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We consider the mixed (hyperbolic—elliptic) system of two conservation laws mod-
eling the dynamics of van der Waals fluids. Viscosity and capillarity effects are taken
into account. We introduce a new class of semidisdrigfie-order schemeshich are
entropy conservativéin the sense of Tadmor) when the viscosity is neglected and,
otherwise, dissipate the associated mathematical entropy. Our numerical schemes
generalize the works by E. Tadmor (198Tath. Comput49, 91) and P. G. LeFloch
and C. Rohde (200GIAM J. Numer. Anal37, 2023) who proposed second-order
and third-order entropy-conservative schemes, respectively.

Following B. T. Hayes and P. G. LeFloch (1983AM J. Numer. AnaB5, 2169),
we demonstrate numerically that balanced viscosity and capillarity terms in van der
Waals fluids may generatenclassical shock waves subsonic propagating phase
transitions Such waves arandercompressivand do not satisfy standard entropy
criteria. They must be characterized bkiaetic function which we determine nu-
merically in this paper from vanishing viscosity and capillarity. The kinetic relation
is an efficient tool to discuss the interplay among the viscosity, capillarity, and dis-
cretization parameters in van der Waals fluidsy 2001 Academic Press

Key Words:hyperbolic; conservation law; entropy inequality; viscosity; capil-
larity; van der Waals; kinetic relation; difference scheme; high-order accurate; en-
tropy conservative.

1. INTRODUCTION

The dynamics of compressible fluids undergoing liquid—solid or vapor-liquid phase tra
formations can be modeled by the standard balance laws (mass, momentum) supplem
with a nonconvex equation of state, such as the one introduced by van der Waals. Res
ing attention to a model of two conservation laws (the temperature being, formally, k
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constant), one knows that, above some (critical) temperature this model is hyperbolic
not globally genuinely nonlinear (the pressure is a decreasing but not a globally cor
function of the specific volume); however, below the critical temperature, the model i
mixed (hyperbolic—elliptic) system of conservation laws (the pressure is decreasing ex
on some bounded interval). Solutions of such systems of nonlinear PDEs are gene
discontinuous and exhibit several distinct types of propagating waves:

(1) compressive shock waves satisfying the standard Lax or Liu entropy criteria,

(2) rarefaction waves, which are smooth and self-similar solutions;

(3) supersonic phase boundaries, which propagate faster than the characte
speed; and

(4) Inthe mixed type case, stationary phase boundaries.

Until recently the Riemann problem—for which the initial datum is a single ste
function—was solved allowing only stationary and supersonic phase boundaries plus ¢
dard classical waves [12, 23]. Recently, after the works by James [17], Truskinovsky |
33], Slemrod [26], Abeyaratne and Knowles [1, 2], LeFloch [19-21], Sheaed1[16, 24],
and Hayes and LeFloch [13-15], it became clear that nonstationary, subsonic phase
faces (in the hyperbolic—elliptic regime) and nonclassical shock waves (in the hyperhc
but not genuinely nonlinear regime) should be included when solving the Riemann probl
Indeed, such waves are admissible in the sense that they do arise in viscosity—capil
limits of the system.

Subsonic phase boundaries and nonclassical shocks have a special flavor: they a
uniquely characterized by the standard Rankine—Hugoniot relations and their unique
lection requires aadditional jump relationcalled akinetic relation Recall that there is
indeed no universal selection criterion for propagating phase boundaries. The basic re
is that such waves arendercompressiven the sense that—compared with compressiv
shocks—fewer characteristics are impinging on the discontinuity.

The numerical approximation of the model under consideration was initiated by Slem
and followers [3, 5, 18, 25, 29]. Computing kinetic relations to characterize undercomp
sive waves such as nonclassical shocks and subsonic phase boundaries was first tack
Hayes and LeFloch [15], who identified the basic issues arising numerically. The pre:
paper is a natural extension of [15].

In Section 2 we discuss the mathematical properties of the system modeling the dyna
of fluids with viscosity and capillarity effects included. Special emphasis is put on t
mathematical entropy inequality, here associated with the total energy.

In Section 3 we introduce a new class of semidiscreigh-order schemewhich are
entropy conservativén the sense of Tadmor) if the viscosity term is neglected and, ot
erwise, satisfy aliscrete entropy inequalityOur construction is inspired by Tadmor [30,
31] and LeFloch and Rohde [22] who derived earlier second-order and third-order entre
conservative schemes, respectively. The main new idea is to treat as an independent va
the derivative of one of the conservative variables, hgrevherev is the specific volume.
An evolution equation fowy is formulated and discretized in the scheme. An importat
observation is that an entropy inequality can indeed be derived.

In Sections 4 and 5 we show that our numerical scheme allows us to compute subs
phase boundaries and nonclassical shock waves. We consider here the Riemann pr
investigated theoretically by Slemrod [28] and Fan [7-10]. Following Hayes and LeFIc
[14], who studied nonconvex scalar conservation laws and phase transition models 1
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nonlinear elasticity theory, we determine numerically the kinetic function associated w
van der Waals fluids and we discuss the interplay among the viscosity, capillarity,
discretization parameters. Concluding remarks are provided in Section 6.

2. VISCOSITY-CAPILLARITY MODEL OF COMPRESSIBLE FLUIDS

2.1. The Mathematical Formulation

The derivation of the equations is based on a variational formulation. See, for instal
the presentation given in Gavrilyuk and Gouin [6]. kgtt) — x (Y, t) be the Lagrangian
description of the fluid motion. That is, by definition, the particle which was initially &
the positiony is located at the poink (y, t) at the timet. The particle velocityu and the
specific volumey are defined frony by

U= xt, U= xy. (2.1)

Prescribing an internal energy function of the form

€= e(v’ Uy),

we postulate that the action

J(X)_//<e(v vy)——) dydt_//<e(xy,xyy) )dydt (2.2)

is minimal among all “admissible’. Here, C R is the (bounded) interval initially
occupied by the fluid and [('] is a given time interval.

Letg: 2 x [0, T] — IR be a smooth function with compact support. Replacing in (2.
x with x + g and keeping the first-order termsgronly, we obtain

T 1
Jx +9) = / / <e(Xy + Oy, Xyy + Gyy) — E(Xt + gt)2> dydt

oe
=J() +/ / ( (Xy> Xyy)Qy + ax — (Xys Xyy)Qyy — tht> dydt
yy
+0(g/»

and, after integration by parts,

J(X+9)—J(X)//<( (Xanyy))
y

de
+ ((Xya ny)> + Xn>9 dy dt+ O(lg?).
I xyy vy

Since the solutiory should minimize the actiod andg is arbitrary, this formally yields

Je oe
— = Oty xyy) + [ ——(xy.s =0. 2.3
Xtt ( 3Xy(Xy Xyy) (axyy(Xy ny)>y>y (2.3)
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Returning to the functions andv, in view of (2.1) we also have; = xyt = uy. Intro-
ducing the pressure term

aoe oe
P(v, vy, Uyy) = _%(U, vy) + (i)l}y(v’ Uy)> y7 (2.4)
we deduce from (2.1) and (2.3) that
Ut — Uy == O,

(2.5)
Uy + P(v, vy, vyy)y = 0.

This completes the derivation of the fluid model for the unknowasdu.
Next, we take into account the viscosity effects. Denoting &) the (volume-dependent)
viscosity coefficient of the fluid, we replace system (2.5) with

VUt — Uy = O,
(2.6)
Uy + P(v, Uy, Uyy)y = (H(U)Uy)y-

Finally, defining the total energy by

2

u
E(, u,vy) = e, vy) + >

we find the additional conservation law

d
E(, u, vyt + (P(v, vy, vyy)U)y = (UyaTe(v, Uy)) + (()Uly)y — p@UZ.  (2.7)
y y

Here the energy plays the role of a mathematical entropy.

It remains to discuss the properties of the internal energy funetidnstandard choice
in the literature on phase transition dynamics in fluids is to &tikebe a quadratic function
in vy. (A linear term should not appear because of the invariance of the energy via
transformatiory — —y.) We may assume that, for some positive functign), called the
capillarity coefficient

2

e(v, vy) = €(v) + k(v)v—zy. (2.8)

Under this condition, the total pressiPean be decomposed into a pressure term dependi
only onv and a capillarity term, as follows:

2
v
P(v, vy, vyy) = p(v) — )J(v)?y + (A (V)vy)y, Pp) = —€'(v). (2.9)
Based on (2.9), Eq. (2.6) take the more familiar form

vt—uy=0,
2

(2.10)
()
U + p(v)y = ()\/(U)Zy - ()L(U)Uy)y) + (u(v)Uy)y.
y
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On the other hand, using (2.9), Eq. (2.7) becomes

u? v2
(e(v) + =+ )\(v)y> + (p(v)u)y
2 2/,

A (v)
= (u( > Uy~ (Mv)vy)y))y + (n()Uly)y + (UyA()vy)y — p()Uy.  (2.11)
We point out that this model has been often considered in the mathematical literatur
phase transition dynamics, under the simplifying assumption that the capiéwity= Ao

be a positive constant.

2.2. Hyperbolicity and Decrease of the Mathematical Entropy

It is immediate to check the following property. Consider the linearization of the moc
(2.4), (2.5) near some constant valgegiven by

U'[_Uyzo,

, (2.12)

Jce
Uy — %(UOs Oyvy =0,

obtained by keeping first-order differential terms only. Then (2.12) is a strictly hyperbo
system of PDEs if and only if the internal energy function satisfies

d%e

Moreover, if (2.13) holds for ally, then the total energi (v, u, 0) = e(v, 0) + u?/2 is a
strictly convex function of the conservative variabl@esu). For van der Waals fluids, the
hyperbolicity condition holds only in some regions. See Section 4.

Given some internal energy functi@= e(v, vy) and some nonlinear viscosity =
u(v) > 0, let us consider the corresponding viscosity—capillarity model (2.6), where t
pressureP (v, vy) is defined by (2.4). Consider any solution t) — (v, u)(y, t) decaying
to some constant solutign*, u*) as|y| — oo (its first-order space derivative also vanishing
at infinity) Then we have

%s(t) <0, (2.14)

where

) )2
e(t) == /.R (e(v(y, £), vy (y, 1)) — e(v*, 0) - a—f(v*, 0)(u(y. t) — v*) + ”(yz ) )dy.

We conclude with some remarks concerning the hyperbolic regime.
For the example (2.8), the condition (2.13) reati®) > 0. Let us assume the uniform
bound

O<e<€e'(v) <e forallv>0.
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We have here
foe i v32/
e(v, vy) — e(v*, 0) — a—(v*, 0O)(v —v*) =€) — e — @) —v*) + )»(U)E.
v
Therefore, assuming also some bounds

Ao < A(v) <Ay forallv >0,

(2.14) yields the following a priori bound (for &ll> 0):

/ (eolvy, ) — v+ Ju(y, 1) — U2 + Agu2) dy
R

5/ (erlv(y, 0) — v* 2+ Ju(y, 0) — u*|* 4 2.10]) dy.
R

More generaly, if the energy function satisfies inequalities of the form

oe
E—Zolv —v*P+ %|Uy|2 < e(v, vy) — e, 0) — 8—v(v*, 0)(v —v")
< 6—21|v—v*|2+%|vy|2

for all v and vy under consideration, then the following a priori estimate holds for &
timest:

/|R (eolv(y, ) = v* P + u(y, t) — " + Bolvy(y, H)[?) dy

< /|R (elv(y, 0) — v* 2+ Ju(y. 0) — U + Baluy(y. O)?) dly.

3. ACLASS OF ENTROPY CONSISTENT SCHEMES

In this section, we focus on the numerical discretization of the model described in S
tion 2. Our objective is to derive a class of high-order, conservative, finite-difference sche
that, additionally, are conservative for the associated mathematical efinopgn the vis-
cosity effects are neglected and satisfy the discrete entropy inequality (2.14).

Our main concern is to design a scheme able to capture the zero viscosity—capill;
limits. Therefore, following Hayes and LeFloch [13], we are going to scale out all
the equation using the discretization parameter denoteld; lsge Egs. (3.1), (3.2), and
(3.4) below. Then the basic requirement is that the equivalent equation associated wit
scheme should coincide up to some high-order t€r¢h?), at least, with these reference
(continuous) equations.

Comparing rigorously the limiting solutions generated by the schemes and the limit
solutions generated by the zero viscosity—capillarity limits is the main contribution in [
and this is the strategy pursued in the present work as well. We refer to the discussic
the following sections.
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3.1. Discretization of the Flux and Capillarity Terms

Consider first the model (2.4), (2.5), neglecting the viscosity. Introducing the new ve
ables

thUy, ZZhUy,

we can considew as an independent variable. We summarize the set of equations ur
consideration as follows:

vt — Uy = 0,
Uy + Py =0, (31)
Wy — Zy = 0.
Recall thatP is given by
Je oe
P=——@w)+ h(—(v, w)) . (3.2)
v dvy y

Denote byh > 0 the space step of the discretization and, for all intggetefine the
mesh pointbyk; = j h. We denote by; = v;(t), u; = u;(t), andw; = wj(t) the discrete
approximations at the poinkg (with prescribed initial conditions). Calling; 1,2, Pj+1/2,
andz;;1/> some numerical flux terms still to be defined, we are interested in differen
schemes in the following conservative form:

d
hgpvi = Uiz = Uj-12) = O

d
han + Pjt12 — Pj—12 = 0, (3.3)
d
hgiwi = (2412 = 2j-12) = 0.

We aim at defining the discrete fluxeg 1/, Pj+1/2, andzjyy/2 in such a way that the
scheme (3.3) is also entropy conservative in the sense of [31]. That is, we seek for a dis
version of the energy equation

®E 4 0,F =0,
5 (3.4)
u oe
E=ew,w)+ -, F=P@ w, hw)u—-huy—(@,w).
2 dvy
With this in mind, we choose
K+1
Ujt+1/2 = Z akUj 4k,
k=K (3.5)

L
Zjt1p = Z BiUjr1 — Ujp),
|=—L
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in which the termsau;j 1y, for instance, are directly given by the second equation in (3.3).
basic consistency argument forces us to impose

K+1 L
> a=Y A1 36)
k=—K I=—L

It remains to specify the expression for the pres®jia ». This is done by requiring the
condition

at > Ej=0. E =e(u,-,wj)+§‘. (3.7)
j=—00

Differentiating the above expression for the enekgy we easily obtain

d ae d d d
an:h%(vj’wJ)dtUJ—i_h (v,,w,)dtwj—i—hu,dt i
In view of (3.3) we have
d ae
h i B = 5=, w) (Ujsa2 = Ujaj2) = U (Piraz = Pioapo)
oe
+ 5, Wi wi)(Zj+1/2 = Zj-172)- (3.8)
UVu

Using (3.5) and after integration by parts, for instance writing

+00 +00
- Z Uj (Pj112 — Pj_12) = Z Pjy1/2(Uj 1 — Uj),
j=—00 j=—00
we arrive at
400
Z E; = Z Pi+1/2 + Qjs1/2 + Rjs12) Uj41 — Uj)
b j=—oco
with
K41
Qj+12 = Z Olk (vj+1—k, Wji1-k)s
k=—K

L+l 90
Rit12 = Z ﬂ|( (U1+1 L Wjg1-1) + —— ™ (vj—|,wj—|))-
y

I=—L

One sufficient condition for (3.7) to hold is to chooBg, 1,» according to

Pit12 = —Qjs12 — Rjta2.
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Using the change of variablé = 1 — k andl’ = —I, one checks easily that the above
definition is equivalent to setting

K+1
Pit12 = Z 0!k (UJ+k, Wjtk)
k=K
+Zf3 (v w )—8e(v Wjt) (3.9)
— | jH 41 Wi +1 0 vy j+1 Wi .

This completes the derivation of the scheme for (2.4), (2.5).

3.2. Local Entropy Inequalities

Next we determine some mathematical entropy fluxes for each cell. Replac
Uj+1/2, Pj11/2, andz; 1,2 in (3.10) by their definitions, we obtain

d K+1
h Bi= > (A — AR Zﬁ (BY —28% +BY)  (3.10)
k=—K l=—L
with
86
A§1I)< = uJ+k (UJ’ wj) — v(vjfk, Wj_k),

8 oe
A( k= Ujrk1z (vJ, wj) — Uj%(”j-&—l—k, Wit1-k),

BY _ 4 89( ) —u ae( )
il = Ujra—j, wj) — Uj —@j11-1, Wj41-1),
dvy dvy

ae oe
2
B’ —-UJ+I5—;(U17HH) Ujg;;(vj—hlﬂj—07

B(| =Ujp41— oe (vj, wj) — oe — (Vj_11, wj_11).
dvy va
Finally, using decompositions of the type
A4k — 3 = (@j4k T+ Ajyk-1+ -+ 3j41) — @jyk-1 + Qjrk2+ -+ j),
we see that each of the terms above admits a conservative form. This allows us to d

mine easily a discrete entropy fl _.1,2. We conclude that there exist numerical fluxes

Fi+1/2 (formally consistent with the continuous flux) such that the following discrete
conservation law holds:

hd uf
dt (e(vJ , wj) + > + Fjt12 — Fj—12=0. (3.11)

In conclusion, the formulas (3.3), (3.5), and (3.9) define a scheme for the unkmgwn:
anduj, which is conservative for all of the equations in (3.3), including the discrete ener

Ej = e(vj, wj) + U2 /2. (3.12)
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In particular, we have the important stability property

d & uf
a_z <e(v,-,wj)+2> =0. (3.13)

j=—00

3.3. Discretization of the Viscosity Terms

To complete the description of the numerical scheme, we now take into account
viscosity terms, covering the general case of a nonlinear viscosity coefficieit It is
sufficient to present the construction in the case of the system where the flux and capill
terms have been formally neglected, that is,

v =0,
ur = h(u(v)uy)y, (3.14)
Wy = 0.

Consider the numerical discretization schemes

hav] = 0,
d
g = Kist2livy2 = ki-1720j-1/2. (3.19)
d
TR
with
L
Qj+12 = Z Bi(Ujii41 — Ujq). (3.16)

I=—L

Here the numerical valuegj.1/>, are approximations of sufficiently high order of the
nonlinear viscosityt(v).

Differentiating the energye; defined in (3.12) with respect toand using (3.15), we
obtain

d
ha Ej = Uj(ijs1/20j+1/2 — Hj-1/20j-1/2)-

Summing overj and integrating by parts, we obtain
+o0o d +o0o

Z an =— Z Mj+1/29j+1/2(Uj+1 — Uj)

j=—00 j=—00

+00 L
= - Z Z Wis12B (Ujr41 — Ujp) (Uje1 — Uj).

j=—o00 I=—L

Setting

Mj 4 = Uji+1 — Uj4,
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it follows that

400 d 400 L
qifi =" DD sirrBmium,
j=—00 j=—ool=—L
+oo j+L
= — Z Z y,j+1/2ﬁk_jmkmj. (3.17)
j=—ocok=j—-L

Assume from now on that the coefficiegg(first introduced in (3.5) and then used again
in (3.16)) are chosen such that the (infinite) quadratic form

+oo 4L
Z Z Wj+1/2Bk—jmkm;j > 0 (3.18)
j=—ook=j—L

is nonnegative for all, under consideration. Then from (3.17) we deduce that

+00 d 2
Z aEJ‘ <0, E;j =e(vj,wj)~|—7j. (3.19)
j=—00

This property is to be compared with the equality found in (3.13) for the flux and capillar
terms.

3.4. Order of Accuracy

The parameterg, andp; in (3.5) and (3.16) must be chosen so that (3.6) and (3.19) hc
true. We also require that the order of accuracy be sufficiently high so that the equiva
equation associated with the scheme coincides with the original system except for tern
O(h3).

For fixed valueK andL in (3.5) and (3.16), it is always possible to find some coefficient

ag, k=—-K,...,K+1,andg,| = —L,..., L, to guarantee:
K+1
Ujt12 — Uj_12 = Z ak(Uj 1k — Uj4k_1) = huy + O(h#T3) (3.20)
k=—K
and
L+1

Ziv12—Zj-12 = Z Bi(Uj1i+1 — 2Uj1 + Ujpi—1) = h?(Uj)yy + O(h* %)
I=—L
L+1

Q12— 2= Y AUjps1— 2Uj41 4 Ujp1) = h2(U))yy + O(h? )
=L

(3.21)

Hence, from the definition (3.9) d?;,.1/», itis clear that

oe oe
Pjt12 — Pj_12=—h (av(vj, wj)) + O(h**3) + h2<av(v1, wj)) + O(h? ),
y

y yy
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that is,

Pji1/2 — Pj_12 = hP(vj, wj) + O(h*+3) + O(h?-T4) (3.22)

holds.
Based on (3.20)—(3.22) we then find the equivalent equations of the scheme:
v — Uy = O(h2K+2),
U + Py = h(u(v)uy)y + O(h*+2) 4 O(h*+9),

wy — 2, = O(h?t*9),
It follows that the optimal choice is obtained fir = L, so that we find

v — Uy = O(h2K+2),
Uy + Py = h(u(v)uy)y + O(h*+2), (3.23)
wy — Zy — O(h2K+3).

In Section 5 we will investigate several choice of parameters L = 1,2, 3. ForK =
L =1, we find

-1 7 7 -1
(a—1, g, o1, 0t2) = (E, 1—2, 1—2, E)’
-17 -1
(,3—1, ﬂO» ,31) = (12» é’ 12)

ForK =L = 2, we find

( - 1 -2 3737 -2 1
a—27 a—17a07a17a25 a3 - 60’ 157 605 60’ 157 60 ’
—23 37 -23 1)

(ﬁ—Z, ﬂ—ls ﬂO’ lglv 52) = (_1 ﬁ’ %, ﬁ’ %

ForK = L = 3, we find

( ,_ (=L 29 139 533 533 139 29 1
#-3 @2, 01, 00, X1, @2, @3, %) = | 5807 840' 840 ° 840 840° 840 ' 840 280)°

-1 11 -779 533 —-779 11 —1)

(ﬂ—3a ﬂ—27 .B—la 1807 .Bla ﬂZa ,33) = <560’ 5704’ %» an m’ 57047 %

Let us finally check the sign property (3.18) when the viscogitg constant. Consider
the cas&K = L = 1. We have

+o0 1 +00 w
DY uBajmy = — > 13 ("Mimy -+ 14mT —mym; ;)
j=—ocok=—1 j=—00

+o00

m
=5 > (7mE —mymjy).

j=—oo
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Since
2 2 2
(mJ — mj+1) = mJ + mj+1 - zmj mj+l = 07
we have
+00
(mZ —mjmj.1) >0
> (mf—mimj) =0,
j=—o00
and
—+00

m
5 Z (7mé —mjm; 1) > 0.

j=—o0

This indeed implies the desired decreasing property (3.19). By a tedious but rather stre
forward calculation, it can be checked that the same result holds in the other two c:
K=L=2andK =L =3.

4. SUBSONIC PHASE BOUNDARIES AND NONCLASSICAL SHOCKS

In this section we show that the schemes proposed in Section 3 allow us to compute
sonic (and supersonic) phase boundaries and nonclassical undercompressive shock \
We are primary interested in the van der Waals pressure law. However, it is convenient al
compare it with a cubic pressure law described below. Throughout, the time-discretiza
is based on a standard Runge—Kutta approach of sufficiently high order of accuracy. Ex
when specified otherwise, all the tests are done with the scheme in Section 2 correspot
to K = L = 2, so that the scheme is sixth order in space. All of the numerical solutio
will be generated from an initial datum of the form

(v,u) forx <O,

0 0) =
(v(x, 0), u(x, 0)) {(vr,ur) forx > O,

for some constant Riemann data to be specified. The visocisty and capillarity coefficit
w and will be taken to be constant.

4.1. Cubic Pressure Law

The van der Waals pressure can be well approximated by the cubic equation
pw)=-@-a’+v+b v>0, (4.1)

wherea > 0 andb > 0 are constants. In our experiments, for simplicity in the calculation
we takea = 4 andb = 6. See Fig. 1a for a representation of the grapp.d@etting

3 3
U7=4_§, U+:4+ %, (42)

three distinct regions can be distinguished:

(1) Theintervab € [0, v_] corresponds to the liquid phase: the system (2.19) is strict
hyperbolic and genuinely nonlinear.
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v T T
Cublo prossure law —— Van dor waals pressurs law —
[ Ve e

vave o Ve e

2 25 3 35 4 45 s 55 6 0s 1 15 2 25 3

FIG. 1. (a) Cubic pressure law; (b) van der Waals pressure law.

(2) Inthe intervab € [v_, v,], the system is of elliptic type.
(3) Theintervab € [vy, co) corresponds to the vapor phase: the system (2.19) is stric
hyperbolic and genuinely nonlinear.

The so-called Maxwell stationary phase boundary, by definition corresponds to z
entropy dissipation. Here it conneats= 3 tov = 5 or vice versa.

Test 1: Propagating phase boundaryrigure 2 ¢ andu components) displays a typical
subsonic phase boundaries, here propagating to the left, and preceeded with a raref:
wave. The dotted lines based on the critival valuesand v limit the hyperbolic and
elliptic regions. The data for this test are

(n,2)=(1,02), (u,w)=@G0, (@, u)=(52).

The mesh contains 600 points and the solution is represented at thie-HrA&5.

Test 2: Stationary phase boundaryNext, in Fig. 3 we used
(:u’a )") = (17 15)7 (U| ’ U|) = (287 O)v (Ul’ﬂ Ur) = (527 O)

The mesh contains 500 points and the solution is displayed at the tin®15. We start
here with a continuous velocity, which induces simply a stationary phase transition f
two rarefaction waves in each of the characteristic families. Not surprisingly the statior

s . |

45+

s
35 F

3 L 2 L L L . L L o N
05 0.4 038 02 01 [ 0.1 0.2 03 04 05 0.5 0.4 0.3 0.2 0.1 4 61 02 03 0.4 s

FIG. 2. Propagating phase boundary. (a) Volume component; (b) velocity component.
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FIG. 3. Propagating phase boundary. (a) Volume component; (b) velocity component.

phase boundary satisfies the Maxwell condition; indeed it connects the valiesto
v=>5.

Test 3: Effect of the viscosity and capillarity coefficientEhe solution depends on the
relative values of the viscosity and capillarity coefficients. Indeed, in Fig. 4 using

n = 17 (U|, U|) = (285 0)5 (Ur, Ur) = (57 2)7

and successively = 0.1, 0.18, 0.25, we obtain propagating phase boundaries propagati
with various subsonic speeds. Here we used 800 mesh points and displayed the solut
the timet = 0.22.

Figure 5 illustrates that the phase boundaries are truly subsonic: the straight line
necting the two states cut the graph of the pressure.

4.2. Van der Waals Pressure Law

In the rest of this section we deal with the well-known van der Waals equation of ste
given by

RT a

p(, T) = v—b 2’ 4.3)

wherea, b, R are numerical constants and where the temperatuse0 is fixed. We use

s5 T 28 T T T T
lambdas0.1 ~—— lambda=0.1 ~——

gmbde=0.16 — § | b ambdas0.8 -

tambda=0.
w lambdas0.25 -----
st 4

2}
asr E ‘

35

25 ° { . N N
08 0.4 02 o 02 04 (13 06 0.4 0.2 o 02 04 (Y3

FIG. 4. Several values of. (a) Volume component; (b) velocity component.
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35 4 45 5

FIG.5. Subsonic phase boundaries.

here the standard constants

1 8
a=3 b=-, R=_, 4.4
3 3 (4.4)
and, for definiteness, the temperature is taken td be0.95, just below the critical temp-
eratureT = 1. As in Section 4.1 on the cubic model, the system under consideratior
hyperbolic and genuinely nonlinear in each on the regiwrsv_ andv > v, where,
approximatively,

v_ =0.787, vy =1.330

The Maxwell line corresponds to the phase boundary conneetiad.684 (liquid) and
v = 1.727 (vapor). Observe that the pressure is a convex functiansofficiently small
but a concave function far sufficiently large.

Above the critical temperature, the model under consideration is always hyperbolic
is not always genuinely nonlinear; see Section 4.3.

Test 4: Propagating phase boundaryrigure 6 displays a propagating phase transitio
obtained from the following data:

(n,A) =(01,1e-5), (v,u)=(0.6,-2), (v,u)=(150).

We used a mesh with 1000 points and we represent the solution at thieirfel 5.

Tos 04 ©3 02 0t 0 o1 0z ©3 04 [X3 o8 04 23 02 o1 o o1 02 03 04 (213

FIG. 6. Propagating phase boundary. (a) Volume component; (b) velocity component.
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FIG. 7. Stationary phase boundary. (a) Volume component; (b) velocity component.

Test 5: Stationary phase boundaryn Fig. 7, the test was performed with
(n,2) =(0.1,1e—3), (vy,y) =(0.6841170910), (vr,u;) = (1.727002570).

The initial jump is very close to the Mawell stationary phase boundary and, as expec
the scheme keeps the Maxwell discontinuity stationary. The mesh contains 600 points
the solution is displayed at the timhe= 0.20.

Test 6: Effect of the viscosity and capillarity coefficientBinally, as in Test 3, we
demonstrate that the solutions depend on the relative sizes of the viscosity and capill
parameters. Let us use

n=01 (u,u)=(0.675—1.45), (v,Uu) = (0.75,0),

together with several values of capillarity= 10-°, 0.1, 0.75. See Fig. 8. The solution
contains two (symmetric) propagating phase boundaries with opposite speeds. The
contains 800 points and the solution is represented at thet tim@.22.

Figure 9 illustrates that the phase boundaries are truly subsonic: the straight line
necting the two states cut the graph of the pressure.

4.3. Nonclassical Shock Waves in the Hyperbolic Regime

Above the critical temperature (that i§,> 1 in normalized units), the van der Waals
model is strictly hyperbolic, even though it is not always genuinely nonlinear. In tt

35 T T T T 02 T
lambda=1e-5 — . lambdaste-s ——
lambda=te.] -~ Vi lambda=te-] -
lamboa=0.75 «---- o il tambdaz075 oo

06 0.4 0.2 ) 02 0.4 06 "6 0.4 02 [ 02 0.4 06

FIG. 8. Several values of. (a) Volume component; (b) velocity component.
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FIG. 9. Subsonic phase boundaries.

hyperbolic regime, instead of subsonic phase boundaries, the equations may exhibit
classical shock waves. This is illustrated below. Recall that the cubic equation of stat
the hyperbolic regime was dealt with by Hayes and LeFloch in [15].

We choose now = 1.005. Figure 10 represents the graph of the corresponding press
law.

The viscosity coefficient is fixed to be 0.1. The mesh size is 1000 pointKaad. = 2
as before. Figure 11 shows a nonclassical shock obtained with the following values:

(w,u) = (0.8,0), (v,u)=(151), A=0.001

Figure 12 shows the dependence of this solution with respect to the capillarity coeffici
Figure 13 illustrates that shocks are truly nonclassical: the straight line connecting
two states cuts the graph of the pressure.

5. KINETIC FUNCTIONS

To characterize the dynamics of subsonic phase boundaries and nonclassical shock v
we now determine numerically the kinetic functions associated with the schemes introdt
in Section 3. Precisely, we compute the right-hand value of the volume as a functiot

T
Van der waals pressure law ——

06 i N " L
1 18 2 25 3

FIG. 10. Van der Waals pressure lai@ = 1.005).
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FIG. 11. Nonclassical shock wave (Van der Waals). (a) Volume; (b) speed.
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FIG. 12. Several values of. (van der Waals law). (a) Volume; (b) speed.
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FIG. 14. Several values of (cubic law). (a) Volume; (b) speed.

the left-hand state. We also compute the propagation speed of the phase boundaries
nonclassical shocks. As will become clear from the plots below, the kinetic functions dep
on the viscosity/capillarity ratio (more precisely af/1) and on the specific scheme undert
consideration as well.

Together with the kinetic functions, we plot also some extremal curves which are knc
to limit the range of the kinetic functions, especially the curve along which the entro
dissipation vanishes and the (Maxwell) curve along which the shock speed vanishes.

Kinetic functions for several capillarity coefficientsFigure 14 concerns the cubic pres-
sure law (4.1). In all of the runs we used the following initial data:

(U|7 U|) = (3, 0), Vr = 5

The viscosity is taken to bg = 2 and the mesh contains 1200 points. We computed thr
distinct kinetic curves associated with different values of the capillarity coefficient. A po
on the curve is associated with a propagating phase boundary found for some given il
velocity u; . Each curve is obtained by letting describe the interval [0.6, 5.].

Figure 15 concerns the van der Waals pressure law (4.3). We choose here the initial

(v, u) = (0.666 —1.8), v =0.75.

The viscosity isu = 0.1 and the mesh contains 1200 points. Here each curve is obtait
for u; describing the intervaH 1.8, 0.].

. X X s X X X L N L s L N
Ses 0.655 066 0.665 067 0576 0.68 0886 065 0656 066 0665 067 0675 068 0685

FIG. 15. Several values of (van der Waals). (a) Volume; (b) speed.
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FIG. 16. Several values oK andL (cubic law). (a) Volume; (b) speed.

Kinetic functions for several schemedNext we study the effect of the order of accuracy
of the scheme on the kinetic curves (Cubic law). For definiteness we fix the followi
constants:

(,u)=3,0, v =5 rA=15 A=1

Similarly as above, we compute kinetic curves by lettingescribe the interval [0.6, 10].
Figure 16 displays the results for several choices of the paranmétansiL .

6. CONCLUSIONS

In this paper, we dealt with propagating phase boundaries modeled by the isothel
model of compressible fluids governed by van der Waals-type equations of state.

Capillarity effects were taken into account by using the derivative of the specific volur
vy, as an independant variable. We have introduced a new class of entropy conserv
numerical schemes in the sense of Tadmor. These schemes are endowed with non
stability properties: the total energy—which plays the role of a mathematical entropy in
sense of Lax—is decreasing in time, the decay being due to the viscosity only. Hence
were able to reproduce at the discrete level an important property satisfied by the phy
model. We also established that the proposed schemes may have sufficiently high orc
accuracy, so that the corresponding equivalent equation coincide with the continuous m
up to O(h®) at least.

We demonstrated the existence of propagating subsonic phase boundaries and of nol
sical undercompressive shock waves for the van der Waals model. The proposed sch
successfully computed these undercompressive waves. Nonsteady subsonic boundarie
consistent with the standard Maxwell construction) are not found in thermodynamics te
books nor in the Riemann solvers derived in [23] and [12]. Subsonic phase bounda
are induced precisely by the capillarity effects, kept in balance with the viscosity effe
The former create oscillations while the latter introduce dissipation in the equations. -
small-scale effects are dominant in determining the dynamics of undercompressive we
The observed oscillations are entirely expected and standard numerical methods such
TVD schemes are clearly not adapted.

Following [15], kinetic relations associated with the schemes were numerically det
mined. These curves depend on the order of the schemes and also on the relative str
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of the viscosity and capillarity coefficients. The kinetic curves allow us to compare 1
properties of the schemes.

The equivalent equation provides only some indication of the behavior of the scher
For sufficiently small propagation speed good agreement has been observed. But, for v
with sufficiently large speed or large amplitude, some discrepancy does arise. This
central difficulty with dissipation-sensitive problems.

We have encountered some specific numerical difficulties with the van der Waals pres
law, due to its shape. In normalized units atleastand in the range of interest near the infle
point, the subsonic phase boundaries connect states having very different characte
speeds. Indeed, the sound speed in the liquid tends to infinity as the voliemés to zero,
while for largewv in the vapor phase the sound speeds tends to zero. This appears cle
in Fig. 1b. (This behavior is not found for the cubic law in Fig. 1a.) This has drama
consequences from the numerical standpoint. A small error in the liquid state corresp
to a large error in the vapor one. As a consequence, finding numerically the rang
left-and right-hand states for which subsonic phase boundaries exist has been partict
challenging. Then, nonclassical shock waves and subsonic phase boundaries may a
particularly delicate to observe in practical situations.

Finally, we point out that extending the present approach to the viscosity—capilla
model of van der Waals fluids based on three conservation laws (mass, momentum
energy) should be possible. Many of the properties derived here generalize immediate
this model.
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