xρ) = 0,

which further simplifies (using Eq. (17)) to ∂ts + ux∂xs = 0. Equation (7) follows immediately using (6).
We substitute H(s) = −s

γ−1 in (7) to get the equality (8). �

Remark 2.1. The entropy equality (8) gives rise to the entropy inequality

∂tU + ∂xFx ≤ 0 (19)

for the non-smooth solutions. Also, this estimate can be extended to the two-dimensional case.

In the next section, we will design numerical schemes which will satisfy the entropy inequality (19) at
the semi-discrete level.
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3. Entropy-stable numerical schemes

In this section, we present the semi-discrete schemes for the two-dimensional RHD equations. Let us
consider the two-dimensional domain D = (xa, xb) × (ya, yb), which is discretized using uniform mesh
of size Δx × Δy where Δx = xi+1 − xi and Δy = yj+1 − yj , with 0 ≤ i ≤ Nx and 0 ≤ j ≤ Ny.
We define points xi = xa + iΔx and yj = ya + jΔy. The cell centres are defined as xi+1/2 := xi+xi+1

2

and yj+1/2 := yj+yj+1
2 , and the domain D is divided into cells Iij . Then, a general semi-discrete finite

difference scheme has the following form:
d

dt
Uij(t) +

1
Δx

(
Fx

i+ 1
2 ,j(t) − Fx

i− 1
2 ,j(t)

)
+

1
Δy

(
Fy

i,j+ 1
2
(t) − Fy

i,j− 1
2
(t)
)

= 0, (20)

where Fx
i+ 1

2 ,j
and Fy

i,j+ 1
2

are the numerical fluxes consistent with the continuous fluxes fx and fy, respec-
tively. Let us introduce notation �v� for the jump and v̄ for the arithmetic average of a scalar v over the
cell boundaries of the cell Iij in the following way:

�v�i+ 1
2 ,j = vi+1,j − vi,j , v̄i+ 1

2 ,j =
1
2
(vi+1,j + vi,j),

�v�i,j+ 1
2

= vi,j+1 − vi,j , v̄i,j+ 1
2

=
1
2
(vi,j+1 + vi,j).

3.1. Entropy conservative schemes

In the first step, to obtain an entropy-stable scheme, we construct an entropy conservative scheme of
arbitrary higher even-order. We say a scheme is entropy conservative scheme if the computed solution
satisfies a semi-discrete entropy equality,

d
dt

U(Uij) +
1

Δx

(
F̃x

i+ 1
2 ,j − F̃x

i− 1
2 ,j

)
+

1
Δy

(
F̃y

i,j+ 1
2

− F̃y

i,j− 1
2

)
= 0

for some numerical entropy fluxes F̃x and F̃y consistent with the fluxes Fx and Fy, respectively.
Let us introduce the entropy variables, v(U) = ∂UU , and the entropy potentials, ψα(U) = v�(U) ·

fα(U) − Fα(U) for α ∈ {x, y}. A simple calculation results in

v =

⎛
⎜⎜⎝

γ−s
γ−1 + β

uxΓβ
uyΓβ
−Γβ

⎞
⎟⎟⎠ , and ψα = ρΓuα for α ∈ {x, y}, β =

ρ

p
.

We now recall the following theorem due to [34], which provides a sufficient condition for the consistent
fluxes, F̃x and F̃y, to be entropy conservative.

Theorem 3.1. [34] Let F̃x and F̃y be the consistent numerical fluxes, which satisfies,

�v�T
i+ 1

2 ,j F̃
x
i+ 1

2 ,j = �ψx�i+ 1
2 ,j , �v�T

i,j+ 1
2
F̃y

i,j+ 1
2

= �ψy�i,j+ 1
2
, (21)

then the scheme (20) with the numerical fluxes F̃x and F̃y is second-order accurate and entropy conser-
vative, i.e. the computed solutions satisfy the discrete entropy equality

d
dt

U(Uij) +
1

Δx

(
F̃x

i+ 1
2 ,j − F̃x

i− 1
2 ,j

)
+

1
Δy

(
F̃y

i,j+ 1
2

− F̃y

i,j− 1
2

)
= 0,

corresponding to the numerical entropy fluxes,

F̃x
i+ 1

2 ,j = v̄T
i+ 1

2 ,jF̃
x
i+ 1

2 ,j − ψ̄x
i+ 1

2 ,j , and F̃y

i,j+ 1
2

= v̄T
i,j+ 1

2
F̃y

i,j+ 1
2

− ψ̄y

i,j+ 1
2
.
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Note that Eq. (21), for the x-directional flux with two velocity components, provides a single algebraic
equation in the four unknowns F̃x = (F x

1 , F x
2 , F x

3 , F x
4 )�. For the Euler equations, in [18], authors have

presented an affordable entropy conservative flux. More recently, Chandrashekar in [8] has proposed a
new approach to find an entropy conservative flux for the Euler equations. Here, we follow [8], to find an
entropy conservative flux.

3.1.1. Entropy conservative flux. For simplicity, we ignore the indices. Let us define aln = �a�
�log a� as the

logarithmic average of scalar a (as in [12]). Using the jump identity �ab� = ā�b� + b̄�a� for Eq. (2), we
obtain

�Γ� =
1
Γ̄

(mx�mx� + my�my�),

where, mx = Γux and my = Γuy. Using this, we can write the jump in v in terms of the jump in ρ, β,
mx and my as follows:

�v� =

⎛
⎜⎜⎜⎜⎝

�ρ�
ρln + k1�β�

mx�β� + β̄�mx�

my�β� + β̄�my�

−Γ̄�β� − β̄mx

Γ̄
�mx� − β̄my

Γ̄
�my�

⎞
⎟⎟⎟⎟⎠

,

with k1 =
(

1
γ−1

1
βln + 1

)
. Furthermore, �ψx� and �ψx� can be written as

�ψx� = ρ̄�mx� + mx�ρ� and �ψy� = ρ̄�my� + my�ρ�, respectively.

Let F̃x = (F x
1 , F x

2 , F x
3 , F x

4 )� be an entropy conservative flux and v = (v1, v2, v3, v4)�, then
Eq. (21) results in,

F x
1 �v1� + F x

2 �v2� + F x
3 �v3� + F x

4 �v4� = �ψx�,

which simplifies to

(
F x

1

ρln

)
�ρ� +

(
βF x

2 − β̄mx

Γ̄
F x

4

)
�mx� +

(
βF x

3 − β̄my

Γ̄
F x

4

)
�my� +

(
k1F

x
1 + mxF x

2 + myF x
3 − F x

4 Γ̄
)

�β�

= ρ̄�mx� + mx�ρ�.

Comparing both sides the coefficients of independent jumps, i.e. coefficient of �ρ�, �β�, �mx� and �my�,
we obtain F̃x = (F x

1 , F x
2 , F x

3 , F x
4 ), where the components are given by

F x
1 = ρlnmx,

F x
2 =

1
β̄

( β̄mx

Γ̄
F x

4 + ρ̄
)
,

F x
3 =

my

Γ̄
F x

4 ,

F x
4 =

−Γ̄
(
k1ρ

lnmx + mxρ̄
β̄

)
(
mx

2 + my
2 − Γ̄2

) ,
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with k1 =
(

1
(γ−1)

1
βln + 1

)
. It is straightforward to verify that F̃x is consistent with the flux fx. Similarly,

we can derive the expression for F̃y given by,

F̃y(Ul,Ur) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρlnmy

−mx

(
k1ρlnmy+

myρ̄

β̄

)
(
mx

2+my
2−Γ̄2

)

−my

(
k1ρlnmy+

myρ̄

β̄

)
(
mx

2+my
2−Γ̄2

) + ρ̄
β̄

−Γ̄
(
k1ρlnmy+

myρ̄

β̄

)
(
mx

2+my
2−Γ̄2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

3.1.2. Higher-order entropy conservative flux. The entropy conservative fluxes derived above are only
second-order accurate. We can use second-order fluxes as the building blocks for the construction of 2pth-
order accurate fluxes for any positive integer p. These 2pth-order fluxes consist of linear combinations of
second-order accurate entropy conservative flux F̃x by following [21]:

Theorem 3.2. [21, Theorem 4.4] For p ∈ N, assume that αp
1, α

p
2, . . . , α

p
p solves the p linear equations

p∑
r=1

rαp
r = 1,

p∑
i=1

i2s−1αp
i (s = 2, 3, . . . , p),

and defining F̃x,2p

i+ 1
2 ,j

=
∑p

r=1 αp
r

∑r−1
s=0 F̃

x(Ui−s,j ,Ui−s+r,j). Similarly, we have the expression for F̃y,2p

i,j+ 1
2
.

Then, the finite difference scheme with fluxes F̃x,2p and F̃y,2p is

(i) 2p-th-order accurate
(ii) entropy conservative, i.e. it satisfies the discrete entropy identity

d
dt

U(Uij) +
1

Δx

(
F̃x,2p

i+ 1
2 ,j

− F̃x,2p

i− 1
2 ,j

)
+

1
Δy

(
F̃y,2p

i,j+ 1
2

− F̃y,2p

i,j− 1
2

)
= 0

corresponding to the numerical entropy fluxes,

F̃x,2p

i+ 1
2 ,j

=
p∑

r=1

αp
r

r−1∑
s=0

F̃x
i+ 1

2 ,j(Ui−s,j ,Ui−s+r,j),

F̃y,2p

i,j+ 1
2

=
p∑

r=1

αp
r

r−1∑
s=0

F̃y

i,j+ 1
2
(Ui,j−s,Ui,j−s+r).

In particular, the 4th-order (p = 2) x-directional entropy conservative flux is given by

F̃x,4

i+ 1
2 ,j

=
4
3
F̃x

i+ 1
2 ,j(Ui,j ,Ui+1,j) − 1

6

(
F̃x

i+ 1
2 ,j(Ui−1,j ,Ui+1,j) + F̃x

i+ 1
2 ,j(Ui,j ,Ui+2,j)

)
.

Similar expression can be derived for the y-directional fourth order flux.

Remark 3.1. Theorem 3.2 holds only for the even positive integers. So, for qth-order (q is an odd integer)
accurate scheme, we use a (q + 1)th-order (an even number) accurate flux.
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3.2. Entropy-stable schemes

The entropy conservative schemes will produce high-frequency oscillations near the shocks as they do not
dissipate entropy at the shocks. We follow [34] to introduce modified fluxes which will ensure entropy
stability at the shocks. We consider

Fx
i+ 1

2 ,j = F̃x
i+ 1

2 ,j − 1
2
Dx

i+ 1
2 ,j�v�i+ 1

2 ,j ,

Fy

i,j+ 1
2

= F̃y

i,j+ 1
2

− 1
2
Dy

i,j+ 1
2
�v�i,j+ 1

2
,

(22)

where Dx
i+ 1

2 ,j and Dy

i,j+ 1
2

are symmetric positive definite matrices. Then, we have the following lemma:

Lemma 3.3. [34] The numerical scheme (20) with the modified numerical fluxes (22) is entropy stable,
i.e. the computed solution satisfies

d
dt

U(Uij) +
1

Δx

(
F̂x

i+ 1
2 ,j − F̂x

i− 1
2 ,j

)
+

1
Δy

(
F̂y

i,j+ 1
2

− F̂y

i,j− 1
2

)
≤ 0

with the consistent numerical entropy flux functions,

F̂x
i+ 1

2 ,j = F̃x
i+ 1

2 ,j +
1
2
v̄�

i+ 1
2 ,jD

x
i+ 1

2 ,j�v�i+ 1
2 ,j and F̂y

i,j+ 1
2

= F̃y

i,j+ 1
2

+
1
2
v̄�

i,j+ 1
2
Dy

i,j+ 1
2
�v�i,j+ 1

2
.

Here, we use Rusanov’s type diffusion operators for the matrix D given by,

Dx
i+ 1

2 ,j = Rx
i+ 1

2 ,jΛ
x
i+ 1

2 ,jR
x�
i+ 1

2 ,j , and Dy

i,j+ 1
2

= Ry

i,j+ 1
2
Λy

i,j+ 1
2
Ry�

i,j+ 1
2

(23)

where Ri, i ∈ {x, y}, are matrices of the entropy scaled right eigenvectors (see Appendix B) of the
Jacobian ∂f i

∂U , and Λi, i ∈ {x, y}, are 4 × 4 diagonal matrices of the form

Λi = diag
{(

max
1≤k≤4

|λi
k|
)
I4×4

}
, i ∈ {x, y},

where {λi
k : 1 ≤ k ≤ 4} is the set of eigenvalue of the Jacobian ∂f i

∂U . We also note that, following [4],
Uv = Rk(Rk)� for k ∈ {x, y} and hence,

RkΛk(Rk)(−1)�U� ≈ RkΛk(Rk)(−1)Uv�v� = RkΛk(Rk)��v�.

Hence, the entropy diffusion operator used here is similar to the Roe diffusion operator, when the entropy
scaled right eigenvectors are used.

With the choice of diffusion operator (23), the numerical scheme (20) with the numerical flux (22) is
entropy stable. However, the scheme is only first-order accurate due to the presence of the jump terms
�v�i+ 1

2 ,j and �v�i,j+ 1
2
.

3.3. High-order diffusion operators

A straightforward way to increase the order of accuracy is to approximate the jumps using higher-order
reconstruction process. However, proving the entropy stability of the resulting scheme is not possible.
Instead, we follow the process prescribed in [12] and introduce the scaled entropy variables,

Wx,±
ij = Rx�

i± 1
2 ,jvij .

If W̃
x,±
ij denotes the k-th-order reconstructed values of Wx,±

i,j in the x-direction, then,

px,±
ij =

{
R̃x�

i± 1
2 ,j

}(−1)

W̃
x,±
i,j ,
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Table 1. Coefficients for Runge–Kutta time stepping

Order αil βil

2 1 1

1/2 1/2 0 1/2
3 1 1

3/4 1/4 0 1/4
1/3 0 2/3 0 0 2/3

are the corresponding k-th-order reconstructed values for vij . Hence, the modified numerical flux is given
by,

Fx,k

i+ 1
2 ,j

= F̃
x,2p

i+ 1
2 ,j − 1

2
Dx

i+ 1
2 ,j�P

x�i+ 1
2 ,j (24)

where �Px�i+ 1
2 ,j stands for,

�Px�i+ 1
2 ,j = Px,−

i+1,j − Px,+
ij ,

and p ∈ N is chosen as
• p = k/2 if k is even,
• p = (k + 1)/2 if k is odd.

Following [12], a sufficient condition for the numerical flux (24) to be entropy stable is that the recon-
struction process for W must satisfy the sign-preserving property. For the second-order reconstruction,
we use the minmod reconstruction which satisfies this property. We denote this scheme by O2-ES. For
the higher-order scheme, we follow [13] and use the ENO reconstruction. We use third- and fourth-order
ENO-based reconstruction and denote these schemes by O3-ES and O4-ES, respectively.

3.4. Semi-discrete entropy stability

We now have the following result:

Theorem 3.4. The semi-discrete schemes O2-ES, O3-ES and O4-ES designed above are entropy stable,
i.e. they satisfy,

d
dt

U(Uij) +
1

Δx

(
F̂x

i+ 1
2 ,j − F̂x

i− 1
2 ,j

)
+

1
Δy

(
F̂y

i,j+ 1
2

− F̂y

i,j− 1
2

)
≤ 0

where F̂x and F̂y are the consistent numerical entropy fluxes.

3.5. Time discretization

For the time discretization, we use SSP Runge–Kutta methods [16]. The second- and third-order accurate
SSP-RK methods rely on the following algorithm:

1. Define U0 = Un.
2. For m = 1, . . . , k + 1, evaluate,

U
(m)
i,j =

m−1∑
l=0

αmlU
(l)
i,j + βmlΔtn(Li,j(U(l))),

where, αml and βml follows from Table 1.
3. Set Un+1

i,j = U
(k+1)
i,j .
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Table 2. Accuracy test: rate of convergence of second-order (O2-ES), third-order (O3-ES) and fourth-order (O4-ES)
entropy-stable schemes

Number of cells O2-ES O3-ES O4-ES

– L1 error Order L1 error Order L1 error Order

100 1.4397E−02 – 1.2232E−04 – 1.1444E−05 –

200 3.9752E−03 1.86 1.5290E−05 3.00 8.1805E−07 3.81
400 1.0807E−03 1.88 1.9115E−06 2.99 5.7077E−08 3.84
800 2.9050E−04 1.89 2.3896E−07 2.99 3.8740E−09 3.88
1600 7.6511E−05 1.92 2.9871E−08 2.99 2.5967E−10 3.90

For the fourth-order accuracy, we consider the following time update:

U1 = Un + 0.39175222700392(ΔtL(Un)),

U2 = 0.44437049406734(Un) + 0.55562950593266(U1) + 0.36841059262959(ΔtL(U1)),

U3 = 0.62010185138540(Un) + 0.37989814861460(U2) + 0.25189177424738(ΔtL(U2)),

U4 = 0.17807995410773(Un) + 0.82192004589227(U3) + 0.54497475021237(ΔtL(U3)),

and finally,

Un+1 = 0.00683325884039(Un) + 0.51723167208978(U2) + 0.12759831133288(U3)

+0.34833675773694(U4) + 0.08460416338212(ΔtL(U3)) + 0.22600748319395(ΔtL(U4)).

4. Numerical results

We will now present numerical test cases for the above schemes. We present both one- and two-dimensional
test cases and compute several Riemann problems. We use CFL number 0.2 for all the presented test
cases.

4.1. One-dimensional test cases

4.1.1. Accuracy test. To test the accuracy of the proposed schemes, we first consider a problem which has
smooth solution. We consider the computational domain [0, 1] with periodic boundary conditions. The
initial density profile is assumed to be ρ(x, 0) = 2 + sin(2πx), which is then advected with the velocity
u = (0.5, 0)�. The pressure is assumed to be constant with p = 1.0. The exact solution is transportation
of the density profile in x-direction, i.e. ρ(x, t) = 2 + sin(2π(x − t)), while the other variables remain
unchanged. We use the adiabatic index, γ = 5

3 . The simulations are performed till time t = 2.0.
We present L1-errors of the density profile for the O2-ES, O3-ES, and O4-ES schemes at 100, 200,

400, 800 and 1600 cells in Table 2. We note that all the schemes preserve the predicted order of accuracy.

4.1.2. Isentropic smooth flows. In this test case, we consider a one-dimensional isentropic smooth pulse
in a fixed reference state, wref = (ρref ,uref , pref ). A detailed illustration of the problem is given in [23]
and [40]. We set ρref = 1, uref = 0, pref = 100. For the initial pulse we consider α = 1 and L = 0.3 and
then set the density profile as,

ρ0(x) = ρref [1 + αf(x)],
where f is given by

f(x) =

⎧
⎨
⎩

[(
x
L

)2 − 1
]4

, if |x| < L

0, otherwise.
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Fig. 1. Isentropic smooth flows: plots of density, velocity, pressure and total entropy evolution at 100 cells for O2-ES, O3-ES
and O4-ES schemes

The initial pressure profile is given by p = Kργ , where K is a constant. Throughout the domain, we
assume a constant value to the Riemann invariant J , to obtain the initial velocity inside the pulse. Here,
J is given by

J =
1
2

ln
(

1 + ux

1 − ux

)
− 1√

γ − 1
ln
(√

γ − 1 + c√
γ − 1 − c

)
,

where c is the sound speed. We consider the periodic boundary condition for the test case. The adiabatic
index is set to γ = 5

3 . We present the numerical results using 80 cells on the domain [−0.35, 1]. The
computations are performed till time t = 0.8. The numerical results for the proposed schemes are presented
in Fig. 1. The exact solution is using the characteristic analysis [40].

We observe that all schemes can capture the waves profile even at the coarse mesh of 80 cells. The
second-order scheme O2-ES is most diffusive when compared to third- and fourth-order schemes. In
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Table 3. Isentropic smooth flows: rate of convergence of second (O2-ES), third (O3-ES) and fourth-order (O4-ES)
entropy-stable schemes

Number of cells O2-ES O3-ES O4-ES

– L1 error Order L1 error Order L1 error Order

80 2.0311E−02 – 3.8437E−03 – 1.9803E−03 –

160 6.7215E−03 1.60 7.4271E−04 2.37 3.0451E−04 2.70
320 2.0362E−03 1.72 1.1776E−04 2.66 6.3459E−05 2.26
640 5.8148E−04 1.81 1.7238E−05 2.77 2.4278E−05 1.39

1280 1.5773E−04 1.88 7.7320E−06 1.66 8.3571E−06 1.54
2560 4.1424E−05 1.93 4.6469E−06 0.73 5.1925E−06 0.69
5120 1.0693E−05 1.95 1.6906E−06 1.46 1.7269E−06 1.59

Fig. 1d, we plot the evolution of the total entropy with time. We observe that entropy remains almost
conserved. Also, for the third- and fourth-order schemes we observe almost same entropy profile.

In Table 3, we have presented the L1-errors and order of convergence for the density at various
resolutions. We note that the second-order schemes converge with the predicted rate of convergence;
however, third- and fourth-order schemes do not converge with the desired accuracy. This is similar to
the case in [40], where other higher-order schemes also have low accuracy, except WENO-based schemes.

4.1.3. Riemann problem 1. In this test case, we consider a Riemann problem from [25]. We take compu-
tational domain of [0, 1] with the initial discontinuity centred at x = 0.5 with initial data:

(ρ,u, p) =

{(
1, −0.6, 0, 10

)
if x < 0.5(

10, 0.5, 0. 20
)

if x > 0.5.

We assume outflow boundary conditions at the boundary and consider adiabatic index, γ = 5
3 . The exact

solution of the problem contains two rarefactions waves moving in the opposite direction separated by a
contact wave.

The numerical results are presented in Fig. 2 for the O2-ES, O3-ES and O4-ES schemes using 100 and
500 cells. We have plotted density, velocity and pressure profile at time t = 0.4. We compare the obtained
results with the exact solution achieved using [24]. We observe that at the resolution of 100 cells, O4-ES
is more accurate than the O3-ES scheme, which further is more accurate than the O2-ES, as expected.
At the refined mesh with 500 cells, all the schemes are relatively close to each other and resolve both
rarefaction and the contact.

In Fig. 2d, we have plotted the evolution of total entropy with time. We note that at 100 cells O4-ES
is least diffusive followed by O3-ES with O2-ES being most diffusive. At 500 cells, the entropy decay of
the schemes is much closer to each other.

4.1.4. Riemann problem 2. In this test case, we consider a shock tube like test case from [24]. The
problem will test wave capturing ability of the proposed schemes as all kinds of waves are present in
the solution. Similar to previous Riemann problem, we consider the computational domain of [0, 1] with
outflow boundary conditions, and with initial discontinuity at x = 0.5 separating the states given as:

(ρ,u, p) =

{(
1, 0, 103

)
if x < 0.5(

1, 0, 10−2
)

if x > 0.5

In Fig. 3, we present the results at 100 and 500 cells for time t = 0.4 for O2-ES, O3-ES and O4-ES
with γ = 5

3 . We have plotted density, velocity and pressure profiles. We observe that the second-order
scheme O2-ES at 100 cells completely fails to capture the waves, while O3-ES and O4-ES perform better.
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Fig. 2. Riemann problem 1: Plots of density, velocity, pressure and total entropy evolution at 100 and 500 cells for O2-ES,
O3-ES and O4-ES schemes

However, at 500 cells all the schemes are able to capture the waves with O4-ES being most accurate. We
have followed [24] to obtain the exact solution of Riemann Problem 2.

In Fig. 3d, we plot evolution of total entropy with time. At 100 cells, O2-ES scheme is most diffusive
followed by O3-ES scheme. The fourth-order scheme O4-ES is most accurate. At the finer mesh of 500
cells, we have a similar performance of the schemes, with much closer decay rates.

4.1.5. Riemann problem 3. In this test case, we consider a Riemann problem which is similar to a test
case in [25]. The computational domain of [0, 1] contains an initial discontinuity separating the states:

(ρ, u, p) =

{(
10, 0, 40

3

)
if x < 0.5,(

1, 0, 2
3 × 10−5

)
if x > 0.5.

The problem is similar to the shock tube test case for Euler equation of compressible fluids. However,
here the right state contains very low pressure, which will test robustness of the schemes. The numerical
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Fig. 3. Riemann problem 2: Plots of density, velocity, pressure and total entropy evolution at 100 and 500 cells for O2-ES,
O3-ES and O4-ES schemes

results are presented in Fig. 4 at time t = 0.4. We use adiabatic index, γ = 5
3 . We proceed as in [24] to

obtain the exact solution of Riemann Problem 3. Similar to test case above, at 100 cells, no scheme is
able to capture the shock wave efficiently. However, at 500 cells, all the schemes resolve the shock wave
with accuracy. For the entropy evolution, we observe that at 500 cells all the scheme have similar decay
rate, whereas for the 100 cells, O3-ES and O4-ES are slightly better than the O2-ES.

4.1.6. Density perturbation test case. For this test case, we consider the test problem from [38]. We
consider the computational domain of [0, 1] with outflow boundary conditions. We assume adiabatic
index to be γ = 5

3 . The initial conditions are given by,

(ρ,u, p) =

{(
5, 0, 50

)
if x < 0.5(

2 + 0.3 sin(50x), 0, 5
)

if x > 0.5.
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Fig. 4. Riemann problem 3: plots of density, velocity, pressure and total entropy evolution at 100 and 500 cells for O2-ES,
O3-ES and O4-ES schemes

The solution is computed till time t = 0.35. The exact solution of the problem contains oscillatory density
profile with both shocks and rarefaction waves. Hence, the problem will test accuracy of the schemes in
capturing these oscillations and other waves.

We have plotted the numerical results for density, velocity and pressure in Fig. 5 for 100 and 500
cells using O2-ES, O3-ES, and O4-ES schemes. At coarse mesh of 100 cells, we again observe that the
fourth-order scheme O4-ES is much more accurate than the third-order scheme O3-ES. The second-order
scheme is the least accurate. For the fine mesh of 500 cells, O2-ES still fails to capture the peaks; however,
O3-ES and O4-ES perform almost identically. This can be further observed from the entropy decay plot
in Fig. 5d. We observe that the O3-ES and O4-ES schemes are much closer for 500 cells with O2-ES
being more diffusive.
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Fig. 5. Density perturbation test case: plots of density, velocity, pressure and total entropy evolution at 100 and 500 cells
for O2-ES, O3-ES and O4-ES schemes

4.1.7. Blast waves test case. In this test case, we consider the blast wave interaction problem from [22].
The initial computational domain is considered to be [0, 1] with outflow boundary conditions. The initial
conditions in the domain are given by,

(ρ, u, p) =

⎧
⎪⎨
⎪⎩

(
1, 0, 1000

)
if x < 0.1,(

1, 0, 0.01
)

if 0.1 < x < 0.9,(
1, 0, 100

)
if x > 0.9,

with adiabatic index γ = 1.4. We compute the solutions till time t = 0.43. As the test case is fairly
extreme, to capture the waves, we use 5000 cells.

Numerical results for O2-ES, O3-ES and O4-ES schemes are plotted in Fig. 6. To show the results with
more details, we plotted the variables in the interval (0.50, 0.53). We again observe that O4-ES captures
the waves more accurately, and O2-ES is most diffusive. We have also plotted the entropy evolution with
time for these schemes.
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Fig. 6. Blast waves test case: plots of density, velocity, pressure and total entropy evolution with 5000 cells for O2-ES,

O3-ES and O4-ES schemes
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Fig. 7. Two-dimensional Riemann problem 1: plots for ln ρ and ln p for O3-ES and O4-ES using 25 contours

4.2. Two-dimensional test cases

For the two-dimensional test cases, we consider various two-dimensional Riemann problems. We assume
a computational domain [0, 1]× [0, 1] which is divided into four parts with initial discontinuities along the
lines x = 0.5 and y = 0.5. We use mesh of 400 × 400 cells and take γ = 5

3 . Outflow boundary conditions
are used in all the test cases. To simplify the presentation, we present the numerical results for O3-ES
and O4-ES schemes only, as O2-ES numerical results are more diffusion compare to O3-ES and O4-ES
schemes.
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Fig. 8. Two-dimensional Riemann problem 2: plots for ln ρ and ln p for O3-ES and O4-ES using 25 contours

4.2.1. Two-dimensional Riemann problem 1. In this test case, we consider the Riemann problem from
[38]. The domain is filled with four constant states given by,

(ρ, ux, uy, p) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(
0.1, 0, 0, 0.01

)
, for x, y > 0.5,(

0.1, 0.99, 0, 1.0
)
, for x < 0.5, y > 0.5,(

0.5, 0, 0, 1.0
)
, for x, y < 0.5,(

0.1, 0, 0.99, 1.0
)
, for x > 0.5, y < 0.5.
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Fig. 9. Two-dimensional Riemann problem 3: plots for ln ρ and ln p for O3-ES and O4-ES using 25 contours

Numerical results for O3-ES and O4-ES schemes are presented in Fig. 7 at time t = 0.4. We have
plotted 25 contours of ln ρ and ln p. We note that both the schemes captures all the waves and have
comparable accuracy with O4-ES being slightly more accurate.

4.2.2. Two-dimensional Riemann problem 2. For this test case, we consider a Riemann problem used in
[28]. The four initial states are given by,
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Fig. 10. Two-dimensional Riemann problem 4: plots for ln ρ and ln p for O3-ES and O4-ES using 25 contours

(ρ,u, p) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(
0.5, 0.5, −0.5, 5

)
, if x, y > 0.5,(

1, 0.5, 0.5, 5
)
, if x < 0.5, y > 0.5,(

3, −0.5, 0.5, 5
)
, if x, y < 0.5,(

1.5, −0.5, −0.5, 5
)
, if x > 0.5, y < 0.5.

In Fig. 8, we have plotted ln ρ and ln p using 25 contours at t = 0.4 for O3-ES and O4-ES schemes.
We again observe that both the schemes accurately capture all the waves in the vortex. Also, O4-ES
produces more details compared to O3-ES.
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Fig. 11. Two-dimensional Riemann problem 5: plots for ln ρ and ln p for O3-ES and O4-ES using 25 contours

4.2.3. Two-dimensional Riemann problem 3. We consider another Riemann problem from [28]. The initial
four states are given as follows:

(ρ,u, p) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(
1, 0, 0, 1

)
if x, y > 0.5,(

0.5771, −0.3529, 0, 0.4
)

if x < 0.5, y > 0.5,(
1, −0.3529, −0.3529, 1

)
if x, y < 0.5,(

0.5771, 0, −0.3529, 0.4
)

if x > 0.5, y < 0.5.
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The exact solution involves interactions of the planar rarefaction waves, which generates two symmetric
shock waves. We present the numerical results using 25 contours for ln ρ and ln p at t = 0.4 in Fig. 9. We
observe that both the schemes, O3-ES and O4-ES, capture both rarefaction and shock waves accurately
and have similar performance.

4.2.4. Two-dimensional Riemann problem 4. We consider another test case from [28], for which initial
states are given by,

(ρ,u, p) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(
0.035145216124503, 0, 0, 0.162931056509027

)
, if x, y > 0.5,(

0.1, 0.7, 0, 1
)
, if x < 0.5, y > 0.5,(

0.5, 0, 0, 1
)
, if x, y < 0.5,(

0.1, 0, 0.7, 1
)
, if x > 0.5, y < 0.5.

In this test case, initial membranes break and two contact discontinuities appear on the left and bottom
of the domain. Finally, we obtain two curved front shocks.

We have plotted ln ρ and ln p using 25 contours for O3-ES and O4-ES schemes at time t = 0.4 in
Fig. 10. Both of the schemes resolve curved shocks and contact waves accurately.

4.2.5. Two-dimensional Riemann problem 5. In this test case from [37], the initial four states are given
by,

(ρ, v, p) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(
0.1, 0, 0, 20

)
if x, y > 0.5,(

0.00414329639576, 0.99, 0, 0.05
)

if x < 0.5, y > 0.5,(
0.01, 0, 0, 0.05

)
if x, y < 0.5,(

0.00414329639576, 0, 0.99, 0.05
)

if x > 0.5, y < 0.5.

Here, the four initial discontinuities interact to give the distortion of initial shocks with a left-bottom
going mushroom cloud, starting from the centre. The numerical results for O3-ES and O4-ES at time
t = 0.4 are presented in Fig. 11. We use 25 contours to plot ln ρ and ln p. We observe that both schemes
resolve cloud accurately.

5. Conclusion

In this work, we consider the system of relativistic hydrodynamics. First, we discuss the entropy estimate
for the continuous model. We then design second-, third- and fourth-order entropy-stable finite difference
schemes. The schemes involve combining higher-order entropy conservative schemes with higher-order
entropy diffusion operator. The design of higher-order diffusion operator is based on the entropic scaled
eigenvectors and sign-preserving property of minmod and ENO reconstruction process. The resulting
schemes are then tested on a variety of test cases, involving one- and two-dimensional Riemann problems.
The schemes are shown to be stable and accurate in capturing various waves. We also quantify the total
entropy decay for various test cases. Furthermore, using the component presented here, we can design
arbitrary higher-order entropy-stable schemes for relativistic fluid flows.
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Appendix A. Computation of primitive variables

The RHD equations involve the conserved quantities, D, m and E; but to solve the RHD equations
numerically, we need to know the explicit values of the primitive variables, ρ, u and p. The primitive
variables can be extracted by inverting the RHD equations (1). For the ideal equation of state (4), [30]
showed that (using Eq. (1)) the variable u(= |u|) satisfies

u4 + a3u
3 + a2u

2 + a1u + a0 = 0, (25)

where

a3 = − 2γ(γ − 1)ME

(γ − 1)2(M2 + D2)
, a2 =

(γ2E2 + 2(γ − 1)M2 − (γ − 1)2D2)
(γ − 1)2(M2 + D2)

,

a1 =
−2γME

(γ − 1)2(M2 + D2)
, a0 =

M2

(γ − 1)2(M2 + D2)
,

with M = (m2
x +m2

y +m2
z)

1/2. Equation (25) could either be solved using the analytical methods or using
an approximate root solver. In [30], authors have suggested the following expressions for the lower bound
ulb and upper bound uub:

ulb =
1

2M(γ − 1)
(γE −

√
γ2E2 − 4(γ − 1)M2)

and

uub = min
(

1,
M

E
+ δ

)
,

where δ ≈ 10−6. Furthermore, to find the root of Eq. (25) using the Newton–Raphson method, [30]
suggested the initial guess uo as,

uo =
1
2
(ulb + uub) + z,

where z = 1
2

(
1 − D

E

)
(ulb − uub) if ulb > 10−9 and z = 0 otherwise. We then obtain uo between ulb and

uub. Also, an accuracy of nine digits can be achieved in at most five iterations of the Newton–Raphson
root solver.

For the analytic solution, we can use the direct formulation of the roots of the quartic equations. The
general form of analytical roots is available in [1]. We note that Eq. (25) has two complex roots and two
real roots. Among two real roots, only one root lies between the lower and upper bounds suggested by
[30], which is given by,

u =
−B +

√
B2 − 4C

2
,

where,

B =
a3

2
+

√
a2
3

4
+ z1 − a2, C =

z1

2
−
√(z1

2

)2

− a0, z1 = (s1 + s2) − b2

3
, s1 = (r +

√
q3 + r2)

1/3
,

s2 = (r −
√

q3 + r2)
1/3

, q =
b1

3
− b2

2

9
, r =

1
6
(b1b2 − 3b0) − 1

27
b3
2, b0 = −(a2

1 + a0a
2
3 − 4a0a2),

b1 = a1a3 − 4a0 and b2 = −a2.
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Once we have the value of u, we can find all the primitive variables, i.e. ρ, ui, p, using the expressions

ρ =
D

Γ
,

ux =
mx

M
u, uy =

my

M
u, uz =

mz

M
u,

p = (γ − 1)(E − mxux − myuy − mzuz − ρ).

In this article, we use numerical approach to find the primitive variables from the conservative variables.

Appendix B. Entropy scaled right eigenvectors

In this section, we present the entropy scaled right eigenvectors. First, we consider the case of x-direction
right eigenvectors. We rewrite the RHD system (3),

∂U
∂t

+ Ax ∂U
∂x

= 0, where Ax =
∂fx

∂U
.

Following [29], the eigenvalues of the Jacobian matrix Ax are given by:

λx
1 =

(1 − c2)ux − (c/Γ)
√

Qx

1 − c2u2
, λx

2 = λx
3 = ux and λx

4 =
(1 − c2)ux + (c/Γ)

√
Qx

1 − c2u2
.

Here, Qx = 1 − u2
x − c2u2

y and c is the sound speed given by the expression

c2 = − ρ

nh

∂h

∂ρ
,

where n = k − 1 with k = γ
γ−1 , for all U ∈ Ω. Note that Qx = 1 − u2

x − c2u2
y > 0; therefore, all the

eigenvalues are real. A straightforward calculation results in the following expressions for the eigenvectors
in primitive variables:

e1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
c2h

−√
Qx

chΓρ

(c−Γ
√

Qxux)uy

chΓ2ρ(ux
2−1)

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, e2 =

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ , e3 =

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠ and e4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
c2h

√
Qx

chΓρ

(c+Γ
√

Qxux)uy

chΓ2ρ(ux
2−1)

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The eigenvector matrix for the conservative system, R̃x, can be derived using,

R̃x =
∂U
∂w

R̃x
w, (26)

where R̃x
w = (e1, e2, e3, e4), i.e. the matrix of right eigenvectors for the primitive system. To obtain

the scaled right eigenvector matrix Rx, we need to find a scaling matrix Tx such that the scaled right
eigenvector matrix, Rx = R̃xTx, satisfies

∂U
∂v

= RxRx�. (27)

We first derive the expression of the entropy scaled right eigenvector for the primitive variable system,
Rx

w. Following the procedure of [4,31], the scaling matrix Tx is the square root of the matrix Yx, where

Yx = R̃x
w

−1 ∂w
∂v

∂U
∂w

−�
R̃x

w

−�
,
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which on a long calculation results in,

Yx =

⎛
⎜⎜⎜⎜⎜⎜⎝

c2hp

(
1+ cux

Γ
√

Qx

)

2Γ(1−c2u2) 0 0 0
0 ρ

kΓ 0 0
0 0 p

hΓ5ρ2(1−ux
2) 0

0 0 0
c2hp

(
1− cux

Γ
√

Qx

)

2Γ(1−c2u2)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Consequently,

Tx =
√
Yx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
c2hp

(
1+ cux

Γ
√

Qx

)

2Γ(1−c2u2) 0 0 0

0
√

ρ
kΓ 0 0

0 0
√

p
hΓ5ρ2(1−ux

2) 0

0 0 0

√
c2hp

(
1− cux

Γ
√

Qx

)

2Γ(1−c2u2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

So, the entropy scaled right eigenvector matrix for the primitive system is given by

Rx
w = R̃x

wT
x

=

⎛
⎜⎜⎜⎜⎝

Ax
1

c2h Ax
2 0 Ax

4
c2h−Ax

1
√

Qx

chΓρ 0 0 Ax
4
√

Qx

chΓρ
Ax

1(c−Γ
√

Qxux)uy

chΓ2ρ(ux
2−1) 0 Ax

3

Ax
4(c+Γ

√
Qxux)uy

chΓ2ρ(ux
2−1)

Ax
1 0 0 Ax

4

⎞
⎟⎟⎟⎟⎠

,

where

Ax
1 =

√√√√ c2hp
(
1 + cux

Γ
√

Qx

)

2Γ (1 − c2u2)
, Ax

2 =

√
ρ

kΓ
, Ax

3 =

√
p

hΓ5ρ2 (1 − ux
2)

and Ax
4 =

√√√√ c2hp
(
1 − cux

Γ
√

Qx

)

2Γ (1 − c2u2)
.

Using Eq. (26), we can calculate the entropy scaled right eigenvectors for the conservative system
satisfying (27).

Remark B.1. Proceeding similarly in the y-direction, we get the eigenvalues of the Jacobian matrix as

λy
1 =

(1 − c2)uy − (c/Γ)
√

Qy

1 − c2u2
, λy

2 = uy, λy
3 = uy and λy

4 =
(1 − c2)uy + (c/Γ)

√
Qy

1 − c2u2
,

and the right eigenvector matrix, for the system in primitive variables, as

R̃y
w =

⎛
⎜⎜⎜⎝

1
c2h 1 0 1

c2h
(c−Γ

√
Qyuy)ux

chΓ2ρ(uy
2−1) 0 1 (c+Γ

√
Qyuy)ux

chΓ2ρ(uy
2−1)

−√
Qy

chΓρ 0 0
√

Qy

chΓρ

1 0 0 1

⎞
⎟⎟⎟⎠

where Qy = 1 − u2
y − c2u2

x. Consequently, the entropy scaled right eigenvector matrix is given by

Ry
w =

⎛
⎜⎜⎜⎜⎝

Ay
1

c2h Ay
2 0 Ay

4
c2h

Ay
1(c−Γ

√
Qyuy)ux

chΓ2ρ(uy
2−1) 0 Ay

3

Ay
4(c+Γ

√
Qyuy)ux

chΓ2ρ(uy
2−1)

−Ay
1
√

Qy

chΓρ 0 0 Ay
4
√

Qy

chΓρ

Ay
1 0 0 Ay

4

⎞
⎟⎟⎟⎟⎠

,
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where

Ay
1 =

√√√√ c2h ρ
β

(
1 +

cuy

Γ
√

Qy

)

2Γ (1 − c2u2)
, Ay

2 =

√
ρ

kΓ
, Ay

3 =

√
ρ

βhΓ5ρ2 (1 − uy
2)

, and Ay
4 =

√√√√ c2h ρ
β

(
1 − cuy

Γ
√

Qy

)

2Γ (1 − c2u2)
.
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