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Summary. We introduce a fully discrete (in both space and time) scheme
for the numerical approximation of diffusive-dispersive hyperbolic conser-
vation laws in one-space dimension. This scheme extends an approach by
LeFloch and Rohde [4]: it satisfies a cell entropy inequality and, as a conse-
quence, thespace integral of theentropy isadecreasing functionof time.This
is an important stability property, shared by the continuous model as well.
Following Hayes and LeFloch [2], we show that the limiting solutions gen-
erated by the scheme need not coincide with the classical Oleinik-Kruzkov
entropy solutions, but contain nonclassical undercompressive shock waves.
Investigating the properties of the scheme, we stress various similarities and
differences between the continuous model and the discrete scheme (dynam-
ics of nonclassical shocks, nucleation, etc).

Mathematics Subject Classification (2000):65M06, 35L65

1. Introduction

In this paper,weare interested in thenumerical approximationof thelimiting
solutions generated by the diffusive-dispersive conservation law [3]:
(1.1)
∂tu+∂xf(u) = εβU ′(u)xx+ε2γU ′(u)xxx, u = uβ,γ

ε (x, t), x ∈ R, t > 0,

when ε > 0 tends to zero. Here the fluxf : R → R is a smooth given
function andβ, γ > 0 are fixed parameters. In the right-hand side of (1.1),
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U : R → R is a given, strictly convex function. The following is known
concerning the limiting solutionslimε→0 u

β,γ
ε . (We refer to the review [3]

and the references cited therein.) First of all, they generally depend on the
parametersβ andγ. Based on simple scaling arguments, one can see that
they only depend on the ratioδ = β/γ. So we define

(1.2) uδ := lim
ε→0

uβ,γ
ε ,

provided the limit exists in some strong topology. Based on (1.1) and

∂tU(u) + ∂xF (u)

=
ε β

2
(
U ′(u)2

)
x

− ε β U ′(u)2x + ε2γ
(
U ′(u)U ′(u)xx − U ′(u)2x/2

)
x
,

it is easy to check that the functionuδ satisfies the hyperbolic conservation
law

(1.3) ∂tu+ ∂xf(u) = 0

and the entropy inequality

(1.4) ∂tU(u) + ∂xF (u) ≤ 0,

whereU is regarded as an “entropy” of (1.3), andF : R → R is the
corresponding entropy flux defined byF ′(u) = U ′(u) f ′(u). Note also that
from (1.4) it follows that

(1.5)
∫

R

U(u(x, t)) dx ≤
∫

R

U(u(x, s)) dx, t ≥ s.

In this paper, we propose a fully discrete (in space and time) finite differ-
ence scheme for the numerical approximation of the solutionsuδ in (1.2).
We rely on the approach developed recently by LeFloch and Rohde [4] and
based on Tadmor’s notion of entropy conservative flux (see [6]) for the hy-
perbolic part of (1.1). We will introduce here a fully discrete version of the
semi-discrete scheme derived in [4]. The high-order accuracy in time is pro-
vided by a standardRunge-Kutta technique. In Sect. 2, we can prove that our
fully discrete scheme satisfies a cell entropy inequality, which implies that
the entropy is a decreasing function of time. See Theorem 2.3 and Corollary
2.4.

In Sect. 3, we investigate the properties of our scheme, especially in
terms of stability and nucleation. The stability condition derived in Sect. 2
is numerically investigated. We also demonstrate that the scheme admits
a nucleation threshold. Above the threshold value, nonclassical solutions
violating the standard entropy criterion are observed. The dependence of
the threshold inδ is investigated. We recall that these undercompressive,
nonclassical solutions play an important role in many models of continum
mechanics when diffusive and dispersive effects are in balance [3].
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2. A fully discrete scheme

We start from the semi-discrete method derived by LeFloch and Rohde
[4]. Consider the following scheme in conservative form (j describing the
integers)

(2.1)
d

dt
uj(t) = −1

h

(
gj+1/2(t) − gj−1/2(t)

)
, t ≥ 0

with gj+1/2(t) := g(uj−1(t), uj(t), uj+1(t), uj+2(t)
)
, the parameterh > 0

being the mesh size. The numerical flux has the formg := g1 + g2 + g3,
whereg1 is consistent with the hyperbolic fluxf(u), g2 is an approximation
of β hU ′(u)x, andg2 of γ h2 U ′(u)xx. More precisely, using the entropy
variable

v := U ′(u), g(v) := f(u), G(v) := F (u),

and thereforev0 := U ′(u0), etc, we define

g1(u−1, u0, u1, , u2)(2.21)

:=
∫ 1

0
g(v0 + s(v1 − v0)) ds− 1

12
(
v2 − v1 − v0 + v−1

)
g′(v0),

(2.22) g2(v0, v1) := −β

2
(v1 − v0),

and

(2.23) g3(v−1, v0, v1, v2) := −γ

6
(
v2 − v1 − v0 + v−1

)
.

Note that we are using thesamenotation for the exact fluxg = g(v) ex-
pressed in the entropy variable and for the numerical flux.

Theorem 2.1. The scheme(2.1)-(2.2) is conservatif and consistentwith the
hyperbolic conservation law(1.3). It also satisfies the cell entropy inequality
(t ≥ 0 andj describing the integers)

(2.3)
d

dt
U

(
uj(t)

)
+

1
h

(
Gj+1/2(t) −Gj−1/2(t)

) ≤ 0,

where the numerical entropy flux has the formG := G1 +G2 +G3, where

G1(v−1, v0, v1, v2)(2.41)

:=
(v0 + v1)

2
g(v−1, v0, v1, v2) − 1

2

(
ψ(v0, v1, v2) + ψ(v−1, v0, v1)

)
with

ψ(v0, v1, v2) := v1g(v1) −G(v1) +
1
12

(v1 − v0)g′(v0) (v1 − v2),



496 C. Chalons, P.G. LeFloch

(2.42) G2(v0, v1) := −β

4

(
v2
1 − v2

0

)
and

(2.43) G3(v−1, v0, v1, v2) = −γ

6

(
v−1v1 + v0v2 − 2 v0v1

)
.

Moreover, the equivalent equation of the scheme(2.1)-(2.2), up to the
(third-order) terms inh2, coincidewith the continuousmodel(1.1) provided
ε is replaced withh.

Proof. It is straightforward to calculate that

(2.5)
d

dt
U

(
uj(t)

)
+

1
h

(
Gj+1/2(t) −Gj−1/2(t)

)
= −Dj(t),

where

Dj(t) =
β

4
(∣∣vj(t) − vj−1(t)

∣∣2 +
∣∣vj+1(t) − vj(t)

∣∣2) ≥ 0.

The second claim in the theorem follows by performing a Taylor expansion
in (2.1) and by using the definitions (2.2). ✷

We now turn to defining our fully discrete scheme, having in mind to
generalize Theorem 2.1, under some CFL stability restriction on the time
discretization. To begin with, we analyze a first order time-discretization.
Denote byk > 0 the size of the regularly spaced time-mesh. Consider the
following scheme (n ≥ 0 andj describing the integers)

(2.6) un+1
j = un

j − λ
(
gn
j+1/2 − gn

j−1/2
)
,

where the ratioλ = k/h is kept fixed. In (2.6), we use the notationgn
j+1/2 :=

g(un
j−1, u

n
j , u

n
j+1, u

n
j+2

)
, and we defineGn

j+1/2 similarly, etc.

Theorem 2.2. The scheme(2.6) satisfies the cell entropy inequality

U(un+1
j ) − U(un

j ) + λ
(
Gn

j+1/2 −Gn
j−1/2

)
+
β λ

4

(∣∣vn
j − vn

j−1
∣∣2 +

∣∣vn
j+1 − vn

j

∣∣2)
≤ 3λ2 ‖U ′′‖∞

(‖g′‖2
∞D1,n

j + β2D2,n
j + γ2D3,n

j

)
,(2.7)

where

D1,n
j :=

1
36

(|vn
j−1 − vn

j−2|2 + 73 |vn
j − vn

j−1|2

+73 |vn
j+1 − vn

j |2 + |vn
j+2 − vn

j+1|2
)
,

D2,n
j :=

1
4

(|vn
j − vn

j−1|2 + |vn
j+1 − vn

j |2),
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and

D3,n
j :=

1
18

(|vn
j−1−vn

j−2|2+|vn
j −vn

j−1|2+|vn
j+1−vn

j |2+|vn
j+2−vn

j+1|2
)
.

Hence, forλ sufficiently small, the entropy is a strictly decreasing func-
tion of time, in the sense

(2.8)
∞∑

j=−∞
U(un+1

j ) +K λ

∞∑
j=−∞

∣∣vn
j − vn

j−1
∣∣2 ≤

∞∑
j=−∞

U(un
j ),

with

K :=
β

2
− 3λ ‖U ′′‖∞

(37
9

‖g′‖2
∞ +

β2

2
+

2
9
γ2).

Furthermore, for smooth solutions, the equivalent equation of the scheme
(2.6) is

(2.9) ∂tu+ ∂xf(u) = hβ U ′(u)xx + h2 γ U ′(u)xxx +O(h3 + k).

Observe that the equation (2.9) no longer correspond to the continous
model (1.1). Namely the time-discretization generates a term of orderO(k)
which can not be absorbed in the cubic errorO(h3) (except of course if we
were to impose the very drastic restrictionk = O(h3).) Therefore a more
accurate time-discretization will be necessary.

Proof. By a Taylor expansion inλ we can deduce from (2.6) that

U(un+1
j ) − U(un

j ) + λU ′(un
j )

(
gn
j+1/2 − gn

j−1/2
)

≤ λ2

2
‖U ′′‖∞

∣∣gn
j+1/2 − gn

j−1/2

∣∣2.(2.10)

We determine the right hand side of (2.10) by treating successively the
terms in

1
2

∣∣gn
j+1/2 − gn

j−1/2

∣∣2 ≤ 3
(∣∣gn

j+1/2 − g(vn
j )

∣∣2
+

∣∣g(vn
j ) − gn

j−1/2

∣∣2 + |g2,n
j+1/2|2 + |g2,n

j−1/2|2 + |g3,n
j+1/2|2 + |g3,n

j−1/2|2
)
.

In view of (2.2) we find

1
2

∣∣gn
j+1/2 − g(vn

j )
∣∣2

≤ ‖Dg‖2
∞

( 1
72

|vj − vj−1|2 + |vj+1 − vj |2 +
1
72

|vj+2 − vj+1|2
)
,

and the same inequality remains true by replacingg(vn
j ) with g(vn

j+1). On
the other hand,

|g2,n
j+1/2|2 + |g2,n

j−1/2|2 ≤ β2

4
(|vj − vj−1|2 + |vj+1 − vj |2

)
,



498 C. Chalons, P.G. LeFloch

|g3,n
j+1/2|2 + |g3,n

j−1/2|2

≤ γ2

18
(|vj−1 − vj−2|2 + |vj − vj−1|2 + |vj+1 − vj |2 + |vj+2 − vj+1|2

)
.

The desired inequality (2.7) then follows. Finally, summing over all value
j and shifting the indexj �→ j + 1 or j �→ j − 1 whenever necessary, one
deduce (2.8) from (2.7).

The statement about the order of accuracy of the scheme is an immediate
consequence of the corresponding properties known for the semi-discrete
scheme; see Theorem 2.1. ✷

In view of (2.8), the entropy is a decreasing function of time provided
K is positive. This leads us to the following CFL-like restriction onλ to
ensure the stability of the scheme:

(2.11) 6λ
‖U ′′‖∞
β

(37
9

‖g′‖2
∞ +

β2

2
+

2
9
γ2) ≤ 1.

Of course, (2.11) also depends onβ, γ and the maximum speed‖g′‖∞, as
well as the entropyU .

It is interesting to observe that, in the limitλ → 0, that isk → 0 buth
kept fixed, the entropy inequality (2.7) implies the semi-discrete one, (2.3),
while (2.8) tends to (namely,K → β/2)

(2.12)
d

dt

∞∑
j=−∞

U(uj) +
β

2

∞∑
j=−∞

∣∣vj(t) − vj−1(t)
∣∣2 ≤ 0.

We stress that the stability condition (2.11) is trivially satisfied in the limit
λ → 0 ! Indeed, the semi-discrete scheme (2.1)-(2.2) is unconditionnally
stable (in the sense that (2.3)-(2.4) holds).

To obtain, as in LeFloch and Rohde [4], a scheme whose equivalent
equation coincides with (1.1), we need to increase the order of discretization
in time, to the third order, at least. Following Shu [5], we rely on a Runge-
Kutta technique.Observe that the (first order in time)schemecanbe rewritten
in the form

(2.13)
(i) un+1

j = un
j + L(un)j ,

(ii) L(un)j = −λ (
gn
j+1/2 − gn

j−1/2
)
.

A high-order accurate (in time) scheme is obtained by the Runge-Kutta
technique, as follows:

(2.14)
(i) un+1

j =
m∑

k=0

(
αk u

n−k
j + βk L(un−k)j

)
,

(ii) u−k
j = u0

j , k = 0, 1, ...,m.
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In theabove, the coefficientsαk andβk canbedetermined tohave third-order
accuracy in time. In our numerical experiments below, we will use

(2.15)

m = 3

α0 =
16
27
, α1 = α2 = 0 , α3 =

11
27

β0 =
16
9
, β1 = β2 = 0 , β3 =

44
27

Note that the coefficients are positive and of unit sum, i.e.,

(2.16)

αk ≥ 0, k = 0, 1, ...,m,
m∑

k=0

αk = 1.

Theorem 2.3. Assume that the coefficientsαk, k = 0, . . . ,m, satisfy the
condition(2.16). Then the fully discrete scheme(2.14)satisfies the following
local entropy inequality

U(un+1
j ) −

m∑
k=0

αkU(un−k
j ) + λ

m∑
k=0

βk(Gn−k
j+1/2 −Gn−k

j−1/2)

+
λβ

4

m∑
k=0

βk

(∣∣vn−k
j+1 − vn−k

j

∣∣2 +
∣∣vn−k

j − vn−k
j−1

∣∣2)(2.17)

≤ λ2
m∑

k=0

3β2
k

αk
‖U ′′‖∞

(‖g′‖2
∞D1,n−k

j + β2D2,n−k
j + γ2D3,n−k

j

)
.

Hence, the entropy satisfies
(2.18)
+∞∑

j=−∞
U(un+1

j )+λ
+∞∑

j=−∞

m∑
k=0

dk

∣∣vn−k
j+1 −vn−k

j

∣∣2 ≤
+∞∑

j=−∞

m∑
k=0

αkU(un−k
j ),

where

(2.19) dk :=
β βk

2
− 3λβ2

k

αk
‖U ′′‖∞

(
‖g′‖2

∞
37
9

+
β2

2
+

2γ2

9

)
,

with the convention thatβk/αk = 0 whenαk = βk = 0. If the coefficients
are chosen as in(2.15), then the equivalent equation of the scheme(2.14)
is

(2.20) ∂tu+ ∂xf(u) = hβ U ′(u)xx + h2 γ U ′(u)xxx +O(h3 + k3),

which, up to quadratic terms inh, coincideswith the continuousmodel(1.1)
providedh is replaced withε.
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Proof. In view of (2.16), the scheme (2.14i) admits the following convex
decomposition:

(2.21) un+1
j =

m∑
k=0

αk w
n−k
j

with

(2.22) wn−k
j = un−k

j +
λβk

αk
L

(
un−k

)
j
.

Since the entropyU is a convex function, we deduce from (2.21) that

U(un+1
j ) ≤

m∑
k=0

αk U(wn−k
j ).

Therefore, using the entropy inequality (2.7) withλ replaced withλβk/αk,
we obtain immediately the inequality (2.17).

The global entropy inequality (2.18) is a consequence of (2.17), obtained
by summing over allj and then shifting the index whenever needed.✷

In view of (2.19), it is natural to impose the following CFL-likestability
restrictionon the ratioλ = k/h:

(2.23)
(i) 6λ sup

0≤k≤m

βk

αk

‖U ′′‖∞
β

(
‖g′‖2

∞
37
9

+
β2

2
+

2 γ2

9

)
≤ 1,

(ii) βk ≥ 0.

At this juncture, recall that the limiting solutionlimε→0 u
β,γ
ε only depends

on the ratioδ = β/γ. So, for a given value ofδ, it is natural to chooseβ so
that to minimize the constrain in (2.23), i.e. to minimize

βk

αk

‖U ′′‖∞
β

(
‖g′‖2

∞
37
9

+
β2

2
+

2β2

9 δ2
)

with respect to allβ > 0. It is easy to check that we can then replace (2.23)
with

(i) 12λ sup
0≤k≤m

βk

αk
‖U ′′‖∞

(
‖g′‖2

∞
37
9

(1
2

+
2

9 δ2
))1/2 ≤ 1,

(ii) βk ≥ 0.(2.232)

From Theorem 2.3 we deduce that the entropy can never exceed the
entropy at timet = 0.
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Corollary 2.4. Under the restriction(2.23), we have

(2.24)
∞∑

j=−∞
U(un

j ) ≤
∞∑

j=−∞
U(u0

j ).

Proof. In view of (2.23), the coefficients in (2.19) are positive, so that (2.18)
gives us

(2.25)
+∞∑

j=−∞
U(un+1

j ) ≤
+∞∑

j=−∞

m∑
k=0

αk U(un−k
j ).

We then proceed by induction onn. Whenn = 0, the inequality (2.25)
together with (2.14ii) yields exactly

∞∑
j=−∞

U(u1
j ) ≤

∞∑
j=−∞

U(u0
j ),

which is (2.24).
If now, for someN ,

∞∑
j=−∞

U(un
j ) ≤

∞∑
j=−∞

U(u0
j ) for all n ≤ N,

then it follows again from (2.25) and (2.14ii) that

∞∑
j=−∞

U(uN+1
j ) ≤

+∞∑
j=−∞

m∑
k=0

αk U(u0
j ) =

∞∑
j=−∞

U(u0
j ).

This completes the proof of (2.24). ✷

It is clear that, if the solution is periodic in space, then the inequality
(2.18) still holds when we sum up over one period. Thus (2.24) also holds
true on one period. This observation will be used in next section, where we
will numerically test the validity of this inequality.

3. Numerical experiments

In the present section, followingHayes and LeFloch [2], we experimentwith
the scheme proposed in Sect. 2.We demonstrate now that, in the limith → 0
(with λ = k/h kept fixed), our fully discrete scheme generates nonclassical
shock waves. We also check the monotonicity of the entropy as a function
of time, in agreement with Corollary 2.4. On the other hand, we investigate
the nucleation property of the scheme by studying the Riemann problem.
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In particular, we observe that, when the Riemann data remain below some
threshold value, the corresponding solutions are always classical. All these
properties were also met with the continuous model (1.1); see [3] and the
references therein.

Let us recall that finite difference schemes for scalar conservation laws
with nonconvex flux may contain some oscillations and, as a consequence,
converge to (nonmonotone) nonclassical solutions. See LeFloch [3] for a
review. Such a behavior can be avoided by restricting attention to TVD (total
variation diminishing) schemes (after Harten). Indeed, in a TVD scheme,
the number of local maxima or minima is a decreasing function of time, and
as was observed in [1], such a scheme can not generate nonclassical shocks.
The TVD approach is not applicable to handle limiting solutions generated
by the diffusive-dispersive model (1.1), since the (nonclassical) solutions of
interest do not possess monotonicity properties in general.

All the numerical experiments in this sectionwill be donewith themodel
(1.1) and the following choice of flux and entropy:

(3.1) f(u) = u3 − u, U(u) = u2/2, u ∈ R.

The coefficientsαk andβk given by (2.15) will be used. The time step is
always taken to be the largest allowed by our CFL stability condition (2.23),
excepted when it is mentionned otherwise. The space variable is taken to be
x ∈ [−1/2, 1/2].

Experiments 1.We start by displaying some typical solutions generated
by our scheme. The physical and numerical coefficients are chosen to be
β = 5.0 andγ = 37.5 . We used 800 mesh points andt is equal to 0.003
and multiplied the condition (2.23) by a factor 20.

In Fig. 3.1, we present, after about 8000 iterations of time, a two-wave
solution, made of a nonclassical shock preceeded by a classical shock. Ob-
serve that the solution is non-monotone, altough it has been generated from
a monotone Riemann data:

(3.2) u(x, 0) =

{
ul for x < 0,
ur for x > 0.

Here we have usedul = 4 andur = −3.
In Fig. 3.2, we display a two-wave solution containing a nonclassical

shock and a rarefaction wave. Observe that the two waves are not attached,
as it would be in a solution containing classical shocks only. Here we have
ul = 4 andur = −3 and about 15000 iterations of time have been used.

Forλ sufficiently small, we observe that the decrease predicted byCorol-
lary 2.4 holds. See Fig. 3.3b.

Experiments 2.We want now to test the stability condition (2.23) onλ,
found analytically in Sect. 2. First of all we demonstrate that the entropy is
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Fig. 3.1. A nonclassical shock + a classical shock
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Fig. 3.2. A nonclassical shock + a rarefaction

decreasing in time.Consider theperiodic initial datau(x, 0) = − sin
(
2πx)

)
forx ∈ [−1/2, 1/2]and let us solve (1.1)with periodic boundary conditions.
The following parameters will be used

h = 0.00125, β = 5.0, γ = 18.75.

Wewant to test the validity of (2.26) on one period. The large-time behavior
of the solution is displayed in Fig. 3.3a.We used here about 48000 iterations
(with (2.232) as CFL-like condition) in time to reach the timet = 0.24. The
solution contains a nonclassical shock and a rarefaction wave.
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Fig. 3.3A. A nonclassical shock + a rarefaction
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Fig. 3.3B. Entropy versus time

However, increasingλ, we note that, while the scheme still converges to
nonclassical solutions (having oscillations of larger amplitude, however), it
maywell increase the entropy. For example,multiplying the time-step (2.23)
by a factor12, we see on Figures 3.4 that, even for small times, the scheme is
less stable and the solutions much oscillatory, and (2.24) is violated. In fact,
even the local in time inequality (2.18) is violated. However, the entropy
remains decreasing in average.

Finally, our numerical tests demonstrate that the entropy may well in-
creasewhen the conditions of the theorems in Sect. 2 are not fullfiled. There-
ore the condition (2.23) onλ plays the role of a CFL condition, in a situation
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Fig. 3.4A. Numerical solution with a large CFL
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Fig. 3.4B. Entropy with a large CFL

where one can not rely on the standard CFL condition (restrictingλ in terms
of the largest speed|f ′(u)| in the problem). Precisely, Figures 3.5 display
some numerical solution obtained with our scheme but using now the stan-
dard CFL condition. Numerical oscillations are now much more important,
and again (2.24) is violated. The time oscillations in Fig. 3.5b have signif-
icantly larger amplitude than the ones in Fig. 3.4b. However, it would be
interesting to derive further conditions onλ ensuring the stability of the
scheme for arbitrary values of the parametersβ andγ, precisely like the
standard CFL.
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Fig. 3.5A. Numerical solution with the standard CFL
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Fig. 3.5B. Entropy with the standard CFL

Experiments 3.We now study how the scheme happens to nucleate non-
classical shocks. The discussion depends on the values on the Riemann data
and the ratio of the diffusion to the dispersion. Consider the Riemann data
(3.2) withul > 0 andur < 0. Motivated by a property of the continuous
model (1.1), we claim that there exists a thresholdψ(δ) such that, for all
ul < ψ(δ), the Riemann solution remains completely classical for arbitrary
ur, while forul > ψ(δ) the solution is nonclassical. This is indeed illustated
by Fig. 3.6, where

ur = −5 β = 5 and γ = 37.5
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Fig. 3.7. Several values ofβ

The solution is classical whenul = 1, but nonclassical whenul = 3 or
ul = 2. The mesh contains800 points for the casesul = 3 andul = 4, and
1200 points for the caseul = 1. The numerical solutions are displayed at
the timet = 0.003.

Similarly, there exists a thresholdφ(ul) such that, forδ > ψ(ul), the
Riemann solution remains completely classical for arbitraryur, while for
δ < ψ(ul) the solution is always nonclassical. This is illustated in Fig. 3.7,
where

ul = 4, ur = −5, t = 0.003.
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Fig. 3.8. Numerical solution forγ = 1.75

The solution is classical whenβ = 30, but nonclassical whenβ = 5 or
β = 15. We used a grid made of400 points and reducedδ by keepingγ
fixed but by decreasingβ.

Finally, we claim that the functionψ(δ) increases whenδ increases. To
illustrate this point numerically, we consider the following parameters:

ul = 4, ur = −5, t = 0.003, β = 5.

We used a mesh made of800 points, andγ = 1.75, so that the ratioδ is
larger, comparedwith the test inFig. 3.2.OnFig. 3.8, thesolution is classical.
Compare it with Fig. 3.2 which has a nonclassical solution. This illustrates
thatψ(δ) asδ increases.

To conclude, we emphasize that all the fundamental properties of the
continuousmodel (1.1) arealso sharedbyour numerical scheme.Wedemon-
strated that the limiting solutions may contain undercompressive, nonclas-
sical shocks that depend on the ratioδ. This happens only when the ratio
of the diffusion to the dispersion is sufficiently small, or when the ampli-
tude of the solution is sufficiently large. The class of schemes presented in
this paper is efficient to compute nonclassical shock waves. For sufficiently
small CFL numbers, the schemes satisfy exactly a discrete version of the
entropy decay property (1.5); see Fig. 3.3b. Under a standardCFL condition,
mild oscillations are observed in Fig. 3.4b, while the convergence toward
the nonclassical solutions is still ensured.

Finally, we point out that the scheme proposed in Sect. 2 also applies to
systems of conservation laws, and that for systems the entropy inequalities
in Theorem 2.3 still hold.
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