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Abstract. The vanishing viscosity limit of nonconservative hyperbolic systems depends heavily
on the specific form of the viscosity. Numerical approximations, such as the path consistent schemes
of [C. Parés, SIAM J. Numer. Anal., 41 (2007), pp. 169-185], may not converge to the physically
relevant solutions of the system. We construct entropy stable path consistent (ESPC) schemes to
approximate nonconservative hyperbolic systems by combining entropy conservative discretizations
with numerical diffusion operators that are based on the underlying viscous operator. Numerical
experiments for the coupled Burgers system and the two-layer shallow water equations demonstrating
the robustness of ESPC schemes are presented.
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1. Introduction. Many problems in science and engineering can be modeled in
terms of the first-order quasi-linear system

(1.1) w;+Aw)w, =0, zeR, t>0.
Here, the unknown w(z, t) takes values in an open convex set 2 of R and A € RV*N
is a smooth locally bounded map. We further assume that the system (1.1) is strictly
hyperbolic and that the characteristic fields are either genuinely nonlinear or linearly
degenerate.

If there exists a flux vector f(w) such that A(w) = Vf(w), then the system (1.1)
reduces to a system of conservation laws:

(1.2) w; + f(w), = 0.

It is well known that solutions of nonlinear conservation laws develop discontinuities
in finite time, in the form of shock waves. Therefore, solutions of such systems are
sought in the sense of distributions. However, in many interesting models in physics,
the system (1.1) cannot be written in the conservative form (1.2). Examples are the
multilayer shallow water systems, multiphase flows, and systems of balance laws.

As shocks are ubiquitous for quasi-linear systems like (1.1), the main mathemat-
ical difficulty associated with such nonconservative equations is to define the weak
solutions. Hence, the nonconservative product A(w)w, cannot be defined in the
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distributional sense. Nevertheless, under some hypotheses of regularity for w, these
products can be defined as Borel measures. The theory introduced by Dal Maso,
LeFloch, and Murat [5] allows one to define the nonconservative product A(w)w,
as a bounded measure for functions w with bounded variation, provided a family of
Lipschitz continuous paths @ : [0,1] x Q x Q@ — Q is prescribed, which must satisfy
certain regularity and compatibility conditions, in particular

(1.3) S0, w_,wi)=w_, O(Lw_,wy) =wy, O(s;w,w) =w.

The interested reader is referred to [5] for a rigorous and complete presentation.

Once the nonconservative product has been defined, one may define the weak
solutions of (1.1). According to this theory, across a discontinuity a weak solution
has to satisfy the generalized Rankine—-Hugoniot condition

(1.4) ofw] :/0 A(P(s;w_, w4 ))0sD(s; w_, wy)ds,

where o is the speed of propagation of the discontinuity, w_ and w, are the left
and right limits of the solution at the discontinuity, and [w] = w; — w_. Notice
that if A(w) is the Jacobian matrix of some function f(w), then (1.4) reduces to the
standard Rankine-Hugoniot conditions for the conservation law (1.2), regardless of
the chosen family of paths.

Unfortunately, the concept of weak solutions as outlined above depends on the
chosen family of paths. Different families of paths lead to different jump conditions,
hence different weak solutions. A priori, the choice of paths is arbitrary. Thus, a
crucial question is how to choose the “correct” family of paths so as to recover the
physically relevant solutions (see [15] and [17] for more details).

In practice, a hyperbolic system like (1.1) is obtained as the limit of a regularized
problem when the high-order terms (corresponding to small-scale effects) tend to 0.
For instance, it may be the vanishing viscosity limit of a family of parabolic problems:

(1.5) w; + AW ) wi = e(R(W)W,)q,

where the second-order term is elliptic. In this case, the correct jump conditions
(corresponding to the physically relevant solutions) should be consistent with the

viscous profiles, that is, with the traveling wave solutions w®(z,t) = V (£=2¢) of

(1.5) satisfying lime 400 V(€) = wa, lime 100 V/(€) = 0. A single-shock solution

_if ¢
(1.6) w(z,t) = {W nT <ot
wy ifx>ot

will be considered admissible if w = lim._,o w® (almost everywhere).
On the other hand, it can be easily verified that the viscous profile V' has to
sastisfy the ODE

—oV' + AV)V' = (R(V) V).
By integrating this ODE over £ € R, we obtain the jump condition
(17) owl= [ AV V' (©de.
By comparing this jump condition with (1.4), it seems clear that, in this case, the

correct choice for the path connecting the states w_ and w would be, after a repa-
rameterization, the viscous profile V'(§).
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The main difference from the conservative case (1.2) lies in the fact that every
choice of the viscous term R may lead to a different viscous profile (for the noncon-
servative system) and consequently to different jump conditions. On the other hand,
the Rankine-Hugoniot conditions for the conservative system (1.2) are always recov-
ered independently of the choice of the viscous term. This dependence of the jump
conditions, and thus of the definition of weak solutions, on the explicit form of the
neglected small-scale effects will have profound implications on the design of efficient
numerical methods.

1.1. Numerical methods. Numerical methods for the conservative system (1.2)
have undergone intense development in the last decades and are fairly mature now.
A very popular paradigm is the conservative finite difference (finite volume) scheme
[13]. For simplicity, the spatial domain 2 is divided into uniform intervals I; =
[T;_1/2,%;41/2] with constant mesh size Az = x;41/2 — 2;_1/2. A conservative finite
difference approximation for (1.2) takes the form

d 1
(18) sz + A—x(FH_Vz — Fi_1/2) = 0,
where w; approximates either the value w(z;) (with z; := mlflﬂfw) or the cell
average of w in I;, and

Fiti(t) = F (wi(t), wiya (7))

for some consistent numerical flux function F. The numerical fluxes are evaluated by
(approximately) solving Riemann problems at each cell interface 2;1/,. Higher-order
spatial accuracy can be obtained either by using nonoscillatory piecewise polyno-
mial reconstructions like TVD, ENO, or WENO or by employing the discontinuous
Galerkin method. Time integration is performed using strong-stability preserving
Runge-Kutta methods.

In contrast to the conservative case, numerical schemes for the nonconservative
system (1.1) are still in early stages of development. Numerical schemes for noncon-
servative systems can be written in the following fluctuation form [18]:

(19) %Wl + Ar (Di—1/2 + Di+1/2) =0.
Here,
(1.10) Dil/g(t) =D (w;(t), wir1(t))

where D* : Q x Q — Q are two Lipschitz continuous functions satisfying
(1.11a) D* (w,w) = 0.

As discussed before, weak solutions of (1.1) require the specification of a family
of paths. The path is explicitly introduced into the scheme (1.9) by imposing the
condition of path consistency [18]:

1
(1.11b) D™ (w;,w,) + D" (w;, w,) = / A(P(s; Wi, w,.))0sD(s; wy, w,)ds.
0

A suitable family of paths needs to be specified in (1.11b) in order to complete the
path consistent scheme. According to [18], a numerical scheme (1.9)—(1.10) satisfying
(1.11) is said to be path conservative.
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Fic. 1.1. Godunov method for the coupled Burgers system (4.1) with CFL= 0.4 and 1500 grid
points. Comparison with the exact solution computed from the viscous reqularization (4.2).

Assuming that a suitable path is selected (say, by obtaining the corresponding vis-
cous profile), it is natural to investigate whether the approximate solution of (1.1) by
the path consistent scheme (1.9) converges to the correct (physically relevant) solution
of the nonconservative system (1.1). Unfortunately, the answer to this fundamental
question is negative in many cases; see [1], [3], and references therein. We illustrate
this deficiency of path consistent schemes by considering a very simple nonconservative
system: the coupled Burgers system (4.1). In [2], the viscous profiles corresponding
to the parabolic regularization (4.2) have been computed. On the basis of this com-
putation, a Godunov method can be derived by calculating the physically relevant
exact solutions of the Riemann problems at the interfaces and averaging these solu-
tions at the next time level under the appropriate CFL condition. Following [16], this
Godunov method can also be interpreted as a path consistent scheme. A numerical
example (details are provided in section 4) is shown in Figure 1.1. The results show
that although the Godunov path consistent scheme converges as the mesh is refined,
it does not converge to the physically relevant (correct) solution computed explicitly
from the corresponding parabolic regularization.

An explanation for this lack of convergence of path consistent schemes lies in the
equivalent equation of the scheme (1.9):

(1.12) WA 4 AWAT) WA = An(R(WA")wAT), + .

Here, H includes the higher-order terms that arise from a formal Taylor expansion
of the scheme (1.9) and R is the (implicit) numerical viscosity. Assuming that the
high-order terms are small (valid for shocks with small amplitude), we can expect
that jump conditions of the numerical solutions to be, at best, consistent with the
viscous profiles of the regularized equation

(1.13) WAL £ A(WAT) whT = Az(R(WAT )W),

In general, R # R. As discussed before, the solutions of the nonconservative system
(1.1) depend explicitly on the underlying viscosity operator. Therefore, the numerical
solutions generated by the scheme (1.9) may not converge to the physically relevant
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solutions of (1.1). Thus, the (implicit) numerical viscosity that is added by any finite
difference scheme (see [10]) is responsible for the observed lack of convergence to the
physically relevant solution.

The above discussion suggests modifying the numerical viscosity of a finite differ-
ence scheme to match the underlying viscous regularization of the system (1.1) as a
possible solution to the problem of nonconvergence, at least when the residual terms
‘H in the equivalent equation (1.12) are small.

In [11], the author calculates the viscous term of the equivalent equation for any
scheme and then adds a discretization of the physical viscosity (while subtracting
an appropriate discretization of the numerical viscosity). This technique was shown
to improve the convergence of the numerical solutions to the correct weak solutions.
However, the explicit calculation of the viscous term of the equivalent equation may
be quite difficult for complex numerical methods and/or systems.

In this paper, we will design a robust numerical scheme for the nonconservative
system (1.1). Our starting point is the concept of entropy. We assume that (1.1) is
equipped with an entropy pair (7, q), i.e., a convex function n : @ — R and a function
q: Q — R such that Vg(w) " = v T A(w), where v := Vn(w) are the so-called entropy
variables. Then smooth solutions of (1.1) satisfy the entropy equality

(1.14) n(w): + q(w), = 0.

The first step of our strategy for designing a robust scheme will be to derive
a path consistent scheme of the form (1.9) that satisfies a discrete version of the
entropy identity (1.14). This entropy conservative path consistent (ECPC) scheme
will generalize the notion of entropy conservative schemes for the conservation law
(1.2), proposed by Tadmor [20], to nonconservative hyperbolic systems. The biggest
advantage of an entropy conservative discretization lies in the fact that it adds no
numerical viscosity (up to second order). Hence, R = 0 in the equivalent equation for
an entropy conservative scheme.

As entropy must be dissipated at shocks, we need to add some numerical viscos-
ity to stabilize the entropy conservative scheme. The second step of our approach
is to obtain an entropy stable path consistent (ESPC) scheme for (1.1) by adding
numerical viscosity that matches the underlying physical viscosity in the regularized
problem (1.5), thus choosing R = R in the equivalent equation of the scheme. We
demonstrate, through several numerical experiments, that our entropy stable scheme
approximates the correct (physically relevant) solutions of (1.1) efficiently. We remark
that this strategy was also pursued in a recent paper [6] in the context of a model
nonconservative system, the equations of Lagrangian gas dynamics.

2. ECPC schemes. In this section, we introduce the notion of ECPC schemes
for the nonconservative hyperbolic system (1.1). Recall that given an entropy 7, the
entropy variables are defined as v = v(w) := Vn(w).

THEOREM 2.1. Assume that the nonconservative system (1.1) is equipped with
an entropy pair (n,q). If the fluctuations DT in the finite difference scheme (1.9)
satisfy

(2'1) VlTD_(lewr) + VTTDJF(WlaWT) = Q(Wr) - Q(Wl) vV wi,w, € Q,

then the approximate solutions w; satisfy the discrete entropy identity

d 1
(2.2) EU(Wi) + E(le/z = Qi) =0,
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where @ is a numerical entropy flux which is consistent with the entropy flux q, that
is, Q(w,w) = q(w).
Proof. Let us first define
Qirrn = Q(Wi, Wit1) = q(w;) + v D™ (Wi, Wit1)
= q(Wiy1) = v, 1 DT (Wi, wit),
the second equality following from (2.1). Due to (1.11a), one has Q(w, w) = g(w), and

thus @ is a consistent numerical entropy flux. By multiplying (1.9) by v; = Vn(w;)
we obtain

d 1 - T
71w) = =37 (WL, +vIDL,)

((V;FD;V2 - Q(Wi)) = ((J(Wz‘) - V:D:r—l/z))

(Qi+1/2 - Qi—1/2) ;

1
Az
1
Az

resulting in (2.2). O

This leads us to define the following.

DEFINITION 2.2. Assume that the nonconservative hyperbolic system (1.1) is
equipped with an entropy pair (n,q) and a family of paths ®. A numerical scheme
(1.9) for this system is said to be ECPC with respect to (n,q) and ® if it satisfies

(i) the path consistency condition (1.11) and

(ii) the entropy conservation condition (2.1). O

A priori, it is unclear whether there exists any finite difference scheme that satisfies
the discrete entropy conservation condition (2.1) for any choice of path ®. We show
that not only do such schemes exist, there are in fact infinitely many of them for every
choice of path.

THEOREM 2.3. Given any entropy pair (n,q) and family of paths ®, there exist
infinitely many ECPC schemes.

Proof. For the sake of notational simplicity, let us drop the dependence on w;
and w, and denote ®(s;w;, w,) = D(s), IsP(s; wy, w,) = D'(s), and v, —v; = [v].
By using the identity Vg(w)" = v A(w), the condition (2.1) can be written in the
more revealing form

1
(2.3) v, D™ +v/D" :/O v(®(s)) T A(®(s))P'(s) ds.

Assume that there exist matrices B~ (s) = B~ (s; w;, w,.) and BT (s) = Bt (s;w™,
wT) such that

B~ (s)+ BT (s) =1,
B~ (s)v; + BT (s)v, = v(®(s)).

Then it can easily be checked that

T = 1_ST s (s) ds
D —/OB<>A<<I><>><1><>d,

D+:/0 Bt (s)TA(®(s))®'(s) ds

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/09/13 to 128.8.80.182. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

ENTROPY STABLE SCHEMES 1377

satisfies (1.11a), (1.11Db), (2.3). If we take B~ (s) = I — B (s), then the matrix B*(s)
would need to satisfy Bt (s)[v] = (v(®(s)) — v;). The most obvious choice is

= A% S))—V A% T
B+(8) - |[[V]]|2( ((I)( )) l)l[ ]] ’

where |[v]| denotes the Euclidean norm of the vector [v]. We thus obtain

[ — L @) = )T 5))®'(s)ds

1

1

D* :/ e (V@) —v0) T A@() () s
0

Alternatively, one may take BT (s) = I — B~ (s) and solve for B~(s). This leads to

the different solution

*—1va—vsT 5))®'(s) ds
D = [ ] (v = V(@) A (5) ds

1

1

D" = / <I - W[[V]] (vp — v(@(s)))T) A(D(s))®'(s) ds.
0 A\’

Any convex combination of these two solutions would also give a new solution; for

instance, taking the average of the two, we get

—_11—;VV5—VT NP (s) ds
D _/0 (21 |[[v]]|2[[]]((¢( ) ))A(‘I)( )P’ (s) ds,

_ 1 1 Lv v(®(s)) — %) T N (5) ds
D+—/O (2I+l[[v]]l2[[ [ (v(2(s)) = ¥) )A(@( )P’ (s) ds,

Vitvr  Thus, we obtain infinitely many ECPC schemes for any given

where v =

path &. d

2.1. Systems of conservation laws. The conservation law (1.2) is a special
case of (1.1) obtained by setting A(w) = Vf(w). The notion of entropy conservative
schemes for conservation laws was proposed by Tadmor in [20]. Assume that the
conservative system (1.2) is equipped with an entropy pair (7, ¢), that is, a convex
function n(w) and a function ¢(w) such that Vg(w)" = v Vf(w), where v = Vn(w)
are the entropy variables. Define also the entropy potential 1 = v'f — q. We recall
the definition of an entropy conservative scheme for the conservation law (1.2).

DEFINITION 2.4 (Tadmor [20]). The conservative finite difference scheme (1.8)
is entropy conservative if the numerical flux F satisfies

(2.4) V] Fu,u,)=[¢]. O

It was shown in [20] that solutions computed with an entropy conservative scheme
(in the sense of (2.4)) satisfy the entropy equality (2.2). It is natural to require that
our notion of ECPC schemes for the nonconservative system reduces to the notion of
entropy conservative schemes whenever the system is conservative. This is shown in
the following lemma.

LEMMA 2.5. Assume that A(w) = Vf and let (1.9) be an ECPC scheme. Then
the scheme (1.8) with numerical fluz
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(wi) + D™ (wy, wy)

2.5 f
25) f(w,) — D" (w;, w,)

is equivalent to (1.9) and is entropy conservative in the sense of (2.4).

Proof. Note that the second equality in (2.5) follows from (1.11a). By adding and
subtracting f(w;) in (1.9) and by taking into account (2.5), it is easily shown that
(1.9) is equivalent to (1.8). For entropy conservation, we have

[V]"F =v, (f(w;) =D*) = v/ (f(wi) + D")
= [v'f] - [d]
= [v]
so that (2.4) is satisfied. O

2.2. Systems of balance laws. A balance law
(2.6) w + f(u), = S(u)b,

for some b: R — R and S : R™ — R"™ is a special case of the nonconservative system
(1.1). Writing

2.7) w=lo] A= [T ).

we recover the balance law (2.6). We assume that the homogeneous system (when
b = 0) is equipped with an entropy pair (7, ¢). In many cases this pair can be extended
to obtain an entropy framework for the system of balance laws, that is, there exists a
pair (7j(w), g(w)) such that 7 is convex and

Vud(w)" = Vuig(w) VE(u), 0d(w) = — (Vn(u) + Vui(w))" S(u).

It can easily be checked that (n(u) + 7(w), ¢(u) 4+ ¢(w)) is an entropy pair for (1.1),
(2.7). The following notation will be used for the entropy variables:

v=Vn(u), v=Vuiw), V=V(u)+ijw)).

Let us suppose that a family of paths has been chosen. The following notation
will be used:

O(s; Wy, w,) = [(I)“(S;WZ’WT)} .

Py (55 Wi, wr)

The family of paths is supposed to satisfy the following natural assumption: if two
states w; and w,. are such that by = b, = b, then ®p(s; w;, w,) = b for all s € [0, 1].
This property implies that the generalized Rankine-Hugoniot (1.4) reduces to the
standard one for jumps evolving in regions where b is continuous: ou] = [f(u)].

Next, we consider the question of obtaining entropy conservative schemes for
balance laws. Let us consider numerical schemes of the form

d 1 1 _
(28) Eui + A_JI (Fi+1/2 — Fi_1/2) = A_ZIJ (Si+1/2 + Sj_—lh) s

where

Fiyi, =F(wi,wit1), Si., =S*(wi, wit1),

i+1/2

for some continuous functions F, S*.
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THEOREM 2.6. IfF is a consistent numerical flux satisfying (2.4) and ST satisfy
(2.92) S*(w,w) =0,
(2.9b) S™(wi, w,) + ST (wy, w,) = /01 S(Pu(s;wi, w,))0sPp(s; Wi, w,) ds,
(29¢) V8™ (wi, wy) + VS (wi, wy) = [ 7#] - [¥] " F(wi, wy) — [d],

then (2.8) is an ECPC scheme.
Proof. Let us introduce the following functions:

(210) Di(Wl,WT) — |:F(ul7 ur) - f(u(l)) - S(Wl,Wr):| 7
(2.11) Dt (wi, wy) = [f(ur) —F(u, u6) - S+(Wl,wr)} |

It can easily be checked that the corresponding numerical scheme (1.9) is equivalent
to the one given by (2.8) together with

—b; = 0.

dt
On the other hand, it can easily be checked that (2.9a)—-(2.9b) imply (1.11a)—(1.11b).
Let us prove finally that (2.1) holds:

V;—D*(wl,wr) + V:DJr(wl,wr)
=[(v+¥)Tf] - [v+¥] "F(u,u,) — (¥ S~ (wi, w,) + 9, St (wi, w,))
= [vTf] - W] + [¥Tf] - [¥] " F(w,w,) — (3] S~ (wi, w,.) + 9, SF(wi, w,.))
= [q+ 4],

where (2.4) and (2.9¢) have been used. O

Remark 2.7. The entropy conservative well-balanced schemes for the single layer
shallow water system with nontrivial bottom topography, designed in a recent paper
[7] and [8], can easily be verified as an example of an ECPC scheme for a system of
balance laws, consistent with the family of straight line segments.

3. ESPC schemes. It is well known that the entropy for a nonlinear hyperbolic
system like (1.1) should be dissipated at shocks. Consequently, entropy conservative
schemes lead to oscillations when shocks are present in the solution. This is already
seen in entropy conservative schemes for the conservation law (1.2). Hence, we need
to add some numerical viscosity in order to ensure entropy dissipation.

To this end, we consider numerical schemes of the form

d 1 /~ ~
(3.1a) Vit AL (Di—1/2 + Di+1/2) =0,
where f)irl/2 = D*(w;, wiy1) are defined by
(3.1b) D™ (wi, wit1) = D" (wi, wit1) + ER(VZ'—H - Vi),
~ E o~
(310) D_(Wiawi+l) = D_(Wiawi+l) - ER(VHJ — Vi).
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Here, D* are the fluctuations of an ECPC scheme (with respect to some given entropy
pair (7, ¢) and family of paths ®), and R=R (wy, w,) is a symmetric positive definite
matrix. Note that we are adding numerical diffusion in terms of the entropy variables.
The properties of the scheme are listed below.

THEOREM 3.1. The numerical scheme (3.1)

(i) is path consistent with respect to ® and

(ii) satisfies the discrete entropy inequality

d 1 ~ ~
(3.2) EW(Wi) + E(le/z = Qi) <0

for some numerical entropy flux @ that is consistent with q.
Proof. Property (i) follows from the path consistency of D*, as D*(w,w) =
D*(w,w) =0 and D~ +D* = D~ +D™. To prove (ii), we multiply both sides with
v; and imitate the calculations in the proof of Theorem 2.1 to obtain the identity

d 1~ ~ _ 1 T
a’?(wz) + A_x(Qi+1/2 - Qi—1/2) N (Vit1 — Vi) R(Viy1 — Vi)
1

T A
- m (Vz - szl) R(Vz - szl)

with numerical entropy flux
~ 1 ~
Qivis = Q(Wi, wiy1) = q(w;) + v, D™ (Wi, Wit1) — 3 (Vig1 + Vi)T R (Vig1 — vi).

Clearly @ is consistent with ¢g. The discrete entropy inequality (3.2) follows as the
matrix R is symmetric positive definite. O
The scheme (3.1) is an ESPC scheme.

3.1. Choice of the numerical viscosity operator. Entropy stability holds
for any choice of the matrix R in (3.1) as long as it is symmetric positive definite.
As stated before, we aim to find a suitable numerical viscosity that matches the
underlying viscous mechanisms. We do so by setting

dw

where R is the viscosity matrix in the parabolic regularization (1.5) of the non-
conservative system (1.1) and 2% is the Jacobian of w(v). In doing so, we implicitly
assume that the matrix R‘fi—"‘f is symmetric positive definite. This assumption holds for
a large number of nonconservative systems that model physical phenomena. Examples
are provided in the next section. Moreover, by using the Jacobian ‘Z—f(v), we are
assuming that the mapping w — v(w) := Vn(w) is invertible. This is always the
case when 7 is strictly convex.

Observe that setting the numerical viscosity operator as in (3.3) ensures that the
equivalent equation for the scheme (3.1) matches (1.5) to leading order.

4. Examples and numerical experiments. We will show that the entropy
stable schemes (3.1), with numerical viscosity chosen to match the underlying physical
viscosity, improve the approximation to the physically relevant solutions of the non-
conservative hyperbolic system (1.1). We consider the following examples.
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4.1. Example 1: Coupled Burgers equation. In [4], the authors proposed
the following model problem for nonconservative hyperbolic systems:

Oru 4 udz(u+v) =0,

4.1
(41) Ov +v0;(u+v)=0.

The system can be rewritten in the form (1.1) with

-l wof ]

If the component equations of this system are added, then the Burgers equation for

w := u + v is obtained:
2

Therefore, (4.1) is termed the coupled Burgers system. The Burgers equation satisfied
by the sum w = u 4 v suggests the following entropy pair:

2 3

=
2
i
|
=Y
2
]
w|§

In [2], Berthon computed the exact viscous profile of the regularized system

Opu + w0y (u +v) = €102, (u +v),

(4.2) )
00 4+ v 0z (u + v) = €205, (u +v).

In the limit £1,9 — 0 this gives the correct (physically relevant) entropy solution of
the Riemann problem for the coupled Burgers equation. In what follows we choose
E1 = €& =¢€.

4.1.1. Godunov method. A path consistent scheme can be derived by com-
puting the exact solutions of the Riemann problems at the interfaces and averaging
these solutions at the next time level under the appropriate CFL condition. Following
[16], the Godunov method can also be interpreted as a path consistent method (1.11)
with

1
D, :/0 A(D(s; Wi, Wil 1n))0s(ss Wi, Wil y) ds,

1
D/, :/O A((I)(s;w?_ﬂ'/z,W?Jrl))aS(I)(s;wZ’:/z,w?ﬂ)ds,

where w:.ff/z are the limits to the left and to the right of x = 0 of the solution of the
Riemann problem with initial data (w}’, w7, ).

To test the performance of the Godunov scheme, we approximate the Riemann
problem for (4.1) with initial data w; = [7.99,11.01]T, w,. = [0.25,0.75] T and compare
the exact solution with the numerical one provided by the Godunov method in the
interval [—2,10.5] with 1500 points and CFL = 0.4. As shown in Figure 1.1, the loca-
tion of the discontinuities is correctly approximated, whereas the intermediate states
approximated by the Godunov scheme are incorrect. The error in these intermediate
states does vanish as Ax tends to 0.
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This numerical result is rather disheartening. Even though the Godunov method
takes into account the exact expression of the viscous profiles (paths) and the exact
solutions of the Riemann problems, the numerical solutions provided by the method
do not converge to the expected weak solutions due to the numerical viscosity added
in the projection step.

4.1.2. ECPC and ESPC schemes. Next, we derive the entropy conservative
(ECPC) and entropy stable (ESPC) schemes for the coupled Burgers system.

Let w = u+v be the sum of the unknowns in (4.1). We consider the entropy func-
tion n(w) = %2 with corresponding entropy flux ¢(w) = %3 The entropy variables
are v = [w,w] .

To compute the corresponding ECPC scheme, we have to derive fluctuations that
satisfy (2.1). Inserting into (2.1) and using (1.11b), we get

0 = V;FD;rl/g + Vi—z*lDifl/g - [[q]]i—i-l/z

3

1
=l ([ a@poas D, ) e viaDl - 5],
1
T w?
= [vliy DYy, + vj/o A(®)0,Pds — |[?L+1/2

1 1
w3
= [[w]]’i+1/2 (Dii+1/2 + DZ'L+1/2) + w; </Ov q)u(b;ds +/0 (b;q)vds) — |[Tj||i+1/2’

+

where @ = [®,(s;w;, Wit1), Pyu(s; Wi, wiy1)] " is any family of paths and DH_I/2 =

+ + T
[Dl,i+1/2’ D2)i+1/2] . Hence,

1 3 1 1
+ + _ . / /
Dl,i+1/2 + D2)i+1/2 == [[UJ]]Z-+1/2 <|[ ]]i—i—l/z — W; (/0 q)uq)vds + /0 q)uq)vd8>)

1
= gﬂw]]iJrl/z (wl + 2wi+1) .

g

=B

Likewise, we can solve for D, /o and obtain
_ _ 1
Dl,i+1/2 + D27i+1/2 = g[[w]]iJrl/z (2w; + wit1) .
There are infinitely many choices of the two components of D ,, and D Re-

i+1/2 i+1/2°
quiring symmetry and similarity with (4.1), we obtain the following scheme:
- 1[[w]] 2u; + Uit 1 | ®u®;, - EiJrl/z[[”]]Hl/z
i+1/2 7 g i+1/2 | 2, + Vit1 2 f@&@v — [[u]]i+1/25i+1/2 )
SRS PR I WS LT AVA O
i+ = g UWhivya g 49y 2 [ ®,P0 — [ul; 1), Tivrsa]

If the family of straight line segments is chosen, then [ ®,®! = u[v] and [ @/, =
[u]@, so the above reduces to

N 1 2u; + Uiy i 1 Ui + 241
(4.3) Dy, = gﬂw]]iJrl/z {2% +vig | Dy, = g[[w]]i+1/2 v + 20541 |
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We derive an ESPC scheme by using a standard central difference to approximate
the viscous operator (u + v); in the parabolic regularization (4.2):

W1 — 2Ww; + Wwiy1

Ax?
The modified fluctuation functions are then
~_ 1 2u; + wig e [wlisy,
" Di+1/2 - gllw]]i+1/2 [2vi +vis1] Az [[w]]i+1/2 )
4.4
~ 1 w; + 2u; e [[w],..
+ _ - ] 7 i+1 < i+1/2
Di+1/2 (3[[10]]”'1/2 [Ui + 211i+1:| + Az |:[[w]]i+1/2 .

LEMMA 4.1. The scheme (1.9) with fluctuations (4.4) is an ESPC scheme for the
coupled Burgers system (4.1), that is, it is entropy stable with respect to the entropy

n(w) = % and is path consistent with the family of straight line segments.
Proof. The scheme is path consistent by construction. The numerical viscosity
matrix for (4.4) is R = 31, so entropy stability follows from Theorem 3.1(ii). O
As the scheme (1.9) is semidiscrete, we perform the time integration using a
forward Euler method. The time step At has to satisfy the CFL condition

|/\z| 2e
At (m?X Az + Ax? =1

where \; = u; + v;. We select a CFL number of 0.4 in what follows. Furthermore, we
choose € = 4Ax in our computations.

In order to validate the ESPC scheme, we consider again the Riemann problem
with initial data w; = [7.99,11.01]T, w,. = [0.25,0.75] " and compare the exact solu-
tion with the numerical one provided by the ESPC scheme in the interval [—2,10.5]
with 1500 grid points. The results are shown in Figure 4.1. In order to compare
the ESPC scheme with the Godunov scheme, we computed the numerical Hugoniot
locus by approximating a family of Riemann problems whose initial data are given
by w, = [0.75,0.25] " and a series of left states belonging to the exact shock curve.
The Riemann problem is solved in the interval [—2,10] and the corresponding left
state (at the shock) is used to compute the numerical Hugoniot locus. The results are

——T

' — Exact
—— Godunov
> 5F -
0 . . .
-2 0 2 4 6 8 10
15 T T T T - -
—ESPC
[ — Exact
10 —— Godunov |
>
5l
0 . . . n n n
-2 0 2 4 6 8 10

Fi1c. 4.1. Comparison of the ESPC and Godunov schemes for the coupled Burgers system (4.1)
with the exact solution.
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 Right state

—&— Exact curve
12 1 —— Godunov 1
ESPC /:
10 / g
81 ]
61 ]
4+ ]
2r ]

0 L L L L L L L

0 1 2 3 4 5 6 7 8

Fi1G. 4.2. The numerical Hugoniot locus for the coupled Burgers equation (4.1) determined from
the approximate solutions generated by the ESPC and Godunov schemes, compared with an ezact
Hugoniot locus.

presented in Figure 4.2 and show that the Godunov scheme does a poor job of ap-
proximating the exact solution. The numerical Hugoniot locus for this scheme starts
diverging even for shocks with small amplitude. On the other hand, the ESPC scheme
approximates the correct weak solution. The numerical Hugoniot locus coincides with
the exact locus for a large range of shock strengths. Only for very strong shocks does
the Hugoniot locus show a slight deviation. This is to be expected as the high-order
terms in the equivalent equation (1.12) become larger with increasing shock strength
and may lead to deviations in the computed solution. However, the gain in accuracy
with the ESPC scheme over the Godunov scheme is considerable.

Remark 4.2. The ESPC scheme for the coupled Burgers equation is path con-
sistent with a family of straight line segments, yet it accurately approximates the
exact solutions that are based on a path computed from the viscous profile. This
example indicates that the choice of paths is not crucial in determining which so-
lutions are approximated by the scheme. Instead, the numerical viscosity operator
(that matches with the underlying viscosity) decides which weak solution the scheme
will converge to.

4.2. Example 2: Two-layer shallow water equations. We consider the
system of partial differential equations governing the one-dimensional flow of two
superposed immiscible shallow layers of fluids:

hl)t +
h2)t + (haus

(
(
(45) (hlul)t + ( gh% + hlu%) = _ghl(b + hQ)ra

1

2
1 2 2

(thg)t + §Qh2 + h2u2 = —ghg(b + rhl)w.

Here, u;(z,t) and hj(z,t) represent respectively the depth-averaged velocity and the
thickness of the jth layer, g is acceleration due to gravity, and b = b(x) is the bottom
topography. In these equations, indexes 1 and 2 refer to the upper and lower layers.
Each layer is assumed to have a constant density p; (p1 < p2), and r = p1/p2 is the
density ratio.
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The underlying viscous mechanism is the eddy viscosity, leading to the mixed
hyperbolic-parabolic system (see [14]):

(h1)t + (hiur)z =0,
(hz)t + (hQUQ) 0

(4.6) (hiui)e + (ggh% + hw?) = —gh1(b+ ha)y +v(h1(u1)z)a,
1
(haus)t + (§Qh§ + h2u§> = —gha(b+1h1)s + v(ha(u2)s) s

Here, v <« 1 is the coefficient of eddy viscosity. An entropy-entropy flux pair for the
two-layer shallow water system is given by

2 h2
4. —
(4.7a) ij +9 ) + ghsb | + gpihihe,
(4.7b) Z pj ( 4 gh2 + gh; b) uj + prghiha(ur + u2).

The corresponding entropy variables are

p1 (—3ui + g(hi +ha + 1))
P1UL
v=| p2(—3u +g(ha + b))+ prgh
P2U2
p19h1 + paghe

In a recent paper [9], the following scheme has been presented:

d 1 1 _ _
(48) EUl_F E (Fi+1/2 — Fi,1/2) A (Bz+1/2 + Bl 1/2) A (Sl+1/2 + Sl 1/2) y

where

( 1)i+1/2(u1)i+1/2

2
%9( %)i-}-l/z + (hl)i+1/2(u1)i+1/2

F'L' = )
s (hQ)i+1/2(u2)i+1/2
%g( %)i-}-l/z + (hQ)iJrl/z(u?)iJrl/z
L 0 L 0
BE = %(hl)iJrl/z [[hQ]]iJrl/z gt _%(hl)iJrl/z [[b]]iJrl/z
+1/2 - 0 ) +1/2 - 0
97( )z+1/2 [[h ]]z+1/2 _%(hQ)iJrl/z [[b]]iJrl/z
Here,
_ a; + a;
ai+1/2 = TH

It is straightforward to write down the above scheme in the fluctuation form (1.9)
and check that the scheme (4.8) is an ECPC scheme with respect to (7, q) and the
straight line segment paths.
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To derive an ESPC scheme, we discretize the eddy viscosity by using a centered
approximation:

(4.9)
4 (hj (uj,m))1|z:mi ~ é ((h—j)i+1/2[[(uj)]]¢+1/2 _(h—j)i_1/2[[(uj)]]i_1/2) ) .7 = 172-

By multiplying the resulting scheme by v;, as in the proof of Theorem 3.1, we find
that the scheme is entropy stable.
The following numerical schemes are compared here:

e The ESPC scheme with numerical viscosity given by the discretization (4.9)
of the eddy viscosity with v = CAz.

e As the eddy viscosity does not act on the mass equations, some oscillations
may appear on the numerical solutions. Therefore, we also consider a mod-
ified ESPC scheme where some viscosity is added to the mass conservation
equations:

C .
€ (hj)wwlw:wi ~ A—xg([[hj]]prl/g - th]]ifl/z)7 j=12

This scheme with eddy viscosity as well the numerical viscosity in the mass
equations is called the ESPC-NV scheme. We set C' = /10 in the numerical
experiments.

e The Roe scheme consistent with the straight line paths of [4], [19].

e The central upwind (CU) scheme of Kurganov and Petrova [12].

Notice that only for the first of these three methods, the numerical viscosity agrees
with the physical eddy viscosity to leading order.

It is very difficult to compute the viscous profiles explicitly from the viscous
shallow water system (4.6). Instead, we compute the reference solutions by taking a
fixed v < 1 in the ESPC scheme, computed on very fine meshes.

In Figure 4.3, we plot the solutions obtained with the ESPC, ESPC-NV, and Roe
schemes for a Riemann problem with initial data

1.376 0.37
0.6035 1.593
(4.10) W= 1004019 |0 VT | —0.1868
—0.04906 0.1742
2 —:‘g?erence ' ' ' ﬁ'-:; . o7 _— :Z;;erence
——ESPC 0.68 [| — ESPC
1.8 | —ESPC-NV] 1 —— ESPC-NV|
0.66
1.6 0.64
1.4 4 0.62
1o 0.6

0.8 q 0.54
) 052
0.6 ) 1
= 05
0.4

01 02 03 04 05 06 07 08 09 02 03 04 05 06 07
(a) ho and hi + ho (b) Closeup

A | o — J

Fi1c. 4.3. Approzimate solutions for height of bottom layer (ha) and total height (h1+h2) for the
two-layer shallow water system (4.5) with the ESPC, ESPC-NV, and path consistent Roe schemes.
A reference solution, computed from the viscous shallow water system (4.6), is also displayed.
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2 T - - 4‘_
1.35
1.9 Roe 1 Roe
—— Reference — Reference
1.8 | —EsPc 1 13} |—Espc
17 —— ESPC-NYV| il ——ESPC-NV]

1.6 1.25

1.15

WA [ A

0 0.2 0.4 0.6 0.8 1 0.25 0.3 0.35 0.4 0.45 0.5
(a) ho and hy + ho (b) Closeup

Fia. 4.4. Similar to Figure 4.3, but with initial data (4.11).

and homogeneous Neumann boundary conditions on the computational domain [0, 1].
The ratio of densities is set to r = 0.98 and g = 9.81. All the simulations are
performed with 2000 mesh points. The reference solution is computed on a very fine
mesh of 2'6 mesh points with v = 2 x 10™%. As seen in Figure 4.3, the solutions
computed with all the schemes are quite close to the reference solution. As seen in
the closeup, there is a minor difference in the intermediate state computed by the
ESPC-NV and Roe schemes. The ESPC scheme contains oscillations. This is to be
expected as the mass conservation equations contain no numerical viscosity. However,
the approximate solution computed by this scheme is still quite close to the reference
solution.

In Figure 4.4 we show the solutions obtained with the same numerical schemes
for a Riemann problem with initial data

0.8817 0.37
1.091 1.593
(4.11) W= _oa738| VT | —0.1868
0.1613 0.1742

Notice that the right state is the same as in (4.10), but the left state is closer, re-
sulting in a smaller shock. Again, the computed shock speed and intermediate states
computed with ESPC, ESPC-NV, and Roe are quite close.

This is not the case for the CU scheme. The derivation of this scheme is based
on the following assumption: as in the geophysical applications, in which the density
ratio is close to one, the surface waves are much smaller that the internal ones, if
the vertical coordinate z is chosen so that z = 0 corresponds to the free surface of
the undisturbed water, then €4 = hy 4+ hg + b ~ 0. Therefore, if the equations are
rewritten so that the nonconservative products have the form e;0,h;, the authors
of [12] expect that these products could be negligible at the intercells. In the case
of the Riemann problem with initial data (4.11) with a flat bottom there is more
than one possible choice for the undisturbed water level: one can decide that this
level corresponds to the initial surface of the left state (which corresponds to the
choice b = —h1; — ha,), to the right state (b = —h1, — ha,), or to the average
(b= —0.5(h1,;+h2,+ h1,+h2.4)), among many other possible choices. The variation
of the initial value of £ corresponding to these three possible choices is less than
1%. And, of course, the exact solution is not expected to depend on the particular
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Fi1c. 4.5. Approzimate solutions for the height of bottom layer (ha) computed with ESPC-NV,
path consistent Roe, and CU schemes for initial data (4.11) using different total water levels.

choice of b as, in this case, it is constant and it only appears in the equations through
its derivative. In Figure 4.5 we show the solutions obtained with ESPC-NV, Roe,
and CU schemes for the Riemann problem with initial condition (4.11) and the three
different choices of b. While ESPC-NV and Roe schemes always provide the same
solution, as expected, this is not the case for the CU scheme: notice the strong
differences between the computed numerical solutions depending on the choice of b
including the appearance of numerical oscillations. Similar results are obtained if
the Riemann problem (4.10) is considered. Moreover, the differences between the
numerical solutions provided by the CU scheme may be considerably enlarged by
increasing the ratio of densities. These numerical tests seem to indicate that the fact
of neglecting e 0, h; at intercells as in [12] may lead to unphysical solutions.

In order to compare the performance of the schemes (the CU scheme is not con-
sidered) for a large set of initial data, we compute a numerical Hugoniot locus by
fixing the same right state as in (4.10) and then varying the left state. In this experi-
ment r = 0.98 and g = 9.81. A reference Hugoniot locus is calculated by using again
the ESPC scheme with v = 2 x 10™% and a mesh of 26 points. The corresponding
Hugoniot locus are labeled Reference in Figure 4.6. In order to illustrate the depen-
dence of the weak solutions of the two-layer shallow water equations on the choice of
paths, we choose an alternative path by fixing a left state w; and computing numer-
ically the states that can be linked to this state by a shock satisfying the Rankine—
Hugoniot conditions associated to the family of straight line segments, that is,

olh] = [hui],

olhiur] = [$9h} + hiu?] + gha[hs],
o[ha] = [hau2],

olhous] = [$9h3 + houd] + grha[he].

(4.12)

To calculate this curve, o is taken as a parameter and the nonlinear system (4.12)
is numerically solved to obtain the value of w,; see [3] for details. The computed
Hugoniot locus is labeled Segments in Figure 4.6. The Hugoniot loci computed with
the three numerical schemes in the hi-(hjui) plane and the ho-(hous) plane are also
shown in Figure 4.6.

From Figure 4.6, we observe that the Hugoniot locus calculated using straight
line segments is clearly different from the one calculated from the underlying viscous
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F1G. 4.6. Hugoniot loci in the hi-(hiu1) and ha-(haus) planes for the two-layer shallow water
equations (4.5), computed with the ESPC, ESPC-NV, and Roe schemes. A reference Hugoniot locus
computed from the viscous shallow water system (4.6) and a Hugoniot locus computed using straight
line paths from (4.12) are also shown.

two-layer shallow water equations (4.6). On the other hand, all three numerical
schemes lead to Hugoniot loci that are very close to each other and to the reference
Hugoniot locus. Minor differences are visible when we zoom in; see the bottom row of
Figure 4.6. We see that among the three schemes, the ESPC scheme provides the best
overall approximation to the reference Hugoniot locus. However, both the ESPC-NV
and Roe schemes also provide a good approximation to the reference Hugoniot locus.
The results show that (rather surprisingly) the numerical approximation of two-layer
shallow water equations is not as sensitive to the viscous terms as the coupled Burgers
system. The path consistent Roe scheme performs adequately in approximating the
correct solution. At the same time, the ESPC schemes proposed in this paper provide
a slightly more accurate approximation.

5. Conclusion. This paper deals with accurate numerical approximation of the
nonconservative hyperbolic system (1.1). We need to interpret a product of distribu-
tions in order to define weak solutions for this nonconservative system. The concept
of paths, based on the theory of [5], can be used to define this nonconservative prod-
uct. Comnsequently, the definition of weak solutions depends on the choice of paths
and different paths can lead to different weak solutions. Furthermore, solutions of the
nonconservative system (1.1) depend ezplicitly on underlying small-scale mechanism
like diffusion. Hence, the physically relevant solutions of (1.1) can be realized as the
limit of the underlying mixed hyperbolic-parabolic system (1.5).

This explicit dependence of the solutions on the underlying viscous mechanisms
has profound implications on the design of numerical schemes. In particular, numerical
approximations of nonconservative systems, including the family of path consistent
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numerical schemes designed in [18], may fail to converge to the physically relevant
solution. This observed lack of convergence is due to the (implicit) numerical viscosity
added by these schemes being different from the underlying physical viscosity in (1.5).

We address this issue in the current paper by designing finite difference schemes
based on two ingredients. First, we extend the notion of entropy conservative schemes,
introduced for conservative hyperbolic systems in [20], to nonconservative hyperbolic
systems by designing ECPC schemes. The ECPC schemes do not contain any numer-
ical viscosity (at leading order). The second ingredient of our framework is to add
numerical viscosity operators that match the underlying physical viscosity in (1.5).
The resulting schemes are shown to be entropy stable. The equivalent equation of
these schemes agrees with the underlying viscous system (1.5) to leading order. Hence,
these ESPC schemes are expected to converge to the physically relevant solutions of
(1.1), at least for shocks with small amplitude.

The performance of ESPC schemes is illustrated by presenting numerical results
for two model systems: the coupled Burgers system (4.1) and the two-layer shallow
water system (4.5). We see that the ESPC schemes approximate the physically rel-
evant solutions quite well in both cases. Furthermore, the ESPC schemes are quite
simple to implement.

The main principle underlying the design of ESPC schemes is the agreement
between the equivalent equation of the scheme and the underlying parabolic system
(1.5). This equivalence holds as long as the residual terms in the equivalent equation
are small. However, for shocks of large amplitude, these residual terms might be
significant and the scheme might fail to converge to the correct solution. We will
describe very-high-order numerical schemes that provide a remedy for this situation
in a forthcoming paper.
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