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Abstract. We study the stabilizing effect of rotational forcing in the nonlinear setting of two-
dimensional shallow-water and more general models of compressible Euler equations. In [Phys. D,
188 (2004), pp. 262–276] Liu and Tadmor have shown that the pressureless version of these equations
admit a global smooth solution for a large set of subcritical initial configurations. In the present
work we prove that when rotational force dominates the pressure, it prolongs the lifespan of smooth
solutions for t <∼ ln(δ−1); here δ � 1 is the ratio of the pressure gradient measured by the in-
verse squared Froude number, relative to the dominant rotational forces measured by the inverse
Rossby number. Our study reveals a “nearby” periodic-in-time approximate solution in the small δ
regime, upon which hinges the long-time existence of the exact smooth solution. These results are
in agreement with the close-to-periodic dynamics observed in the “near-inertial oscillation” (NIO)
regime which follows oceanic storms. Indeed, our results indicate the existence of a smooth, “ap-
proximate periodic” solution for a time period of days, which is the relevant time period found in
NIO obesrvations.
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1. Introduction and statement of main results. We are concerned here
with two-dimensional systems of nonlinear Eulerian equations driven by pressure and
rotational forces. It is well known that in the absence of rotation, these equations
experience a finite-time breakdown: for generic smooth initial conditions, the corre-
sponding solutions will lose C1-smoothness due to shock formation. The presence
of rotational forces, however, has a stabilizing effect. In particular, the pressureless
version of these equations admit global smooth solutions for a large set of so-called
subcritical initial configurations [17]. It is therefore a natural extension to investi-
gate the balance between the regularizing effects of rotation versus the tendency of
pressure to enforce finite-time breakdown (we mention in passing the recent work [21]
on a similar regularizing balance of different competing forces in the one-dimensional
Euler–Poisson equations). In this paper we prove the long-time existence of rapidly
rotating flows characterized by “nearby” periodic flows. Thus, rotation prolongs the
lifespan of smooth solutions over increasingly long time periods, which grow longer as
the rotation forces become more dominant over pressure.

Our model problem is the rotational shallow water (RSW) system of equations.
This system models largescale geophysical motions in a thin layer of fluid under the
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LONG-TIME EXISTENCE OF RAPIDLY ROTATING EQUATIONS 1669

influence of the Coriolis rotational forcing (see, e.g., [18, section 3.3], [10, section 2.1]),

∂th + ∇ · (hu) = 0,(1.1a)

∂tu + u · ∇u + g∇h− fu⊥ = 0.(1.1b)

It governs the unknown velocity field u :=
(
u(1)(t, x, y), u(2)(t, x, y)

)
and height

h := h(t, x, y), where g and f stand for the gravitational constant and the Corio-
lis frequency, respectively. Recall that (1.1a) observes the conservation of mass and
(1.1b) describe balance of momentum by the pressure gradient, g∇h, and rotational
forcing, fu⊥ := f

(
u(2),−u(1)

)
.

For convenience, we rewrite system (1.1) in terms of rescaled, nondimensional
variables. To this end, we introduce the characteristic scales, H for total height h, D
for height fluctuation h−H, U for velocity u, L for spatial length, and correspondingly,
L/U for time, and we make the change of variables

u = u′
(
t′L

U
, x′L, y′L

)
U, h = H + h′

(
t′L

U
, x′L, y′L

)
D.

Discarding all the primes, we arrive at a nondimensional system,

∂th + u · ∇h +

(
H

D
+ h

)
∇ · u = 0,

∂tu + u · ∇u +
gD

U2
∇h− fL

U
u⊥ = 0.

We are concerned here with the regime where the pressure gradient and com-
pressibility are of the same order, gD

U2 ≈ H
D . Thus we arrive at the (symmetrizable)

RSW system,

∂th + u · ∇h +

(
1

σ
+ h

)
∇ · u = 0,(1.2a)

∂tu + u · ∇u +
1

σ
∇h− 1

τ
Ju = 0.(1.2b)

Here σ and τ , given by

(1.2c) σ :=
U√
gH

, τ :=
U

fL
,

are, respectively, the Froude number measuring the inverse pressure forcing and the
Rossby number measuring the inverse rotational forcing. We use J to denote the 2×2
rotation matrix J :=

(
0 1
−1 0

)
.

To trace their long-time behavior, we approximate (1.2a), (1.2b) with the succes-
sive iterations,

∂thj + uj−1 · ∇hj +

(
1

σ
+ hj

)
∇ · uj−1 = 0, j = 2, 3, . . . ,(1.3a)

∂tuj + uj · ∇uj +
1

σ
∇hj −

1

τ
Juj = 0, j = 1, 2, . . . ,(1.3b)

subject to initial conditions, hj(0, ·) = h0(·) and uj(0, ·) = u0(·). Observe that, given
j, (1.3a,b) are only weakly coupled through the dependence of uj on hj , so that
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1670 BIN CHENG AND EITAN TADMOR

we need only specify the initial height h1. Moreover, for σ � τ , the momentum
equations (1.2b) are “approximately decoupled” from the mass equation (1.2a) since
rotational forcing is substantially dominant over pressure forcing. Therefore, a first
approximation of constant height function will enforce this decoupling, serving as the
starting point of the above iterative scheme,

(1.3c) h1 ≡ constant.

This, in turn, leads to the first approximate velocity field, u1, satisfying the pressure-
less equations,

(1.4) ∂tu1 + u1 · ∇u1 −
1

τ
Ju1 = 0, u1(0, ·) = u0(·).

Liu and Tadmor [17] have shown that there is a “large set” of so-called subcritical ini-
tial configurations u0, for which the pressureless equations (1.4) admit global smooth
solutions. Moreover, the pressureless velocity u1(t, ·) is in fact 2πτ -periodic in time.
The regularity of u1 is discussed in section 2.

Having the pressureless solution, (h1 ≡ constant,u1) as a first approximation for
the RSW solution (h,u), in section 3 we introduce an improved approximation of the
RSW equations, (h2,u2), which solves an “adapted” version of the second iteration
(j = 2) of (1.3). This improved approximation satisfies a specific linearization of the
RSW equations around the pressureless velocity u1, with only a one-way coupling
between the momentum and the mass equations. Building on the regularity and
periodicity of the pressureless velocity u1, we show that the solution of this linearized
system subject to subcritical initial data (h0,u0), is globally smooth; in fact, both
h2(t, ·) and u2(t, ·) retain 2πτ -periodicity in time.

Next, we turn to estimating the deviation between the solution of the linearized
RSW system, (h2,u2), and the solution of the full RSW system, (h,u). To this end,
we introduce a new nondimensional parameter,

δ :=
τ

σ2
=

gH

fLU
,

measuring the relative strength of rotation versus the pressure forcing, and we assume
that rotation is the dominant forcing in the sense that δ � 1. Using the standard
energy method, we show in Theorem 4.1 and the follow-up Remark 4.1 that, starting
with Hm subcritical initial data, the RSW solution

(
h(t, ·),u(t, ·)

)
remains sufficiently

close to
(
h2(t, ·),u2(t, ·)

)
in the sense that

‖h(t, ·) − h2(t, ·)‖Hm−3 + ‖u(t, ·) − u2(t, ·)‖Hm−3
<∼

eC0tδ

(1 − eC0tδ)2
,

where constant C0 = Ĉ0(m, |∇u0|∞, |h0|∞) · ‖u0, h0‖m. In particular, we conclude
that for a large set of subcritical initial data, the RSW equations (1.2) admit smooth,
“approximate periodic” solutions for long time, t ≤ tδ := ln(δ−1), in the rotationally
dominant regime δ � 1.

We comment that our formal notion of “approximate periodicity” emphasizes the
existence of a periodic approximation (h2,u2) nearby the actual flow (h,u), with an
up-to O(δ) � 1-error for sufficiently long time. Therefore, strong rotation stabilizes
the flow by imposing on it approximate periodicity, which in turn postpones finite-time
breakdown of classical solutions for a long time. A convincing example is provided by
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the so-called “near-inertial oscillation” (NIO) regime, which is observed during the
days that follow oceanic storms; see, e.g., [22]. These NIOs are triggered when storms
pass by (large U ’s) and only a thin layer of the oceans is reactive (small aspect ratio
H/L), corresponding to δ = gH

fLU � 1. Specifically, with Rossby number τ ∼ O(0.1)

and Froude number σ ∼ O(1) we find δ ∼ 0.1, which yields the existence of a smooth,
“approximate periodic” solution for t ∼ 2 days. We note that the clockwise rotation
of cyclonic storms on the Northern Hemisphere produce negative vorticity, which is
a preferred scenario of the subcritical condition (2.1b). Our results are consistent
with the observations regarding the stability and approximate periodicity of the NIO
regime.

Next, we generalize our result to Euler systems describing the isentropic gas-
dynamics, in section 4.2, and ideal gasdynamics, in section 4.3. We regard these
two systems as successive generalizations of the RSW system using the following
formalism:

∂tρ + ∇ · (ρu) = 0,(1.5a)

∂tu + u · ∇u + ρ−1∇p̃(ρ, S) = fJu,(1.5b)

∂tS + u · ∇S = 0.(1.5c)

Here, the physical variables ρ, S are, respectively, the density and entropy. We use
p̃(ρ, S) for the gas-specific pressure law relating pressure to density and entropy. For
the ideal gasdynamics, the pressure law is given as p̃ := AργeS , where A, γ are two
gas-specific physical constants. The isentropic gas equations correspond to constant
S, for which the entropy equation (1.5c) becomes redundant. Setting A = g, γ = 2
yields the RSW equations with ρ playing the same role as h.

The general Euler system (1.5) can be symmetrized by introducing a “normalized”
pressure function,

p :=

√
γ

γ − 1
p̃

γ−1
2γ (ρ, S),

and by replacing the density equation (1.5a) with a pressure equation,

(1.5d) ∂tp + u · ∇p +
γ − 1

2
p∇ · u = 0.

We then nondimensionalize the above system (1.5b), (1.5c), (1.5d) into

∂tp + u · ∇p +
γ − 1

2

(
1

σ
+ p

)
∇ · u = 0,

∂tu + u · ∇u +
γ − 1

2

(
1

σ
+ p

)
eσS∇p =

1

τ
Ju,

∂tS + u · ∇S = 0.

The same methodology introduced for the RSW equations still applies to the more
general Euler system, independent of the pressure law. In particular, our first ap-
proximation, the pressureless system, remains the same as in (1.4) since it ignores any
effect of pressure. We then obtain the second approximation (p2,u2, S2) (or (p2,u2)
in the isentropic case) from a specific linearization around the pressureless velocity u1.
Thanks to the fact that h, p, and S share a similar role as passive scalars transported
by u, the same regularity and periodicity argument can be employed for (p2,u2, S2)
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1672 BIN CHENG AND EITAN TADMOR

in these general cases as for (h2,u2) in the RSW case. The energy estimate, however,
needs careful modification for the ideal gas equations due to additional nonlinearity.
Finally, we conclude in Theorem 4.2 and 4.3 that, in the rotationally dominant regime
δ � 1, the exact solution stays “close” to the globally smooth, 2πτ -periodic approxi-
mate solution (p2,u2, S2) for long time in the sense that, starting with Hm subcritical
data, the following estimate holds true for time t <∼ ln(δ−1):

‖p(t, ·) − p2(t, ·)‖m−3 + ‖u(t, ·) − u2(t, ·)‖m−3 + ‖S(t, ·) − S2(t, ·)‖m−3 <
eC0tδ

1 − eC0tδ
.

Our results confirm the stabilization effect of rotation in the nonlinear setting,
when it interacts with the slow components of the system, which otherwise tend
to destabilize of the dynamics. The study of such interaction is essential to the
understanding of rotating dynamics, primarily to geophysical flows. We can mention
only a few works from the vast literature available on this topic, and we refer the reader
to the recent book of Chemin et al. [6], and the references therein, for a state-of-the-art
of the mathematical theory for rapidly rotating flows. Embid and Majda [7, 8] studied
the singular limit of RSW equations under the two regimes τ−1 ∼ σ−1 → ∞ and
τ−1 ∼ O(1), σ−1 → ∞. Extensions to more general skew-symmetric perturbations
can be found in the work of Gallagher [9]. The series of works of Babin, Mahalov, and
Nicolaenko (consult [1, 2, 3, 4, 5] and references therein) establish long-term stability
effects of the rapidly rotating three-dimensional Euler, Navier–Stokes, and primitive
equations. Finally, we mention the work of Zeitlin, Reznik, and Ben Jelloul [23, 24]
which categorize several relevant scaling regimes and, correspondingly, derive formal
asymptotics in the nonlinear setting.

We comment here that the approach pursued in the above literature relies on
identifying the limiting system as τ → 0, which filters out fast scales. The full system is
then approximated to a first order by this slowly evolving limiting system. A rigorous
mathematical foundation along these lines was developed by Schochet [19], which can
be traced back to the earlier works of Klainerman and Majda [13] and Kreiss [14] (see
also [20]). The key point was the separation of (linear) fast oscillations from the slow
scales. The novelty of our approach, inspired by the critical threshold phenomena
[16], is to adopt the rapidly oscillating and fully nonlinear pressureless system as a
first approximation and then consider the full system as a perturbation of this fast
scale. This enables us to preserve both slow and fast dynamics, and especially, the
rotation-induced time periodicity.

2. First approximation—the pressureless system. We consider the pres-
sureless system

(2.1a) ∂tu1 + u1 · ∇u1 −
1

τ
Ju1 = 0

subject to initial condition u1(0, ·) = u0(·). We begin by recalling the main theorem
in [17] regarding the global regularity of the pressureless equations (2.1a).

Theorem 2.1. Consider the pressureless equations (2.1a) subject to C1-initial
data u1(0, ·) = u0(·). Then, the solution u1(t, ·) stays C1 for all time if and only if
the initial data satisfy the critical threshold condition,

(2.1b) τω0(x) +
τ2

2
η2
0(x) < 1 for all x ∈ R

2.

Here, ω0(x) = −∇×u0(x) = ∂yu0−∂xv0 is the initial vorticity and η0(x) := λ1−λ2 is
the (possibly complex-valued) spectral gap associated with the eigenvalues of gradient
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matrix ∇u0(x). Moreover, these globally smooth solutions, u1(t, ·), are 2πτ -periodic
in time.

In [17], Liu and Tadmor gave two different proofs of (2.1b). One was based on the
spectral dynamics of λj(∇u); the other was based on the flow map associated with
(2.1a), and here we note yet another version of the latter, based on the Riccati-type
equation satisfied by the gradient matrix M =: ∇u1,

M ′ + M2 = τ−1JM.

Here {·}′ := ∂t + u1 · ∇ denotes differentiation along the particle trajectories

(2.2) Γ0 := {(x, t) | ẋ(t) = u1(x(t), t), x(t0) = x0}.

Starting with M0 = M(t0, x0), the solution of this equation along the corresponding
trajectory Γ0 is given by

M = etJ/τ
(
I + τ−1J

(
I − etJ/τ

)
M0

)−1

M0,

and a straightforward calculation based on the Cayley–Hamilton theorem (for com-
puting the inverse of a matrix) shows that

(2.3) max
t,x

|∇u1| = max
t,x

|M | = max
t,x

∣∣∣∣∣polynomial(τ, etJ/τ ,∇u0)

(1 − τω0 − τ2

2 η2
0)+

∣∣∣∣∣ .
Thus the critical threshold (2.1b) follows. The periodicity of u1 is proved upon in-
tegrating u1

′ = 1
τ Ju and x′ = u1 along particle trajectories Γ0. It turns out both

x(t) and u1(t, x(t)) are 2πτ -periodic, which clearly implies that u1(t, ·) shares the
same periodicity. It follows that there exists a critical Rossby number, τc := τc(∇u0),
such that the pressureless solution, u1(t, ·), remains smooth for global time whenever
τ ∈ (0, τc). This emphasizes the stabilization effect of the rotational forcing for a
“large” class of subcritical initial configurations, [17, section 1.2]. Observe that the
critical threshold τc need not be small, and in fact, τc = ∞ for rotational initial data
such that η2

0 < 0, ω0 <
√
−η2

0 . We shall always limit ourselves, however, to a finite
value of the critical threshold, τc.

In the next corollary we show that, in fact, the pressureless solution retains higher-
order smoothness of the subcritical initial data. To this end, we introduce the following
notations.

Notations. Here and below, ‖ · ‖m denotes the usual Hm-Sobolev norm over the
two-dimensional torus T

2 and | · |∞ denotes the L∞ norm. We abbreviate a <∼m b for

a ≤ cb whenever the constant c depends only on the dimension m. We let Ĉ0 denote
m-dependent constants that have possible nonlinear dependence on the initial data
|h0|∞ and |∇u0|∞. The constant, C0 := Ĉ0 · ‖(h0,u0)‖m, will be used for estimates
involving Sobolev regularity, emphasizing that C0 depends linearly on the Hm-size of
initial data, h0 and u0)‖, and possibly nonlinearly on their L∞-size.

Corollary 2.2. Fix an integer m > 2 and consider the pressureless system
(2.1a) subject to subcritical initial data, u0 ∈ Hm. Then, there exists a critical value
τc := τc(∇u0) < ∞ such that for τ ∈ (0, τc] we have, uniformly in time,

|∇u1(t, ·)|∞ ≤ Ĉ0,(2.4a)

‖u1(t, ·)‖m ≤ C0.(2.4b)
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Proof. We recall the expression for |∇u1|∞ in (2.3). By a continuity argument,

there exists a value τc > 0 such that 1 − τω0 − τ2

2 η2
0 > 0 for all τ ∈ (0, τc], which in

turn implies (2.4a) with a constant Ĉ0 that depends on |∇u0|∞ and on τc.
Having control on the L∞ norm of ∇u1, we employ the standard energy method

to obtain the inequality,

d

dt
‖u1(t, ·)‖m <∼m |∇u1(t, ·)|L∞‖u1(t, ·)‖m.

Since u1(t, ·) is 2πτ -periodic, it suffices to consider its energy growth over 0 ≤ t <
2πτ < 2πτc. Combining with estimate (2.4a) and solving the above Gronwall inequal-
ity, we prove the Hm estimate (2.4b).

3. Second approximation—the linearized system. Once we establish the
global properties of the pressureless velocity u1, it can be used as the starting point
for a second iteration of (1.3). We begin with the approximate height, h2, governed
by (1.3a),

(3.1) ∂th2 + u1 · ∇h2 +

(
1

σ
+ h2

)
∇ · u1 = 0, h2(0, ·) = h0(·).

Recall that u1 is the solution of the pressureless system (2.1a) subject to subcritical
initial data u0, so that u1(t, ·) is smooth, 2πτ -periodic in time. The following key
lemma shows that the periodicity of u1 imposes the same periodicity on passive scalars
transported by such u1’s.

Lemma 3.1. Let scalar function w be governed by

(3.2) ∂tw + ∇ · (u1w) = 0,

where u1(t, ·) is a globally smooth, 2πτ -periodic solution of the pressureless equations
(2.1a). Then w(t, ·) is also 2πτ -periodic.

Proof. Let φ := ∇× u1 + τ−1 denote the so-called relative vorticity. By (2.1a) it
satisfies the same equation that w does, namely,

∂tφ + ∇ · (u1φ) = 0.

Coupled with (3.2), it is easy to verify that the ratio w/φ satisfies a transport equation(
∂t + u1 · ∇

)w
φ

= 0,

which in turn implies that w/φ remains constant along the trajectories Γ0 in (2.2).
But (2.1a) tells us that u1

′ = J
τ u1, yielding u1(t, x(t)) = e

t
τ Ju0(x0). We integrate

to find x(2πτ) = x(0), namely, the trajectories come back to their initial positions at
t = 2πτ . Therefore

w

φ
(2πτ, x0) =

w

φ
(0, x0) for all x0’s.

Since the above argument is time invariant, it implies that w/φ(t, ·) is 2πτ -periodic.
The conclusion follows from the fact that u1(t, ·) and thus φ(t, ·) are 2πτ -periodic.

Equipped with this lemma we conclude the following.
Theorem 3.2. Consider the mass equation (3.1) on a two-dimensional torus,

T
2, linearized around the pressureless velocity field u1 and subject to subcritical ini-

tial data (h0,u0) ∈ Hm(T2) with m > 5. It admits a globally smooth solution,
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h2(t, ·) ∈ Hm−1(T2), which is 2πτ -periodic in time, and the following upper bounds
hold uniformly in time,

|h2(t, ·)|∞ ≤ Ĉ0

(
1 +

τ

σ

)
,(3.3a)

‖h2(t, ·)‖m−1 ≤ C0

(
1 +

τ

σ

)
.(3.3b)

Proof. Apply Lemma 3.1 with w := σ−1 + h2 to (3.1) to conclude that h2 is
also 2πτ -periodic. We turn to examining the regularity of h2. First, its L∞ bound
(3.3a) is studied using the L∞ estimate for scalar transport equations, which yields
an inequality for |h2|∞ = |h2(t, ·)|∞,

d

dt
|h2|∞ ≤ |∇ · u1|∞(σ−1 + |h2|∞).

Combined with the L∞ estimate of ∇u1 in (2.4a), this Gronwall inequality implies

|h2|∞ ≤ eĈ0t|h0|∞ +
1

σ

(
eĈ0t − 1

)
.

As before, due to the 2πτ -periodicity of h2 and the subcritical condition τ ≤ τc, we
can replace the first t on the right with τc, the second t with 2πτ , and then (3.3a)
follows.

For the Hm−1 estimate (3.3b), we use the energy method and the Gagliardo–
Nirenberg inequality to obtain a similar inequality for |h2|m−1 = |h2(t, ·)|m−1,

d

dt
‖h2‖m−1

<∼m |∇u1|∞‖h2‖m−1 +

(
1

σ
+ |h2|∞

)
‖u1‖m.

Applying the estimate on u1 in (2.4) and the L∞ estimate on h2 in (3.3a), we find the
above inequality shares a similar form as the previous one. Thus the estimate (3.3b)
follows by the same periodicity and subcriticality argument as for (3.3a). We note in
passing the linear dependence of C0 on ‖(h0,u0)‖m.

To continue with the second approximation, we turn to the approximate momen-
tum equation (1.3b) with j = 2,

(3.4) ∂tu2 + u2 · ∇u2 +
1

σ
∇h2 −

1

τ
Ju2 = 0.

The following splitting approach will lead to a simplified linearization of (3.4)
which is “close” to (3.4) and still maintains the nature of our methodology. The idea
is to treat the nonlinear term and the pressure term in (3.4) separately, resulting in
two systems for ṽ ≈ u2 and v̂ ≈ u2,

∂tṽ + ṽ∇ · ṽ − 1

τ
J ṽ = 0,(3.5a)

∂tv̂ +
1

σ
∇h2 −

1

τ
J v̂ = 0,(3.5b)

subject to the same initial data ṽ(0, ·) = v̂(0, ·) = u0(·).
The first system (3.5a), ignoring the pressure term, is identified as the pressureless

system (2.1) and therefore is solved as

ṽ = u1,
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while the second system (3.5b), ignoring the nonlinear advection term, is solved using
Duhamel’s principle,

v̂(t, ·) = etJ/τ
(
u0(t, ·) −

∫ t

0

e−sJ/σ

σ
∇h2(s, ·) ds

)

≈ etJ/τ
(
u0(t, ·) −

∫ t

0

e−sJ/σ

σ
∇h2(t, ·) ds

)
= etJ/τu0(t, ·) +

τ

σ
J(I − etJ/τ )∇h2(t, ·).

Here, we make an approximation by replacing h2(s, ·) with h2(t, ·) in the integrand,
which introduces an error of order τ , taking into account the 2πτ periodicity of h(t, ·).

Now, synthesizing the two solutions listed above, we make a correction to v̂ by
replacing etJ/τu0 with u1. This gives the final form of our approximate velocity field
u2 (with tolerable abuse of notations)

(3.6a) u2 := u1 +
τ

σ
J(I − etJ/τ )∇h2(t, ·).

A straightforward computation shows that this velocity field, u2, satisfies the approx-
imate momentum equation

(3.6b) ∂tu2 + u1 · ∇u2 +
1

σ
∇h2 −

1

τ
u2

⊥ = R,

where

(3.6c)

R :=
τ

σ
J(I − etJ/τ )(∂t + u1 · ∇)∇h2(t, ·)

(by (3.1)) = − τ

σ
J(I − etJ/τ )

[
(∇u1)

�∇h2 + ∇
((

1

σ
+ h2

)
∇ · u1

)]
.

Combining Theorem 3.2 on h2(t, ·) with the Gagliardo–Nirenberg inequality, we
arrive at the following corollary on periodicity and regularity of u2.

Corollary 3.3. Consider the velocity field u2 in (3.6) subject to subcritical
initial data (h0,u0) ∈ Hm(T2) with m > 5. Then, u2(t, ·) is 2πτ -periodic in time,
and the following upper bound, uniformly in time, holds:

‖u2 − u1‖m−2 ≤ C0
τ

σ

(
1 +

τ

σ

)
.

In particular, since ‖u1‖m ≤ C0 for subcritical τ , we conclude that u2(t, ·) has the
Sobolev regularity,

‖u2‖m−2 ≤ C0

(
1 +

τ

σ
+

τ2

σ2

)
.

We close this section by noting that the second iteration led to an approxi-
mate RSW system linearized around the pressureless velocity field u1, (i.e., system
(3.1),(3.6)), which governs our improved, 2πτ -periodic approximation, (h2(t, ·),u2(t, ·)) ∈
Hm−1(T2) ×Hm−2(T2).
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4. Long-time existence of approximate periodic solutions.

4.1. The shallow-water equations. How close is (h2(t, ·),u2(t, ·)) to the ex-
act solution (h(t, ·),u(t, ·))? Below we shall show that their distance, measured in

Hm−3(T2), does not exceed eC0tδ
1−eC0tδ

. Thus for sufficiently small δ, the RSW solution

(h,u) is “approximate periodic” which in turn implies its long-time stability. This is
the content of our main result.

Theorem 4.1. Consider the RSW equations on a fixed two-dimensional torus,

∂th + u · ∇h +

(
1

σ
+ h

)
∇ · u = 0,(4.1a)

∂tu + u · ∇u +
1

σ
∇h− 1

τ
Ju = 0(4.1b)

subject to subcritical initial data (h0,u0) ∈ Hm(T2) with m > 5 and α0 := min(1 +
σh0(·)) > 0. Let

δ =
τ

σ2

denote the ratio between the Rossby number τ and the squared Froude number σ, with
subcritical τ ≤ τc(∇u0) so that (2.1b) holds. Assume σ ≤ 1 for a substantial amount
of pressure forcing in (4.1b). Then, there exists a constant C0, depending only on
m, τc, α0, and in particular depending linearly on ‖(h0,u0)‖m, such that the RSW
equations admit a smooth, “approximate periodic” solution in the sense that there
exists a nearby 2πτ -periodic solution, (h2(t, ·),u2(t, ·)), such that

(4.2) ‖p(t, ·) − p2(t, ·)‖m−3 + ‖u(t, ·) − u2(t, ·)‖m−3 ≤ eC0tδ

1 − eC0tδ
.

Here p is the “normalized height” such that 1+ 1
2σp =

√
1 + σh, and correspondingly,

p2 satisfies 1 + 1
2σp2 =

√
1 + σh2.

It follows that the lifespan of the RSW solution t <∼ tδ := ln(δ−1) is prolonged due
to the rapid rotation δ � 1, and in particular, it tends to infinity when δ → 0.

Proof. We compare the solution of the RSW system (4.1a), (4.1b) with the
solution (h2,u2) of approximate RSW system (3.1), (3.6). To this end, we rewrite the
latter in the equivalent form,

(4.3a)

∂th2 + u2 · ∇h2 +

(
1

σ
+ h2

)
∇ · u2 = (u2 − u1) · ∇h2 +

(
1

σ
+ h2

)
∇ · (u2 − u1),

(4.3b)

∂tu2 + u2 · ∇u2 +
1

σ
∇h2 −

1

τ
Ju2 = (u2 − u1) · ∇u2 + R.

The approximate system differs from the exact one, (4.1a), (4.1b), in the residuals
on the RHS of (4.3a), (4.3b). We will show that they have an amplitude of order δ.
In particular, the comparison in the rotationally dominant regime, δ � 1, leads to
a long-time existence of a smooth RSW solution, which remains “nearby” the time-
periodic solution, (h2,u2). To show that (h2,u2) is indeed an approximate solution
for the RSW equations, we proceed as follows.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1678 BIN CHENG AND EITAN TADMOR

We first symmetrize both systems so that we can employ the standard energy
method for nonlinear hyperbolic systems. To this end, we set the new variable
(“normalized height”) p such that 1 + 1

2σp =
√

1 + σh. Compressing notation with
U := (p,u)�, we transform (4.1a), (4.1b) into the symmetric hyperbolic quasi-linear
system

(4.4) ∂tU + B(U,∇U) + K[U] = 0.

Here B(F,∇G) := A1(F)Gx + A2(F)Gy, where A1, A2 are bounded linear functions
with values being symmetric matrices, and K[F] is a skew-symmetric linear operator
so that 〈K[F],F〉 = 0. By standard energy arguments, (see, e.g., [12, 13, 15]), the
symmetric form of (4.4) yields an exact RSW solution U, which stays smooth for
finite time t <∼ 1. The essence of our main theorem is that for small δ’s, rotation
prolongs the lifespan of classical solutions up to t ∼ O(ln δ−1). To this end, we
symmetrize the approximate system (4.3a), (4.3b) using a new variable p2 such that
1 + 1

2σp2 =
√

1 + σh2. Compressing notation with U2 := (p2,u2)
�, we have

(4.5) ∂tU2 + B(U2,∇U2) + K(U2) = R,

where the residual R is given by

R :=

[
(u2 − u1) · ∇p2 +

(
2
σ + p2

)
∇ · (u2 − u1)

(u2 − u1) · ∇u2 − R

]
,

with R defined as in (3.6c). We will show R is small which in turn, using the
symmetry of (4.4) and (4.5), will imply that ‖U − U2‖m−3 is equally small. In-
deed, thanks to the fact that Hm−3(T2) is an algebra for m > 5, every term in
the above expression is upper-bounded in Hm−3, by the quadratic products of the
terms ‖u1‖m, ‖p2‖m−1, ‖u2‖m−2, ‖u2 − u1‖m−2, up to a factor of O(1 + 1

σ ). The
Sobolev regularity of these terms, u1,u2, and p2, is guaranteed, respectively, in
Corollary 2.2, Corollary 3.3, and Theorem 3.2. Moreover, the nonvacuum condi-
tion, 1 + σh0 ≥ α0 > 0, implies that 1 + σh2 remains uniformly bounded from below,
and by standard arguments (carried out in the appendix), ‖p2‖m−2 ≤ C0(1 + τ/σ).
Summing up, the residual R does not exceed,

(4.6) ‖R‖m−3 ≤ C2
0

(
δ +

τ

σ
+ · · · + τ4

σ4

)
<∼ C2

0δ

for subcritical τ ∈ (0, τc) and under scaling assumptions δ < 1, σ < 1.
We now claim that the same O(δ)-upperbound holds for the error E := U2 −U,

for a long time, t <∼ tδ. Indeed, subtracting (4.4) from (4.5), we find the error equation

∂tE + B(E,∇E) + K[E] = −B(U2,∇E) −B(E,∇U2) + R.

By the standard energy method using integration by parts and Sobolev inequalities,
while utilizing the symmetric structure of B and the skew-symmetry of K, we arrive
at

d

dt
‖E‖2

m−3
<∼m ‖E‖3

m−3 + ‖U2‖m−2‖E‖2
m−3 + ‖R‖m−3‖E‖m−3.

Using the regularity estimates of U2 = (p2,u2)
� and the upper bounds on R in

(4.6), we end up with an energy inequality for ‖E(t, ·)‖m−3,

d

dt
‖E‖m−3

<∼m ‖E‖2
m−3 + C0‖E‖m−3 + C2

0δ, ‖E(0, ·)‖m−3 = 0.
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A straightforward integration of this forced Riccati equation (consult, for example,
[16, section 5]) shows that the error ‖E‖m−3 does not exceed

(4.7) ‖U(t, ·) − U2(t, ·)‖m−3 ≤ eC0tδ

1 − eC0tδ
.

In particular, the RSW equations admits an “approximate periodic” Hm−3(T2)-
smooth solution for t ≤ 1

C0
ln(δ−1) for δ � 1.

Remark 4.1. The estimate on the actual height function h follows by applying
the Gagliardo–Nirenberg inequality to h−h2 = p(1+ σ

4 p)−p2(1+ σ
4 p2) = (p−p2)(1+

σ
4 (p− p2) + σ

2 p2),

‖h(t, ·) − h2(t, ·)‖m−3
<∼

eC0tδ

(1 − eC0tδ)2
.

Our result is closely related to observations of near inertial oscillations (NIOs) in
oceanography (see, e.g., [22]). These NIOs are mostly seen after a storm blows over
the oceans. They exhibit almost periodic dynamics with a period consistent with the
Coriolis force and stay stable for about 20 days, which is a long-time scale relative
to many oceanic processes such as the storm itself. This observation agrees with
our theoretical result regarding the stability and periodicity of RSW solutions. In
terms of physical scales, our rotationally dominant condition, δ = gH

fLU � 1, provides
a physical characterization of this phenomenon. Indeed, NIOs are triggered when
storms pass by (large U) and only a thin layer of the oceans is reactive (small aspect
ratio H/L). Upon using the multilayer model ([18, section 6.16]), we consider scales
f = 10−4s−1, L = 105m,H = 102m,U = 1ms−1, g = 0.01ms−2 (reduced gravity
due to density stratification—consult [18, section 1.3]). With this parameter setting
δ = 0.1, and Theorem 4.1 implies the existence of a smooth, approximate periodic
solution over a time scale of ln(δ−1)L/U ≈ 2 days. We note in passing that most
cyclonic storms on the Northern Hemisphere rotate clockwise, yielding a negative
vorticity, ω0 = ∂yu0 − ∂xv0 < 0, which is a preferred scenario of the subcritical
condition (2.1b) assumed in Theorem 4.1.

4.2. The isentropic gasdynamics. In this section we extend Theorem 4.1 to
rotational two-dimensional Euler equations for isentropic gas,

∂tρ + ∇ · (ρu) = 0,(4.8a)

∂tu + u · ∇u + ρ−1∇p̃(ρ) − fu⊥ = 0.(4.8b)

Here, u := (u(1), u(2))� is the velocity field, ρ is the density, and p̃ = p̃(ρ) is the
pressure, which for simplicity is taken to be that of a polytropic gas, given by the
γ-power law,

(4.8c) p̃(ρ) = Aργ .

The particular case A = g/2, γ = 2 corresponds to the RSW equations (1.1a), (1.1b).
The following argument for long term existence of the two-dimensional rapidly ro-
tating isentropic equations applies, with minor modifications, to the more general
pressure laws, p̃(ρ), which induce the hyperbolicity of (4.8a).

We first transform the isentropic Euler equations (4.8a) into their nondimensional
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form,

∂tρ + u · ∇ρ +

(
1

σ
+ ρ

)
∇ · u = 0,

∂tu + u · ∇u +
1

σ2
∇(1 + σρ)γ−1 − 1

τ
Ju = 0,

where the Mach number σ plays the same role as the Froude number in the RSW
equation. In order to utilize the technique developed in the previous section, we
introduce a new variable h by setting 1+σh = (1+σρ)γ−1, so that the new variables,
(h,u), satisfy

∂th + u · ∇h + (γ − 1)

(
1

σ
+ h

)
∇ · u = 0,(4.9a)

∂tu + u · ∇u +
1

σ
∇h− 1

τ
Ju = 0.(4.9b)

This is an analogue to the RSW equations (4.1a), (4.1b), except for the additional
factor (γ−1) in the mass equation (4.9a). We can therefore duplicate the steps which
led to Theorem 4.1 to obtain a long-time existence for the rotational Euler equations
(4.9a), (4.9b). We proceed as follows.

An approximate solution is constructed in two steps. First, we use the 2πτ -
periodic pressureless solution (h1 ≡ constant,u1(t, ·)) for subcritical initial data (h0,u0).
Second, we construct a 2πτ -periodic solution (h2(t, ·),u2(t·)) as the solution to an
approximate system of the isentropic equations, linearized around the pressureless
velocity u1,

∂th2 + u1 · ∇h2 + (γ − 1)

(
1

σ
+ h2

)
∇ · u1 = 0,

u2 := u1 +
τ

σ
J
(
I − etJ/τ

)
∇h2(t, ·).

In the final step, we compare (h,u) with the 2πτ -periodic approximate solution,
(h2,u2). To this end, we symmetrize the corresponding systems using U = (p,u)�

with the normalized density function p satisfying 1+ 1
2

√
1

γ−1σp =
√

1 + σh. Similarly,

the approximate system is symmetrized with the variables U2 = (p2,u2), where

1 + 1
2

√
1

γ−1σp2 =
√

1 + σh2. We conclude with the following.

Theorem 4.2. Consider the rotational isentropic equations on a fixed two-
dimensional torus, (4.9a), (4.9a), subject to subcritical initial data (ρ0,u0) ∈ Hm(T2)
with m > 5 and α0 := min(1 + σρ0(·)) > 0.
Let

δ =
τ

σ2

denote the ratio between the Rossby and the squared Mach numbers, with subcritical
τ ≤ τc(∇u0) so that (2.1b) holds. Assume σ < 1 for a substantial amount of pressure
in (4.9a). Then, there exists a constant C0, depending only on m, ‖(ρ0,u0)‖m, τc,
and α0 such that the RSW equations admit a smooth, “approximate periodic” solution
in the sense that there exists a nearby 2πτ -periodic solution (ρ2(t, ·),u2(t, ·)) such that

(4.10) ‖p(t, ·) − p2(t, ·)‖m−3 + ‖u(t, ·) − u2(t, ·)‖m−3 ≤ eC0tδ

1 − eC0tδ
.
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Here, p is the normalized density function satisfying 1 + σp = (1 + σρ)
γ−1

2 , and p2

results from the same normalization for ρ2.
It follows that the lifespan of the isentropic solution t <∼ tδ := 1 + ln(δ−1) is

prolonged due to the rapid rotation δ � 1, and in particular, it tends to infinity when
δ → 0.

Remark 4.2. For the actual density functions, ρ − ρ2 = 1
σ [(1 + σp)

2
γ−1 − (1 +

σp2)
2

γ−1 ] =
∫ 1

0
Cγ [1 + σ(θ(p− p2) + p2)]

2
γ −1 dθ,

‖ρ(t, ·) − ρ2(t, ·)‖m−3
<∼

eC0tδ

(1 − eC0tδ)
2

γ−1

,

in the physically relevant regime γ ∈ (1, 3).

4.3. The ideal gasdynamics. We turn our attention to the full Euler equations
in the two-dimensional torus,

∂tρ + ∇ · (ρu) = 0,

∂tu + u · ∇u + ρ−1∇p̃(ρ, S) = fJu,

∂tS + u · ∇S = 0,

where the pressure law is given as a function of the density, ρ and the specific en-
tropy S, p̃(ρ, S) := ργeS . It can be symmetrized by defining a new variable—the
“normalized” pressure function,

p :=

√
γ

γ − 1
p̃

γ−1
2γ ,

and by replacing the density equation (4.11a) by a (normalized) pressure equation,
so that the above system is recast into an equivalent and symmetric form (see, e.g.,
[12, 11])

eS∂tp + eSu · ∇p + Cγe
Sp∇ · u = 0,

∂tu + u · ∇u + Cγe
Sp∇p = fJu, Cγ :=

γ − 1

2
,

∂tS + u · ∇S = 0.

It is the exponential function, eS , involved in triple products such as eSp∇p, that
makes the ideal gas system a nontrivial generalization of the RSW and isentropic gas
equations.

We then proceed to the nondimensional form by substitution,

u → Uu′, p → P(1 + σp′), S = ln(pρ−γ) → ln(PR−γ) + σS′.

After discarding all the primes, we arrive at a nondimensional system

eσS∂tp + eσSu · ∇p + Cγ

(
eσS − 1

σ
+ eσSp

)
∇ · u = −Cγ

1

σ
∇ · u,(4.11a)

∂tu + u · ∇u + Cγ

(
eσS − 1

σ
+ eσSp

)
∇p = −Cγ

1

σ
∇p +

1

τ
Ju,(4.11b)

∂tS + u · ∇S = 0,(4.11c)
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where σ and τ are, respectively, the Mach and the Rossby numbers. With abbreviated
notation, U := (p,u, S)�, the equations above amount to a symmetric hyperbolic
system written in the compact form,

(4.12) A0(S)∂tU + A1(U)∂xU + A2(U)∂yU = K[U].

Here, Ai(i = 0, 1, 2) are symmetric-matrix-valued functions, nonlinear in U, and in
particular, A0 is always positive definite. The linear operator K is skew-symmetric
so that 〈K[U],U〉 = 0.

Two successive approximations are then constructed based on the iterations (1.3),
starting with j = 1,

p1 ≡ constant,

∂tu1 + u1 · ∇u1 =
1

τ
Ju1,

S1 ≡ constant.

Identified as the pressureless solution, u1 is used to linearize the system, resulting in
the following approximation:

∂tp2 + u1 · ∇p2 + Cγp2∇ · u2 = −Cγ
1

σ
∇ · u2,(4.13a)

u2 − u1 =
τ

σ
J(I − etJ/τ )Cγe

σS2(1 + σp2)∇p2,(4.13b)

∂tS2 + u1 · ∇S2 = 0.(4.13c)

The 2πτ -periodicity and global regularity of U2 := (p2,u2, S2)
� follow along

the same lines outlined for the RSW equations in section 3 (and therefore omitted),
together with the following nonlinear estimate for eσS :

‖eσS − 1‖m =

∥∥∥∥∥∥
∞∑
j=1

(σS)j

j!

∥∥∥∥∥∥
m

<∼m

∞∑
j=1

(Cm|σS|∞)j−1

j!
‖σS‖m =

eCm|σS|∞ − 1

Cm|σS|∞
‖σS‖m;

for the latter, we apply recursively the Gagliardo–Nirenberg inequality to typical
terms ‖(σS)j‖m. Notice the entropy variables (both the exact and approximate ones)
satisfy a transport equation and therefore are conserved along particle trajectories,
which implies that the L∞ norm of the entropy variable is an invariant. Thus we
arrive at an estimate

(4.14) ‖eσS − 1‖m ≤ σĈ0‖S‖m.

Of course, the same type of estimate holds for the approximate entropy, S2.
Finally, we subtract the approximate system (4.13) from the exact system (4.12),

arriving at an error equation for E := U−U2 that shares the same form as the RSW
system in section 4.1, except that Ai(U)−Ai(U2) �= Ai(U−U2) due to nonlinearity,
which is essentially quadratic in the sense that 1

‖Ai(U) −Ai(U2)‖n <∼ ‖U − U2‖2
n + ‖U − U2‖n, i = 0, 1, 2,

Ai(U) −Ai(U2)‖W 1,∞ <∼ ‖U − U2‖2
W 1,∞ + ‖U − U2‖W 1,∞ , i = 0, 1, 2.

1Consider a typical term of Ai, e.g., eσSp. Applying (4.14) together with the Gagliardo–Nirenberg
inequality to eσS−eσS2 = eσS2 (eσ(S−S2)−1), we can show ‖eσS−eσS2‖n <∼ ‖S−S2‖n. The estimate
on ‖eσSp−eσS2p2‖n then follows by applying identity ab−a2b2 = (a−a2)(b−b2)+(a−a2)b2+a2(b−
b2) together with the triangle inequality and the Gagliardo–Nirenberg inequality. Here regularity of
S2 and p2 is a priori known.
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where n > 2. This additional nonlinearity manifests itself as three more multiplica-
tions in the energy inequality,

d

dt
‖E‖m−3

<∼ ‖E‖5
m−3 + · · · + ‖E‖m−3 + δ, ‖E(0, ·)‖m−3 = 0,

whose solution (developed around a simple root of the quintic polynomial on the right)
has the same asymptotic behavior as for the quadratic Riccati equations derived in
the previous sections.

Theorem 4.3. Consider the (symmetrized) rotational Euler equations on a fixed
two-dimensional torus (4.11) subject to subcritical initial data (p0,u0, S0) ∈ Hm(T2)
with m > 5. Let

δ =
τ

σ2

denote the ratio between the Rossby and the squared Mach numbers, with subcrit-
ical τ ≤ τc(∇u0) so that (2.1b) holds. Assume σ < 1 for a substantial amount
of pressure forcing in (4.11b). Then, there exists a constant C, depending only on
m, ‖(p0,u0, S0)‖m, τc, such that the ideal gas equations admit a smooth, “approxi-
mate periodic” solution in the sense that there exists a nearby 2πτ -periodic solution,
(p2(t, ·),u2(t, ·), S2(t, ·)) such that

(4.15)

‖p(t, ·) − p2(t, ·)‖m−3 + ‖u(t, ·) − u2(t, ·)‖m−3 + ‖S(t, ·) − S2(t, ·)‖m−3 ≤ eC0tδ

1 − eC0tδ
.

It follows that the lifespan of the ideal gas solution, t <∼ tδ := ln(δ−1), is prolonged
due to the rapid rotation δ � 1, and in particular, it tends to infinity when δ → 0.

5. Appendix. Staying away from vacuum. We will show the following
proposition on the new variable p2 defined in section 4.1.

Proposition 5.1. Let p2 satisfy

(5.1) 1 +
1

2
σp2 =

√
1 + σh2,

where h2 is defined as in (3.1), that is,

(5.2) ∂th2 + u1 · ∇h2 +

(
1

σ
+ h2

)
∇ · u1 = 0

subject to initial data h2(0, ·) = h0(·) that satisfies the nonvacuum condition
1 + σh0(·) ≥ α0 > 0. Then,

|p2|∞ ≤ Ĉ0

(
1 +

τ

σ

)
,

‖p2‖n ≤ C0

(
1 +

τ

σ

)
.

The proof of this proposition follows in two steps. First, we show that the L∞

and Hn norms of p2(0, ·) are dominated by h2(0, ·) due to the nonvacuum condition.
Second, we derive the equation for p2 and obtain regularity estimates using similar
techniques from section 4.1.
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Step 1. For simplicity, we use p := p2(0, ·) and h := h2(0, ·).
Differentiation of (5.1) yields

p =
2h√

1 + σh + 1
, ∇p =

∇h√
1 + σh

.

Clearly, |p|∞ ≤ |h|∞. The above identities, together with the nonvacuum condition,
imply

‖p‖1 ≤ 2‖h‖1 and |∇p|L∞ ≤ |∇h|L∞
√
α0

.

For higher derivatives of p, we use the following recursive relation. Rewrite (5.1)
as p + 1

4σp
2 = h and then take the kth derivative on both sides,

Dkp +
1

4
σ2pDkp +

1

4
σ
(
Dk(q2) − 2pDkp

)
= Dkh

so that taking the L2 norm of this equation yields

I − II :=

∥∥∥∥
(

1 +
1

2
σp

)
Dkp

∥∥∥∥
0

− 1

4
σ
∥∥Dk(q2) − 2pDkp

∥∥
0
≤ ‖Dkh‖0.

Furthermore, we find I ≥ √
α0‖Dkp‖0 by (5.1) and the nonvacuum condition. We also

find II <∼n |∇p|∞‖p‖|k|−1 by the Gagliardo–Nirenberg inequalities. Thus we arrive at
a recursive relation

‖p‖|k| ≤ Ĉ0(‖p‖|k|−1 + ‖h‖|k|),

which implies that the Hn norm of p2(0, ·) = p is dominated by ‖h2(0, ·)‖n = ‖h‖n.
Step 2. We derive an equation for p2 using relation (5.1) and equation (5.2),

∂tp2 + 2u1 · ∇p2 +

(
1

σ
+ p2

)
∇ · u1 = 0.

This equation resembles the formality of the approximate mass equation (3.1) for h2,
and thus we apply a similar technique to arrive at the same regularity estimate for
p2,

|p2(t, ·)|∞ ≤ Ĉ0

(
1 +

τ

σ

)
,

‖p2(t, ·)‖n ≤ C0

(
1 +

τ

σ

)
.
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