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We are interested in the detection of jump discontinuities in piecewise smooth
functions which are realized by their spectral data. Specifically, given the Fourier
coefficients, {f̂k 5 ak 1 ibk} k51

N , we form the generalized conjugate partial sum

S̃N
s @ f #~x! 5 ¥

k51

N

sSk

ND~aksin kx 2 bkcoskx!. The classical conjugate partial sum,

S̃N[ f ]( x), corresponds tos [ 1 and it is known that
2p

log N
S̃N@ f #~x! converges to

the jump function [f ]( x) :5 f ( x1) 2 f ( x2); thus,
2p

log N
S̃N@ f #~x! tends to

“concentrate” near the edges off. The convergence, however, is at the unacceptably
slow rate of order2(1/log N).

To accelerate the convergence, thereby creating an effective edge detector, we

introduce the so-called “concentration factors,”sk,N 5 sSk

ND . Our main result shows

that an arbitraryC2[0, 1] nondecreasings(z) satisfying*1/N
1

s~x!

x
dxO¡

N3 `

2p leads

to the summability kernel which admits the desired concentration property,

S̃N
s@ f #~x!O¡

N3`

@ f #~x!, with convergence rate,uS̃N
s@ f #~x!u # ConstSlogN

N
1 UsS1

NDUD
for x’s away from the jump discontinuities. To improve over the slowly convergent

conjugate Dirichlet kernelScorresponding to the admissiblesN~x! ;
2p

logND , we

demonstrate the examples of two families of concentration functions (depending on free
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parametersp anda): the so-called Fourier factors,s a
F~x! 5

2p

Si~a!
sinax, and polynomial

factors,s p(x) 5 2ppxp. These yield effective detectors of (one or more) edges, where
both the location and the amplitude of the discontinuities are recovered.© 1999 Academic Press

Key Words:Fourier expansion; conjugate partial sums; piecewise smoothness;
concentration factors.

1. INTRODUCTION

Smooth functions can be accurately represented by their spectral data. For example,
given the Fourier coefficients,f̂k 5 ak 1 ibk, the N-term truncated Fourier expansion,

SN@ f #~ x! 5 O
k50

N

9 akcoskx 1 bksin kx, (1.1)

provides a highly accurate representation for smoothf ’s. The situation is different,
however, in the case of piecewise smooth functions, and experience has led to two
complementing points of view.

In the first approach, one “sees” the smooth pieces off separated by edges of jump
discontinuities. The straightforward Fourier expansion in this case experiences the Gibbs’
phenomenon: locally,SN[ f ](x) “suffers” 2(1) oscillations in the neighborhoods of the jumps,

and globally, there is a slow2S1

ND convergence throughout the smooth pieces. It is still

possible to recover a piecewise smoothf from its spectral coefficients and to retain the superior
spectral accuracy; such spectrally accurate recovery is obtained byfiltering SN[ f ]( x) and
could be carried out either on the Fourier side, e.g., [15, 19], or in physical space (consult
[10, 11, 19] and the references therein). As an example of the latter, one introduces a
C0

1(21, 1) “bump” function,B( x), such thatB(0) 5 1, and withDNu denoting the usual
Dirichlet kernel of degreeNu, u , 1, we set the mollifierc( x) :5 B( x) DNu( x). Then,

replacingSN[ f ] with SN@ f # p
1

d
cSx

dD yields a spectrally accurate approximation off ( x)

for all x’s which are at leastd-away from the set of jump discontinuities [10]. Observe that

cd~x! 5
1

d
cSx

dD is a two-sided mollifier supported on (2d, d) with spectrally small

moments. In a series of works (reviewed in [11]), Gottlieb and Shu used one-sided
mollifiers to recover a piecewise smoothf up to the discontinuous “edges.” All these
recovery procedures require a priori knowledge of the location of the underlying jump
discontinuities. Thus detection of the “edges” in this approach remains a critical issue.

In the second approach, one is directly interested in seeing the edges off, edges which
are viewed as being “separated” by pieces of smoothness. Detection of edges in this
context is fundamental in a variety of computational algorithms, from spectrally accurate
schemes for capturing shock discontinuities, e.g., [14, 18], to image compression (consult
[1, 6] and the references therein). Of course, wavelet expansions are particularly suitable
for edge detection: one traces jump discontinuities by “zooming” through the dyadic
scales (consult [5, 6, 16, 17] and the references therein).

In this paper we address the question of edge detection in spectral data. We offer a
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simple and effective procedure to detect edges, based ongeneralized conjugate partial
sumsof the form

S̃N
s@ f #~ x! 5 O

k51

N

sS k

ND ~aksin kx 2 bkcoskx!.

The starting point is the standard conjugate sum,S̃N[ f ]( x), corresponding tos( x) [ 1.
The classical result due to Luka´cs, e.g., [3, Section 42]; [20, Section II, Theorem 8.13],

asserts that
2p

log N
S̃N@ f #~x! converges to the jump function

@ f #~ x! :5 f ~ x1! 2 f ~ x2!,

and thus,
2p

log N
S̃N@ f #~x! tends to “concentrate” near the edges off. The convergence,

however, is at the unacceptably slow rate of order2(1/log N) (indeed, consult Fig. 2.1).
To accelerate the convergence, thereby creating an effective edge detector, we introduce

the so-called “concentration factors,”sk,N 5 sSk

ND . Our main result shows that an

arbitraryC2[0, 1] nondecreasings( x) satisfying

E
1/N

1 s~ x!

x
dxO¡

N3 `

2p

is “admissible,” in the sense that the corresponding generalized conjugate sum satisfies the
concentration property

S̃N
s@ f #~ x!O¡

N3 `

@ f #~ x!.

To demonstrate our above arguments, we consider the following two examples (on
[2p, p]):

fa~x! :5 5 sin
x 1 p

2
, 2p # x , 0,

sin
3x 2 p

2
, 0 , x # p,

fb~x! :5 5 cosSx 2
x

2
sgnSuxu 2

p

2DD , x , 0,

cosS5

2
x 1 x sgnSuxu 2

p

2DD , x . 0.

In both cases,fa( x) and fb( x) are recovered from their Fourier coefficients using the
Fourier partial sumsSN[ f ]( x). (both the continuous and the discrete cases are consid-
ered). The Gibbs phenomenon is depicted in Figs. 1.1 (the continuous case) and 1.2 (the
discrete case).

Figure 1.3 shows the reconstruction of a piecewise smooth function using the one-sided
mollifier presented in [12]. Herefa( x) and fb( x) are recovered from their continuous
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Fourier coefficients (Fig. 1.3) and from their discrete Fourier coefficients (Fig. 1.4). The
recovery requires the location of the jump discontinuities.

Finally, Fig. 1.5 shows the detection of these jump discontinuities using our proposed
generalized conjugate sum. In this case, we use the concentration functions( x) 5 2px.
Both the location and the amplitude of the jump discontinuities, [fa](0) 5 22 and
[ fb](6p/ 2) 5 6=2, are clearly identified.

The paper is organized as follows. The so-calledconcentration propertyof the basic
conjugate partial sum,S̃N[ f ], is reviewed in Section 2. In Section 3 we devise our new,
more general approach for locating jump discontinuities based on the concentration
property of thegeneralizedconjugate partial sums,S̃N

s [ f ]. Here we provide a systematic

study of concentration factors,sSk

ND , and their improved resolution of the limiting jump

function [ f ]( x). Finally, in Section 4 we extend our theory to the analogous discrete case.

FIG. 1.1. Fourier partial sum,S40[ f ]( x), of f 5 fa( x) (left) and f 5 fb( x) (right).

FIG. 1.2. Fourier partial sum off 5 fa( x) (left) andf 5 fb( x) (right) usingN 5 40 discrete Fourier modes,

f k 5
Dx

2p
¥

j52N

N

f ~xj!e
ikxj, which are based on the given gridvalues at the 2N 1 1 equidistant grid pointsxj.

104 GELB AND TADMOR



2. THE CONJUGATE FOURIER PARTIAL SUM

Let f ( x) be a 2p-periodic piecewise smooth function, with a single jump discontinuity
at x 5 j, whose associated jump value is defined as

@ f #~j! :5 f ~j1! 2 f ~j2!. (2.1)

Given the Fourier coefficients off( x),

Hak

bk
J 5

1

p E
2p

p

f ~t!H coskt
sin kt Jdt, (2.2)

FIG. 1.3. Reconstruction of piecewise continuous functions,f 5 fa( x) (left) and f 5 fb( x) (right), after
filtering S40[ f ]( x) with one-sided mollifier.

FIG. 1.4. Reconstruction of piecewise continuous functions,f 5 fa( x) (left) and f 5 fb( x) (right), after
filtering their discrete Fourier interpolant (of degreeN 5 40) with one-sided mollifier.
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our goal is toidentify the jump discontinuities, i.e., to locate the jump discontinuities and
to accurately evaluate their associated jump values. The key to locating the discontinuities
lies in the relationship between the conjugate Fourier partial sum and the jump disconti-
nuities.

The conjugate Fourier partial sum is given by

S̃N@ f #~ x! :5 O
k51

N

aksin kx 2 bkcoskx. (2.3)

Equivalently,S̃N[ f ]( x) can be written as

S̃N @ f #~ x! 5 f p
1

p
D̃N~ x! 5

1

p E
2p

p

f ~t!D̃N~ x 2 t!dt, (2.4)

whereD̃N is the conjugate Dirichlet kernel

D̃N~t! 5 O
k51

N

sin kt 5

cos
t

2
2 cosSN 1

1

2D t

2 sin
t

2

. (2.5)

We recall that the support of the conjugate Fourier partial sumS̃N[ f ](x) approaches the
singular support off(x) asN3 `, e.g., [3, Section 42; 20, Section 2, Theorem 8.13]. This will
be referred to as theconcentration propertyof S̃N[ f ](x). To illustrate the concentration
property ofS̃N[ f ](x), we offer the specific example of the saw-tooth function

FIG. 1.5. Detection of discontinuous edges using the conjugate sum,S̃N
s@ f #~x! 5 2¥ sSk

NDi sgn~k! f̂ke
ikx, using

N 5 20, 40, and 80 modes, and based on the first-degree polynomial concentration function,sp1(x) 5 2px.
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Fj~ x! 5 52
p 1 x

2
, 2p # x , j

2
x 2 p

2
, j # x # p.

In this case [f](j) 5 p and the conjugate Fourier partial sum is

S̃N@Fj#~ x! 5 2O
k51

N cosk~ x 2 j!

k
.

The concentration property ofS̃N[Fj]( x) can be deduced from the following:

ASSERTION2.1. We have

1

log N O
k51

N cosk~ x 2 j!

k
3 dj~ x! :5 H1 if x 5 j

0 otherwise. (2.6)

The proof is immediate. LetDN( y) denote the usual Dirichlet kernel

DN~ y! 5 O
k50

N

9 cosky. (2.7)

Summation by parts yields

O
k51

N cosk~ x 2 j!

k
5 O

k51

N 1

k
~Dk~ x 2 j! 2 Dk21~ x 2 j!!

5 O
k51

N Dk~ x 2 j!

k~k 1 1!
1

DN~ x 2 j!

N
2 D0~ x 2 j!.

SinceuDN~y!u #
1

2 sinuy/2u , we have

O
k51

N cosk~ x 2 j!

k
# Sp2

6
1

1

ND 1

2 sinUx 2 j

2
U

1
1

2
,

and (2.6) follows forx Þ j. Of course, forx 5 j we have
1

log N
¥

k51

N cosk~x 2 j!

k
3 1,

as asserted.
This special case of the saw-tooth function can be generalized to any piecewise smooth

function, as told by
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THEOREM 2.1. (On the Concentration Property).Let f(x) be a2p-periodic piecewise
smooth function with a single discontinuity at x5 j. Then

2
p

log N
S̃N@ f #~ x! 3 @ f #~ x!dj~ x! 5 H @ f #~j!, x 5 j,

0, otherwise. (2.8)

We shall offer two proofs for this theorem. The first approach is a straightforward
extension of the concentration property of the saw-tooth function asserted in (2.6), along
the lines of [20, Section II, Theorem 8.13].

Proof. Consider the functiong~x! ; f ~x! 2
@ f #~j!

p
Fj~x!, whereFj( x) is the saw-

tooth function with ap-jump at x 5 j. Consequently,g( x) is a C0 function which
vanishes atx 5 j. By (2.4), the conjugate sum ofg( x) equals

S̃N@ g#~ x! 5
1

p E
2p

p

g~t!D̃N~ x 2 t!dt. (2.9)

Applying the standard upper bounds ofD̃N(t) in (2.5),uD̃N~t!u # minSN,
2

utuD , and the fact

that g( x) is a continuous function withg(j) 5 0, we obtain

uS̃N@ g#~j!u #
2

p E
j

j1p

ug~t!u uD̃N~j 2 t!udt

#
2

p E
j

j1p/N

ug~t!u uD̃N~j 2 t!udt 1
2

p E
j1p/N

j1p

ug~t!u uD̃N~j 2 t!udt

#
2N

p E
j

j1p/N

ug~t!udt 1
4

p E
j1p/N

j1p ug~t!u
uj 2 tu dt 5 o~1! 1 o~log N! 5 o~log N!.

By the definition ofg( x), Assertion 2.1, and the previous estimate it follows that

2
p

log N
S̃N@ f #~ x! ; 2

p

log N
S̃N@ g#~ x! 2

@ f #~j!

log N
S̃N@Fj#~ x!

5 2
p

log N
o~log N! 1 @ f #~j!dj~ x! 1 o~1!,

and we are done.■
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Theorem 2.1 says that

f p
21

log N
D̃N~ x!O¡

N3 `

@ f #~ x!dj~ x!.

We point out that the scaled conjugate Dirichlet kernel,
21

log N
D̃N, is just one example for

a broader class of admissible “conjugate” kernels which induce the concentration prop-
erty. This brings us to the following:

DEFINITION 2.1 (Admissible Kernels). We say that a conjugate kernel,K̃N, is admis-
sible if it satisfies the following four properties:

~31! K̃N is odd; (2.10)

~32! lim
N3`

E
0

p

K̃N~ x!dx 3 21; (2.11)

~33! K̃N~ x! 5 C z

cosSN 1
1

2Dx

2p sinSx

2D
1 R̃N~ x!, \R̃N\L1 # Const (2.12)

~34! lim
N3`

sup
uxu.d.0

uR̃N~ x!u 3 0, ; fixed d . 0. (2.13)

Clearly, the scaled conjugate Dirichlet kernel,
21

log N
D̃N~x!, is admissible: indeed, in

this case properties (33) and (34) hold with K̃N 5 R̃N 5
21

log N
D̃N and C 5 0.

Properties (33) and (34) are motivated by the fact that unlike the scaled Dirichlet kernel,
the generalized conjugate kernels we shall meet later on, arenot uniformly integrable.

Our second proof of concentration property applies to general admissible kernels. Of
course, the result applies to piecewise smooth functions with more than just a single
discontinuity. We now need to specify our precise notion ofpiecewise smoothness,
making

ASSUMPTION 2.1 (Piecewise Smoothness).f (x) is piecewise smooth in the sense of
having finite number of jump discontinuities where[ f ](x) Þ 0, and such that@x’s,

f ~ x 1 t! 2 f ~ x 2 t! 2 @ f #~ x!

t
[ L1@0, p#. (2.14)

Thus, piecewise smoothf ’s with smooth pieces which are Ho¨lder of any ordera . 0
will suffice. (To be precise, we may allow appropriate Besov regularity, yet in actual
computation we cannotresolvebut a finite number of discontinuities.)
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THEOREM 2.2 (The Concentration Property Revisited).Let f(x) be a piecewise smooth
function,(2.14), and let J5 { j} denote the set of its jump discontinuities. Consider the
generalized conjugate partial sum

S̃N
K@ f # :5 f p K̃N 5 E

2p

p

f ~t!K̃N~ x 2 t!dt,

where K̃N is an admissible kernel satisfying properties(31)–(34) in (2.10)–(2.13). Then

S̃N
K@ f #~ x! 3 @ f #~ x!dJ~ x! 5 H @ f #~j! x 5 j [ J,

0 otherwise. (2.15)

Remark. Note that the convergence asserted in (2.15) need not be uniform.

Proof. Since by property (31) in (2.10)K̃N is odd, we can rewrite the corresponding
conjugate partial sumS̃N as

S̃N
K@ f #~ x! 5 2E

0

p

@ f ~ x 1 t! 2 f ~ x 2 t!#K̃N~t!dt. (2.16)

Define the “local variation”j x(t) :5 [ f ]( x) 2 ( f ( x 1 t) 2 f ( x 2 t)), and split (2.16)
into four contributions,

S̃N
K@ f #~ x! 5 2E

0

p

@ f ~ x 1 t! 2 f ~ x 2 t!#K̃N~t!dt

5 2@ f #~ x! z E
0

p

K̃N~t!dt 1 C E
0

p j x~t!

2p sinS t

2D
cosSN 1

1

2D tdt

1 E
0

d

j x~t!R̃N~t!dt 1 E
d

p

j x~t!R̃N~t!dt 5: IN 1 II N 1 III N 1 IVN.

Property (32) in (2.11) yields that the first term approaches the jump [f ]( x),

IN 5 2@ f #~ x! z E
0

p

K̃N~t!dt 3 @ f #~ x!, N 3 `.

By piecewise smoothness,jx(t)/sin t/2 [ L1[0, p] and by Riemann–Lebesgue
II NO¡

N3 `

0. Given an«, we can findd 5 d(«) such that sup
~0,d!

u jx~t!u # «, and since\R̃N\L1
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is bounded by (33) in (2.12), it follows that the third termIII N can be made as small as
we please independently ofN,

uIII Nu 5 U E
0

d

j x~t!R̃N~t!dtU # \R̃N\L1 z sup
~0,d!

uj x~t!u # Constz «.

And finally, property (34) in (2.13) implies that sup
t.d.0

uR̃N~t!u can be made arbitrarily small

for N large enough,N . N0(d(«)), and hence

IVN 5 E
d

p

j x~t!R̃N~t!dt # Constz sup
t.d.0

uR̃N~t!uO¡

N3 `

0.

Thus the convolution off with any admissible kernelK̃N satisfies the concentration
property. ■

The following example illustrates Theorem 2.2 for the conjugate Fourier partial sum,

S̃N
D@ f #~x! 5

2p

log N
S̃N@ f #~x!. In this case,K̃N 5

21

log N
D̃N corresponds to the “canonical”

conjugate kernel given in Theorem 2.1. Clearly, it is an odd kernel with unit mass over (0,p),

so (31) and (32) hold. The estimateuD̃N~t!u # minSN,
2

ut uD implies thatK̃N 5
21

log N
D̃N also

satisfies properties (33) and (34); indeed withR̃N~x! 5
21

log N
D̃N~x! we find

● *2p
p uR̃N(t)udt # 2[*0

1/N 1 *1/N
p ] uR̃N(t)udt # Const,yielding (33) in (2.12); and

● uR̃N~t!u #
1

log N
uD̃N~t!u #

2

u t ulog N
, satisfying (34) in (2.13).

We close this section with

EXAMPLE 2.1.

f ~ x! 5 5 sin
x 1 p

2
, 2p # x , 0

sin
3x 2 p

2
, 0 , x # p.

Herej 5 0 and [f ](j) 5 22.

It is clear from Fig. 2.1 thatS̃N
D @ f #~x! 5

2p

log N
S̃N@ f #~x! does in fact locate the

singularity point and approximate the jump value there. Furthermore, in agreement with

Theorems 2.1 and 2.2, the numerical convergence rate is2S 1

log ND—both at the discon-

tinuity point and away from it. In particular, the slow convergence is exhibited in Fig. 2.1
whereN 5 80 modes donot recover the correct amplitude of the jump, [f ](0) 5 22.
The improvement of this slow logarithmic convergence rate will occupy our discussion in
the remaining sections. Note that naive straightforward smoothing does not improve the
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convergence rate. In fact, the resolution of the smoothed conjugate Dirichlet kernel at the
discontinuity is less sharp, as shown in Fig. 2.1, where an exponential smoothing filter is

used by premultiplyingf̂k 3 expSaukuNub

uku 2 ND f̂k. The results are similar for other smoothing

filters.

3. CONCENTRATION FACTORS

3.1. Introduction

Consider a piecewise smooth functionf ( x) with a single discontinuity atx 5 j. We
introduce ageneralizedconjugate partial sum of the form1

S̃N
s @ f #~ x! 5 O

k51

N

sk,N~aksin kx 2 bkcoskx!. (3.1)

Heres 5 { sk,N} are free summability parameters to be determined so that theconcen-
tration propertysimilar to (2.8) holds:

S̃N
s @ f #~ x! 3 @ f #~ x!dj~ x!. (3.2)

For example,sk,N ;
2p

log N
corresponds to the canonical conjugate Fourier partial sum

S̃N
s @ f #~x! 5

2p

log N
S̃N@ f #~x!. In this case, (3.2) holds in view of Theorem 2.1. It is clear

1 We use the notationS̃N
K and S̃N

s to indicate the dependence on both the concentration kernelK̃N and the
concentration factorsk,N. This “abuse” of notation will be clarified in Section 3.3.

FIG. 2.1. The conjugate Fourier partial sumS̃N
D @ f #~x! 5

2p

log N
S̃N @ f #~x! computed withN 5 40 modes.

Here, f 5 fa( x) given in Example 2.1 experiences a single jump, [f ](0) 5 22: before smoothing (left) and
after smoothing (right).
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that theses’s influence the convergencerate associated with the concentration property
of S̃N

s [ f ]( x). We refer tos as theconcentration factorsof S̃N
s [ f ]( x).

As a preliminary step, we begin by estimating the Fourier coefficients to their leading
order. Integration by parts yields

ak , 2
1

pk
@ f #~j!sin kj 1 2S 1

k2D , bk ,
1

pk
@ f #~j!coskj 1 2S 1

k2D . (3.3)

Substituting the leading order terms of (3.3) into (3.1) yields

S̃N
s @ f #~ x! , 2@ f #~j! O

k51

N
sk,Ncosk~ x 2 j!

pk
. (3.4)

Therefore, the desired concentration property ofS̃N
s [ f ]( x) in (3.2) amounts to

ASSERTION3.1. Let s 5 { sk,N} be the concentration factors with the corresponding

generalized conjugate partial sum S˜
N
s @ f #~x! 5 ¥

k51

N

sk,N~aksin kx 2 bkcoskx!. Then the

concentration property(3.2) requires

2O
k51

N
sk,Ncosk~ x 2 j!

pk
3 dj~ x!. (3.5)

Before turning to our general discussion on concentration factors, we note the
following.

Remarks. 1. The scaled conjugate Fourier partial sum
2p

log N
S̃N@ f #~x! 5 f p

21

log N
D̃N

corresponds to the concentration factorssk,N ;
2p

log N
. We thus denote

sk,N
D ;

2p

log N
(3.6)

as theDirichlet concentration factorsand note that they are independent ofk. In this case,

Assertion 2.1 states that (3.5) holds with an error term of order2S 1

log ND , yielding the

concentration statement of Theorem 2.1 and in agreement with Assertion 3.1.

2. As a consequence of the leading order expansion in (3.3), the highest accuracy

that can be obtained in (3.5) for locating the jump discontinuityx 5 j is first order,2S1

ND .

Faster convergence of (3.5) may be achieved by further expanding the Fourier coefficients
in terms of higher derivatives. This is considered for the particular methods examined in
[2, 7] and is also suitable for our general method. Here, we are concerned with improving
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the first-order convergence rate, and we note that higher orders can be handled in a similar
manner.

3. The concentration factors to be determined,s, must show anoverall improved
accuracy for (3.2). More specifically, we seek concentration factors which, beyond
improving the convergence rate, will lead toS̃N

s [ f ]( x) having better resolution of the
singular support off ( x). This will be clarified by the differences between the various
concentration factors outlined below.

4. Although only functions with a single point of discontinuity are considered here,
our results are easily extended to include any piecewise smooth functions (along the lines
of Theorem 2.2), as will be seen in Example 3.1.

3.2. Concentration Factors Determined by Regularization

One possible approach to improving the convergence rate of (3.2) is to (weakly)
regularize the partial sums in (3.5) by defining the regularized indicator function

dj
e~ x! :5 H1, ux 2 ju # e

0, e , ux 2 ju # p. (3.7)

Observe thatdj
e( x) has an even Fourier expansion in (x 2 j), whose Fourier partial sum

is given by

SN@dj
e~ x!#~ x! 5

2e

p
1 O

k51

N

2 sinke
cosk~ x 2 j!

pk
. (3.8)

Comparing it with Assertion 3.1, we can identify the summation on the right of (3.8) with
concentration factors of the formsk,N 5 csinkeN; here we consider vanishingeN

5
a

N
, which depends on a fixed free parametera. The scaling coefficient,c, should be

determined so that the concentration characterization in (3.5) holds,2 ¥
k51

N sk,N

pk
3 1. It

follows thatc 5 2p/Si(a) with Si(a) denoting the usualSi~a! 5 *0
a

sin x

x
dx.

In summary, we arrive at the family of concentration factors (depending ona)

s k,N
F ;

2p

Si~a!
sin keN, eN 5

a

N
. ~3.9a!

We refer to these as theFourier concentration factors,denoted {s k,N
F }, since they are

in fact (proportional to) the Fourier coefficients ofdj
e( x). For this choice of Fourier

concentration factors, (3.5) holds with a convergence rate of order2(eN).
The results for Example 2.1 using the Fourier concentration factors,s k,N

F , are shown in
Fig. 3.1. Compared with the “concentration-free” conjugate Dirichlet kernel in Fig. 2.1,
the improved resolution of the discontinuity atx 5 0 is evident.

In this context, we recall an alternative approach to locating jump discontinuities as
suggested by Banerjee and Geer [2]. As described below, the method in [2] is based on
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estimating the Gibbs’ overshoots which occur exactly at the points of discontinuity. We
shall see that the method in [2] in fact leads to a particular set of “Fourier” concentration
factors.

We briefly describe the method given in [2]. Starting with Fourier partial sum

SN@ f# ~x! 5 O
k50

N

9 akcoskx 1 bksin kx, it yields the familiar Gibbs’ overshoot atx 5 j, of

size

lim
N3`

$SN@ f #~j1! 2 SN@ f #~j2!% 5
2Si~p!

p
@ f ~j!#,

where
2Si~p!

p
5

2

p
*0

p
sin u

u
du < 1.17898accounts for 18% Gibbs’ overshoot. It

follows that

SN@ f #Sx 1
p

ND 2 SN@ f #Sx 2
p

ND
2

p
Si~p!

3 H @ f #~j! for x 5 j
0 otherwise. (3.10)

Thus, the (scaled)differencesof the Gibbs’ picks atx6
p

N
“concentrate” at the disconti-

nuity. In [2], the location ofj and an approximation of [f ](j) were recovered by direct
evaluation of (3.10).

How can this procedure based on (3.10) be interpreted within our general frame-

FIG. 3.1. Jump value obtained by applying the Fourier concentration factors, (3.9a), a 5 1, to Example 2.1.
The exact jump is [f ](0) 5 22.
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work? After inserting the leading order terms of the Fourier coefficients into (3.3),
it follows that

SN@ f #Sx 1
p

ND 2 SN@ f #Sx 2
p

ND
2

p
Si~p!

, @ f #~j!
2p

Si~p! O
k51

N

sin
pk

N

cosk~x 2 j!

pk
1 2Slog N

N D ,

(3.11)

with an error term on the right of the form¥
k51

N 1

k2 sin
pk

N
5 2Slog N

N D. Compared with the

characterization of the concentration property in (3.5), one recognizes the summation on
the right of (3.11) as a generalized conjugate Fourier partial sum associated with the

concentration factorssk,N [ 2
psin~kp/N!

Si~p!
. In fact, these fall into the special category of

Fourier concentration factors in (3.9a), corresponding toa 5 p. Thus the approach in [2]
given in (3.10) concurs with the so-called “Gibbs” concentration factors

sk,N
G ;

2p

Si~p!
sin

pk

N
. (3.12)

The results are depicted in Fig. 3.2.

3.3. Concentration Factors Revisited

Bearing in mind the concentration factorss determined thus far, we revisit (3.1) to
determine general criteria that will guarantee the concentration property (3.2). We start by

FIG. 3.2. Jump value obtained by applying the Gibbs concentration factors to Example 2.1 withN 5 20,
40, and 80 modes. The exact jump is [f ](0) 5 22.
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considering the concentration factorssk,N 5 sSk

ND , wheres( x) 5 sN( x) is a concen-

tration functionwhich is yet to be determined. Note that we still allows( x) 5 sN( x) to
depend onN. In the generic case, however,s( x) is independent ofN, (e.g.,s a

F( x) ;
sin(ax) for the Fourier concentration factors in (3.9a )), and so we omit the subindexN.

We start by summing

S̃N
s @ f #~ x! :5 O

k51

N

sS k

ND ~aksin kx 2 bkcoskx! 5 E
2p

p

f (t)
1

p
O
k51

N

sSk

NDsin k~ x 2 t!dt,

(3.13)

which leads to generalized conjugate kernels of the form

K̃N
s ~t! 5

1

p
O
k51

N

sSk

NDsin kt. (3.14)

We ask ourselves when such kernels are admissible in the sense of satisfying the four
properties outlined in Definition 2.1, so that by Theorem 2.2 the concentration property holds:

S̃N
s @ f #~ x! ; f p K̃N

s~ x! 3 @ f #~ x!dj~ x!. (3.15)

In the language of Assertion 3.1, one focuses here on the Heaviside functionf ~x!

5 Hj~x! :5
1

2
sgn~j2x!, where (3.15) boils down to (3.5),

S̃N@Hj#~ x! 5 Hj p K̃N
s 5 2O

k51

N
s~k/N!

pk
cosk~ x 2 j! 3 dj~ x!,

Hj~ x! :5 5
1

2
x , j,

2
1

2
x . j.

(3.16)

Clearly, theK̃N
s(t) are odd so property (31) holds; moreover, with the minimal require-

ment of bounded concentration factors,U ¥
k51

N

sS k

NDsin ktU # Constz N and hence

\K̃N
s \L1(0,p) is bounded if\K̃N

s \L1(1/N,p) is. Namely we start with

COROLLARY 3.1. Consider the conjugate kernel

K̃N
s ~t! 5

1

p
O
k51

N

sSk

NDsin kt,
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associated with bounded concentration factors,sSk

ND . Then K̃N
s is an admissible kernel

(and hence the concentration property(3.15) holds), if the following conditions are
fulfilled:

~329! lim
N3`

FO
k51

N
s ~k/N!

k
~1 2 ~21!k!G 5 2p; (3.17)

~339! K̃N
s ~t! 5 C

cos~N 1
1
2
!t

2p sin~ t
2
!

1 R̃N
s ~t!, E

1/N

p

uR̃N
s ~t!udt # Const.; (3.18)

~349! lim
N3`

sup
t.d.0

uR̃N
s ~t!u 5 0, ; fixed d . 0. (3.19)

Next, we provide easily checkable characterizations of properties (329)–(349). We
summarize our results (adding minimal requirements on the smoothness of the concen-
tration functions( x)) in the following two assertions. The first deals with thetotal mass
of the concentration kernel,K̃N

s.

ASSERTION 3.2. Assume that the concentration functions(x) [ sN(x) [ C1[0, 1]
satisfies

E
1/N

1 sN~ x!

x
dx 3 2p, O

j51

N us~ j
N
!u

j 2 O¡

N3 `

0. (3.20)

Then property(329) and hence(32) hold, i.e., lim
N3`

*0
p K̃N

s ~t!dt 5 21.

Remark. If
s~x!

x
is integrable then the summation encountered in property (329) is, in

fact, the Riemann sum of

O
k51

N
s ~k/N!

k
~1 2 ~21!k! 5 O

j50

N/ 2 s~2j 1 1
N

!

2j 1 1
N

2

N
, E

0

1 s ~ x!

x
dx.

And thus we find that ifs~x! [ L1S@0, 1#,
dx

x D satisfies

E
0

1 sN~ x!

x
dx 3 2p, (3.21)

then property (329) in (3.17) holds. The (slight) refinement asserted in (3.20) extends to
L1-weak kernels which are excluded by (3.21).
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Proof. Set xj :5
j

N
. By continuity, *x2j21

x2j11
s~x!

x
dx 5 Fs~x2j21! 1 2S1

NDG z *x2j21

x2j11
1

x
dx.

Summing such terms we find

E
1/N

1 sN~ x!

x
dx 5 O

j51

N/ 2 E
x2j21

x2j11 s ~ x!

x
dx 5 O

j51

N/ 2 Fs ~ x2j21! 1 2S 1

NDG 3 F 2

2j 2 1
1 2S 1

j 2DG

5 O
k51

N
s ~k/N!

k
@1 2 ~21!k# 1 O

1

N/ 2
s ~ x2j21!

j 2 1 2S log N

N D ,

and the result follows. ■

Our next assertion, dealing with properties (339)–(349), provides a sharp upper bound

on theamplitudeof the conjugate kernel,R̃N
s~t!: 5 K̃N

s~t! 1 s~1!
cos~N 1

1
2
!t

2p sin~ t
2
!

.

ASSERTION3.3. Consider the conjugate kernel K˜
N
s ~t! 5

1

p
¥

k51

N

sSk

NDsin kt, with con-

centration functions( z ) [ C2[0, 1]. Then the following estimate holds:

* R̃N
s ~t! 5 K̃ N

s ~t! 1 s~1!
cos~N 1

1
2
!t

2p sin~ t
2
! *

# @3\s\C 2 1 Const.#
1

Nutu2 1 FUsS 1

NDU 1
1

N
us ~1!uG 1

ut u . (3.22)

Remark. Thus, (3.22) shows that ifus~1/N!u # Const.
1

log N
then both properties

(339) and (349) hold.

Proof. Twice summation by parts leads to the identitySrecall the notationxk :5
k

ND
4 sin2S t

2D O
k51

N

s ~ xk!sin kt ; 2O
k51

N21

@s ~ xk11! 2 s ~ xk!# z @sin~k 1 1!t 2 sin kt#

1 2s~1!sin
t

2
cosSN 1

1

2D t 2 2s~ x1!sin
t

2
cos

t

2

; O
k51

N22

@s ~ xk12! 2 2s ~ xk11! 1 s ~ xk!#sin~k 1 1!t

1 @s ~1! 2 s ~ xN21!#sin Nt 2 @s ~ x2! 2 s ~ x1!#sin t

1 2s ~1!sin
t

2
cosSN 1

1

2D t 2 2s ~ x1!sin
t

2
cos

t

2
. (3.23)
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By the C 2 smoothness ofs( z ) we find

uK̃N
s ~t!u # @\s \C2 1 2\s \C1#

1

Nt2 1 FUsS 1

NDU 1 us ~1!uG 1

utu . (3.24)

To conclude the proof we consider the special example ofs( x) 5 x: the corresponding

conjugate kernelSwith sk,N 5
k

ND readsK̃N
x ~t! 5

1

p
¥

k51

N k

N
sin kt and it coincides with the

differentiated Dirichlet kernel in (2.7),
21

pN
D9N~t!,

K̃ N
x ~t! 5

1

p
O
k51

N k

N
sin kt 5 2

N 1
1
2

pN

cos~N 1
1
2
!t

2 sin~ t
2
!

1
1

pN

cos t
2

sin~N 1
1
2
!t

4 sin2~ t
2
!

. ~3.25!

Now we decompose

K̃ N
s ~t! ; @K̃ N

s ~t! 2 s ~1!K̃ N
x ~t!# 1 s ~1!K̃ N

x ~t!.

The first difference on the right is a conjugate kernel associated with concentration
functionm( x) :5 s( x) 2 s(1)x. Application of (3.24) toK̃ N

m (t) implies the upperbound

asserted in (3.22). Also, by (3.25),K̃N
x ~t! 1

N 1
1
2

pN

cos~N 1
1
2
!t

2 sin~ t
2
!

does not exceed 1/Nt2,

and the result follows. ■

We summarize our last two assertions, by stating our main

THEOREM 3.1 (Main Theorem). Consider the conjugate kernel K˜
N
s ~t! 5

21

p
¥
1

N

sS k

ND
sin kt associated with a C2[0,1] concentration functions(x), such that UsS1

NDU
# Constz

1

log N
. Assume

E
1/N

1 sN~ x!

x
dxO¡

N3 `

2p, (3.26)

O
j51

N us~ j
N
!u

j 2 O¡

N3 `

0. (3.27)

(i) The concentration property: K˜
N
s (t) is an admissible kernel, so that S˜

N
s [ f ](x) 5 f p K̃N

s

satisfies the concentration property,
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S̃N
s @ f #~ x!O¡

N3 `

@ f #~ x! 5 H f ~j1! 2 f ~j2!, at jump discontinuities x5 j,
0, otherwise. (3.28)

(ii ) The convergence rate: Assume, further, that f( z ) is piecewise C2 function.
Then, at any C2 regularity point x of f, the vanishing rate of S˜

N
s [ f ](x) is upper

bounded by

uS̃N
s @ f #~ x!u # Constz F log N

N
1 UsS 1

NDUG . (3.29)

Remarks. 1. One can relax the assumption of piecewiseC 2 regularity, requiring,
instead, that at any fixedx away from the jump discontinuities,f (z) admits a local
Zygmund regularity (f ( x 1 t) 2 f ( x 2 t))/t [ BV(0, d).

2. In the generic cases,us(x)u # Const z uxu. In these cases, the error estimate
(3.29) shows that away from the jump discontinuities off the conjugate kernel decay

is at least first order,2Slog N

N D , in agreement with the2(log N/N) decay we found

earlier for the Fourier concentration factors in (3.11). We note, however, that (3.29)
does not implyuniform convergence rate up to the jump discontinuities. Indeed, the
polynomial concentration factors introduced in Section 3.4,sp(x) 5 2ppxp, admit
first-order convergence rate (and exhibit even faster convergence rate of order

2SspS 1

ND , N2pD at selected gridpoints away from the jumps), yet they fail to

maintain this rate at the proximity of the jumps. The further smoothness ofsp(x) at
x 5 0 does not seem to improve the convergence rate beyond the first-order error
bound stated in (3.29).

Proof. We address the error estimate (3.29). The local smoothness off(x) is measured by
the modulus of continuityvx(t) :5 f(x 2 t) 2 f(x 1 t). SinceK̃N

s is odd we can rewrite the
corresponding conjugate partial sum asS̃N

s [ f ]( x) 5 (*0
1/N 1 *1/N

p )vx(t)K̃ N
s (t)dt, and

utilizing property (339) of K̃ N
s in (3.18), K̃N

s ~t! 5 2s~1!
cos~N 1 1/2!t

2p sin~t/2!
1 R̃N

s ~t!, we

decompose

S̃N
s @ f #~ x! 5 E

0

1/N

vx~t!K̃ N
s ~t!dt 2 s~1! E

1/N

p vx~t!

2p sin~t/ 2!
cosSN 1

1

2D tdt

1 E
1/N

p

vx~t!R̃N
s ~t!dt. (3.30)

Since f has (more than) Lipschitz regularity atx, uvx(t)u # Const z t. This, together
with uK̃N

s (t)u # Constz N, implies that the first integral on the right of (3.30) does not
exceed
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U E
0

1/N

vx~t!K̃ N
s ~t!dtU # Constz

1

N
.

Moreover,f (z) is assumed to haveC 2 regularity atx. This implies theC 1 smoothness of
vx(t)/t (as a function oft), and hence the2(1/N) decay of its Fourier coefficients. It
follows that the second integral on the right of (3.30) is upper bounded by

UE
1/N

p vx~t!

2p sin~t/ 2!
cosSN 1

1

2D tdtU # Constz
1

N
.

And finally, using Assertion 3.3 to upper bound the amplitude ofR̃N
s(t), we find that the

third integral on the right of (3.30) does not exceed

U E
1/N

p

vx~t!R̃N
s ~t!dtU # Constz U E

1/N

p

t 3
1

Nt2 1 t 3 FUsS 1

NDU 1
1

N
us~1!uG 1

t
dtU

# Constz F log N

N
1 UsS 1

NDUG .

The last three bounds imply the convergence rate estimate (3.29).■

Remark. If s( x) is nondecreasing, then necessarily,UsS1

NDU # Constz
1

log N
for

(3.17) to hold, and in this case (3.27) is fulfilled. If, in addition,
s~x!

px
[ L1@0, 1#, then

admissibility requires only the scaling condition

E
0

1 s~ x!

x
dx 5 2p. (3.31)

It is easy to see from the above discussion thatsk,N
D , sk,N

F (and, in particular,sk,N
G ) are admissible

concentration factors: in the first case, the Fourier concentration factorssN~x! ;
2p

logN
satisfy (3.27)

(and note that in this case
s~x!

x
is only weak L1 so that we need the refinement of (3.20)); in

the second case of Fourier concentration factors,sa
F~x! 5

2p

Si~a!
sinax satisfies (3.31).

3.4. Polynomial Concentration Factors

Guided by the results of Theorem 3.1 we define a family of what we refer to as
“polynomial” concentration factors, based on concentration functions,s p( x) 5 2ppxp.
The first two members in this family yield

● first-degree polynomial concentration factors (s( x) 5 2px),

s k,N
p1 ; 2

pk

N
; (3.32)
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● second-degree polynomial concentration factors (s( x) 5 22px2),

s k,N
p2 ; 2

2pk2

N~N 1 1!
. (3.33)

Clearly s p( x) 5 2ppxp are admissible by Theorem 3.1 and hence the concentration
property holds. We note in passing that the generalized conjugate sums associated with the
polynomial concentration factors,s p, coincide with the differentiated Fourier partial
sums,

S̃N
s 2p11

@ f #~ x! 5 2
p~2p 1 1!

N2p11 O
k51

N

k2p11~aksin kx 2 bkcoskx!

5 ~21!p
p~2p 1 1!

N2p11

d2p11

dx2p11 SN@ f #~ x!.

The corresponding concentration property then reads

~21!p
p~2p 1 1!

N2p11 SN
~2p11!@ f #~ x! 3 @ f #~ x!. ~3.34p!

The special casep 5 0 was already referred to in the proof of Assertion 3.3, where we

made use of the identityK̃N
x ~t! ;

2 1

pN
D9N~t!. The corresponding concentration property,

(3.34p) with p 5 0, goes back to Feje´r, [20, Section III, Theorem 9.3] and to Golubov [9,
13] for higherp’s.

To gain better insight into theiroverall improved accuracy, we analyze the behavior of
S̃N

sp

[Hj ]( x) 5 Hj p K̃N
s p

( x) for x’s away from the assumed jump discontinuity of the

HeavisideHj~x! 5
1

2
sgn~j 2 x! at x 5 j ; consult (3.5). To this end, we letr :5 x 2

j and rewrite the sum (3.5) corresponding tos k,N
p1 as

S̃N
s p1

@Hj#~ x! 5
1

N O
k51

N

coskr 5

sin~Nr

2
! cos~N 1 1!r

2

N sin~r

2
!

, r 5 x 2 j.

Substituting in the discrete valuesrl 5
p~l 2 N!

N
for l 5 1, . . . , 2N 2 1, yields

S̃N
s p1

@Hj#~ xl ! 5

sinp~l 2 N!

2
cos~N 1 1!p~l 2 N!

2N

N sinp~l 2 N!

2N

5 5
0 l is even

~21! l

N
l is odd.

The uniform convergence is clearly depicted in Fig. 3.3 by the oscillatory behavior
between the odd and even gridpoints. It is important to clarify that the convergence at
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x away from the point of discontinuity does not depend on the value ofx 2 j, but
rather on its distance from anxl with an odd or even index. It follows that the
convergence rate for (3.2) corresponding to the first-order polynomial factors,

sp1S k

ND , is the same for all odd (even)xl, regardless of proximity to the points of

discontinuity.

For the second-order polynomial factors,sp2Sk

ND, we rewrite (3.5) as

S̃N
s p2

@Hj#~ x! 5 O
k51

N 2k coskr

N~N 1 1!

5 2
2

N~N 1 1! O
k51

N sin kr

2
cos~k 1 1! r

2

sin r

2

1
1

N O
k51

N

coskr

5 2
cot~kr/ 2!

N~N 1 1! O
k51

N

sin kr 1
2

N~N 1 1! O
k51

N

sin2
kr

2
1

1

N O
k51

N

coskr, r 5 x 2 j.

Using the closed formulas

O
k51

N

coskr 5

sin kr

2
cos~k 1 1! r

2

sin r

2

, O
k51

N

sin kr 5
cosr

2

2 sinr

2

2
cos~N 1

1
2
!r

2 sinr

2

,

FIG. 3.3. Jump value obtained by applying the first-order polynomial concentration factors,s p1Sk

ND , to

Example 2.1 withN 5 20, 40, and 80 modes. The exact jump is [f ](0) 5 22.
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we substitute the discrete valuesrl 5
p~l 2 N!

N
and apply a fair amount of algebra to

obtain

S̃N
s p2

@Hj#~ xl ! 5 5 2S 1

N2D if l even

2S 1

ND 1 2Scot2~r l / 2!

N2 D if l odd.

Thus the second-degree polynomial factors attain second-order convergence (but only
at the even discretization points). It is also oscillatory, and due to the added error term

2
cot2~rl/2!

N2 at the odd points, it is dependent on the proximity of the jump discontinuity

j to the discretized value ofxl. This error implies that the convergence is worse near the
points of discontinuity, and the lack of uniform convergence is depicted in Fig. 3.4. On a
positive note,S̃N

s p
2[ f ]( x) 3 0 more rapidly outside the immediate proximity of the

discontinuity point, which may be helpful in identifying jump discontinuities for functions

TABLE 3.1

Error Comparison for Example 2.1 with N 5 40 Modes

[ f ](x) s k,N
D s k,N

F s k,N
G s k,N

p1 s k,N
p2

at x 5 0 0.168 2.0E-02 6.5E-03 2.4E-02 1.1E-02
at x Þ 0 0.326 5.9E-02 0.11 5.5E-02 6.7E-02

Note.First row: Absolute error for [f ](0) 5 22. Second row: average error for [f ]( x Þ 0) 5 0.

FIG. 3.4. Jump value obtained by applying the second order polynomial concentration factors to Example
2.1 with N 5 20, 40, and 80 modes. The exact jump is [f ](0) 5 22.
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with stronger variation, as will be seen in Example 3.1. We note that there are higher order
polynomial factors corresponding to admissible kernelsK̃N

s that may work as well.
Table 3.1 compares different concentration factors for Example 2.1, with the first row

showing the magnitude of error for [f ](0) and thesecond row comparing the average
error for [ f ]( x Þ 0).

As expected, the worst case is with the Dirichlet concentration factors. The results are
comparable fors k,N

F ands k,N
G . Overall, the polynomial concentration factors work better

than the Fourier concentration factors, and it is not surprising thats k,N
p2 produces a slower

convergence rate averaged overx’s Þ 0, due to the contribution of order

2
cot2~rl/2!

N2 which prevents uniform convergence near the point of discontinuity.

Until now we have only discussed functions with one discontinuity. Example 3.1
demonstrates the detection of edges for a function with two discontinuities.

EXAMPLE 3.1. We consider

f~ x! 5 5
cos

x

2
, 2p # x , 2

p

2

cos
3x

2
, 2

p

2
# x ,

p

2

cos
7x

2
,

p

2
# x # p.

Herej1 5 2
p

2
, j2 5

p

2
, and [f ](j2) 5 2[ f ](j1) 5 =2.

Figure 3.5 displays the results for Example 3.1 using different concentration factors.
The polynomial concentration factors work better than the Fourier concentration factors,
and the fast convergence ofS̃N

s [ f ]( x) for { s k,N
p2 } is more evident than in the first

example.

FIG. 3.5. Jump value obtained by different values ofs a
FSk

ND with a 5 1 anda 5 p (left) and s pSk

ND
with p 5 1 and p 5 2 (right), when applied to Example 3.1 withN 5 40 modes. The exact solution is

@ f #S6
p

2D 5 6Î2, and@ f #Sx Þ 6
p

2D 5 0.
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Table 3.2 compares the different concentration factors for [f ](j1), while Table 3.3
compares the average error of [f ]( x Þ j1, j2). The tables indicate that the polynomial
concentration factors yield better results than their Fourier counterparts. Here we see that
s k,N

p2 yields better average accuracy away from the points of discontinuity thans k,N
p1 . In

this case, the smooth “pieces” in Example 3.1 exhibit stronger variation than before, and
the faster convergence ofS̃N

s [ f ]( x) corresponding tos k,N
p2 away from the discontinuities

plays a more dominant role.
We mention again that while the estimates above are at best first order, they can be

improved to2(1/N2) by substituting the results of [f ](j) back into (3.3) and applying
another integration by parts. Finally, we emphasize that the possibilities fors are not
exhausted and that other concentration factors may provide better results.

4. DISCRETE FOURIER EXPANSION

Suppose we are given the discrete grid valuesf ( xj) defined at the 2N 1 1 equidistant

points,xj :5 2p 1 ( j 1 N)Dx, with Dx:5
2p

2N 1 1
. The discrete Fourier expansion

approximation is given by

TN@ f #~ x! 5 O
k50

N

9 akcoskx 1 bksin kx,

where the corresponding 2N 1 1 discrete Fourier coefficients based on those 2N 1 1
equidistant grid values are defined as

TABLE 3.2

Absolute Error for Example 3.1 at x 5 2
p

2

N s k,N
D s k,N

F s k,N
G s k,N

p1 s k,N
p2

20 0.453 9.2E-03 7.0E-02 5.4E-02 0.150
40 0.372 1.0E-02 1.6E-02 3.1E-02 6.0E-02
80 0.315 6.5E-03 4.0E-03 1.7E-03 2.5E-02

TABLE 3.3

Average Error for Example 3.1 Away from the Discontinuities

N s k,N
D s k,N

F s k,N
G s k,N

p1 s k,N
p2

20 0.466 0.195 0.319 0.188 0.119
40 0.382 9.6E-02 0.171 9.2E-02 4.8E-02
80 0.327 4.8E-02 8.9E-02 4.5E-02 2.1E-02

127DETECTION OF EDGES IN SPECTRAL DATA



ak 5
Dx

p
O

j52N

N

f ~ xj !coskxj , 0 # k # N

bk 5
Dx

p
O

j52N

N

f ~ xj !sin kxj , 1 # k # N. (4.1)

The discrete conjugate Fourier partial sum is therefore

T̃N@ f #~ x! 5 O
k51

N

aksin kx 2 bkcoskx. (4.2)

In the discrete case, every grid value experiences a jump discontinuity. The jumps that
are of order2(Dx) are acceptable, but the2(1) jumps indicate a jump discontinuity in the
underlying functionf ( x). Hence, in the discrete case we identify a jump discontinuity at
j by its enclosed grid cell, [xj, xj11], which is characterized by the asymptotic statement

f ~ xj11! 2 f ~ xj ! 5 H @ f #~j! 1 2~Dx! for j 5 j j : j [ @ xj , xj11#
2~Dx! for other j 9sÞ j j .

(4.3)

Of course, this asymptotic statement, (4.3), may serve as an edge detector based the given
grid values,{ f(xj)} j52N

N . We now seek alternative edge detectors based on the discrete Fourier
coefficients, {ak, bk} k51

N , analogous to our study of the continuous case in Section 3.
As a starting point, we point out the inadequacy of the concentration factors studied in

Section 3,sSk

ND , in the present context ofdiscreteFourier expansion (4.2). Figure 4.1 shows

the results for the discrete data of Example 3.1. The discrepancy in Figs. 3.5 and 4.1 clearly

FIG. 4.1. Jump values obtained by applying different “continuous” concentration factors to the discrete Fourier

coefficients for Example 3.1 withN 5 40 modes. The exact solution experiences two jumps@ f #S6
p

2D 5 6Î2.
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indicates that the concentration factors determined in Section 3 are not applicable here. A
separate (but closely related) study is required for discrete concentration factors.

To analyze the discrete case, we follow our framework in Section 3. We introduce
concentration factorstk,N and consider the (discrete) generalized conjugate sums

T̃N
r @ f #~ x! :5 O

k51

N

tk,N~aksin kx 2 bkcoskx!. (4.4)

Summing by parts the discrete Fourier coefficients we find

ak 5
Dx

2p sin k~Dx/ 2! O
j52N

N

sin kxj11/ 2@ f ~ xj ! 2 f ~ xj11!#,

bk 5
Dx

2p sin k~Dx/ 2! O
j52N

N

coskxj11/ 2@ f ~ xj11! 2 f ~ xj !#.

Let jj11/2 5 xjj11/2 denote the midpoint of the cell [xjj
, xjj11] which encloses

the discontinuity atx 5 j. Applying (4.3) to the discrete Fourier coefficients in (4.1)
gives

ak 5 2
Dx

2p sin k~Dx/ 2!
@ f#~j!sinkj j11/ 2 sin1 2~Dx!,

bk 5
Dx

2p sin k~Dx/ 2!
@ f#~j!coskj j11/ 2 1 2~Dx!, (4.5)

and substituting (4.5) into (4.4) leads to

T̃N@ f #~ x! 5 2@ f #~j! O
k51

N Dx z tk,N

2p sin k~Dx/ 2!
cosk~ x 2 j j11/ 2! 1 2~Dx!. (4.6)

Observe that asDx 3 0, the discrete conjugate sumT̃N [ f ]( x) approaches the
corresponding continuous conjugate sumS̃N

t [ f ]( x). In fact, by comparing (4.6) with
S̃N

s [ f ]( x) in (3.4),

S̃N
s @ f #~ x! 5 2@ f #~j! O

k51

N
sk,N

pk
cosk~ x 2 j! 1 2S 1

ND ,

we see that the concentration property of the discrete conjugate Fourier partial sum is a
direct analogue of the continuous case. Of course, in the discrete case, we do not identify
the exact location of the underlying discontinuity atx 5 j, but rather the location of the
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discrete cell that encloses this discontinuity which is realized here in terms of its midpoint
at x 5 jj11/ 2 (Figs. 4.3 and 4.4).

We arrive at the following discrete analogue of our Theorem 3.1 for detecting edges in
spectra of piecewise smooth functions. In this discrete context, piecewise smoothness
refers to piecewiseC 2 functions; i.e., we refer tof ’s with finite number of jump
discontinuities where [f ]( x) Þ 0, such that (2.14) is strengthened into

f ~ x 1 t! 2 f ~ x 2 t! 2 @ f #~ x!

t
[ L` @0, p#. (4.7)

THEOREM 4.1. Let f(x) be a piecewise smooth function,(4.7), and let J5 { j} denote
the set of its jump discontinuities. Given the discrete Fourier coefficients,{ ak 1 ibk} k51

N ,
we consider the generalized discrete conjugate partial sum

T̃N
t @ f #~ x! 5 O

k51

N

tk,N~aksin kx 2 bkcoskx! (4.8)

corresponding to the discrete concentration factorst 5 $tk,N% 5 tSk

ND . If tk,N are

related to admissible continuous concentration factorssk,N in (3.1),

tk,N 5
sin~k~Dx/ 2!!

k~Dx/ 2!
sk,N, Dx 5

2p

2N 1 1
, (4.9)

then T̃N
t [ f ](x) satisfies the concentration property

T̃N
t @ f #~ x! 3 @ f #~j!dJ~ x!. (4.10)

Furthermore, the direct analogue to the continuous case offers a more general result:

THEOREM 4.2. Consider a C2[0, 1] discrete concentration functiont(x) such that

UtS1

NDU # Constz
1

log N
. Then tk,N 5 tSk

ND are admissible and the concentration

property is fulfilled,

T̃N
t @ f #~ x! 3 @ f #~j!dJ~ x!,

if the following conditions are met:

E
1/N

1 tN~ x!

2 sin p ~ x/ 2!
dxO¡

N3 `

21; (4.11)

O
j51

N ut ~ j /N!u
j 2 O¡

N3 `

0. (4.12)
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All of the continuous concentration factorss 5 { sk,N} from Section 3 can therefore
be “converted” into discrete concentration factorst 5 { tk,N} up to a scaling factor of

sin k Dx
2

sin Dx
2

:

1. Dirichlet concentration factors

t k
D ;

22

kD x log N
sin k

Dx

2
; (4.13)

2. Fourier concentration factors (Fig. 4.2)

t k
F 5

22

kDxSi~a!
sin k

Dx

2
sinSk

a

ND ; ~4.14a!

FIG. 4.2. Jump value obtained by applying discrete Fourier and Gibbs concentration factors,t a
FSk

ND
(corresponding toa 5 1 anda 5 p), with N 5 40 modes. The exact solutions exhibit the jump discontinuities

[ fa](0) 5 22 (left) and@ fb#S6
p

2D 5 6Î2 (right).

FIG. 4.3. Jump value obtained by applying discrete first- and second-degree polynomial concentration
factors with N 5 40 modes. The exact solution exhibit the jump discontinuities [fa](0) 5 22 (left) and

@ fb#S6
p

2D 5 6Î2 (right).
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3. Gibbs concentration factors (Fig. 4.2)

t k
G ;

22

kDxSi~p!
sin k

Dx

2
sin

pk

N
; (4.15)

4. First-order polynomial concentration factors (Fig. 4.3, Fig. 4.4)

t k
p1 ;

22p

DxN
sin k

Dx

2
; (4.16)

5. Second-order polynomial concentration factors (Fig. 4.3, Fig. 4.4)

t k
p2 ;

24kp

DxN~N 1 1!
sin k

Dx

2
. (4.17)

We close this section noting that in the case off 5 fa( x) in Example 2.1, Tables 4.1
and 4.2 indicate a comparable order of resolution for the different concentration factors,
t k

F, t k
G, t k

p1, andt k
p2, both at the value at the point of discontinuity and at the average

convergence away from the point of discontinuity. Forf 5 fb( x) in Example 3.1,
however,t k

p1 produces best average errors outside the discontinuities (atx Þ 6=2), and

TABLE 4.1

Absolute Error for Example 2.1 at x 5 0

N t k
D t k

F t k
G t k

p1 t k
p2

19 0.86 4.3E-02 2.3E-02 9.8E-02 8.8E-02
39 0.90 2.3E-02 1.9E-02 5.0E-02 3.7E-02
79 0.92 1.2E-02 1.1E-02 2.5E-02 1.6E-02

FIG. 4.4. Jump value for Example 3.1 obtained by applying the first-order polynomial factors (4.16) (left)
and second-order polynomial concentration factors (4.17) (right), usingN 5 20, 40, and 80 modes. The exact

solution jumps at@ f #S6
p

2D 5 6Î2.

132 GELB AND TADMOR



Fig. 4.4 shows faster convergence fort 5 { t k
p2}, T̃N

t [ f ]( x) 3 0 away from the
immediate proximity of these points of discontinuity.

5. CONCLUDING REMARKS

The theorems provided in Sections 3 and 4 enable us to determine concentration factors
for both continuous and discrete Fourier expansion coefficients that improve the overall
accuracy of the concentration property of the conjugate Fourier partial sum.

TABLE 4.2

Average Error for Example 2.1 Away from the Discontinuity, x Þ 0

N t k
D t k

F t k
G t k

p1 t k
p2

19 0.20 0.19 0.21 0.11 0.13
39 0.16 5.9E-02 0.11 5.5E-02 6.7E-02
79 0.14 2.9E-02 5.4E-02 2.7E-02 3.5E-02

FIG. 5.1. Jump value obtained by generalized conjugate partial sum,S40
s [ fa]( x), using various Fourier

concentration functionss a
F~x! 5

2p

Si~a!
sin ax, with a 5 1, 1.5 (top) anda 5 2, 3 (bottom). The exact solutions

exhibit the jump discontinuity [fa](0) 5 22.
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It is important to mention that the choice of an appropriate concentration factor depends
on various factors. Consider the following cases:

● For the one-sided mollifier proposed in [12], only the approximate jump location
is required to reconstruct a piecewise continuous function, makings k

p2 andt k
p2 appeal-

ing choices due to their rapid convergence away from the discontinuities.
● Reconstruction methods in [2] and [7] require exact knowledge of the jump

locations, but in [7], for example, knowledge of the jump locations and the Fourier
coefficients is enough to determine the jump discontinuities, implying that locating the
jump discontinuities is more important than determining their corresponding amplitudes.
This makess k

p2 andt k
p2 poor choices because of the strong oscillations they cause near

the discontinuities.
● For highly varying functions, we have seen thats k

p2 andt k
p2 display better results

due to their rapid convergence away from the discontinuities.
● In the case of several discontinuities,s k

p2 andt k
p2 produce too many oscillations

between the points of discontinuities unless there are sufficiently many modes to “resolve”
the smooth pieces off.

● Finally we note that the results for the Fourier concentration factors,s a
F, t a

F (with
a 5 1), and the first-degree concentration function,s k

p1, t k
p1, bear close similarity which

is not shared by the Gibbs’ concentration factors,s k
G, t k

G (corresponding tosa, ta with
a 5 p). Indeed, the sensitivity of the Fourier concentration factors on the free parameter
a is clearly depicted in Fig. 5.1 and deserves further study in the future.
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