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A standard paradigm for the existence of solutions in fluid dynamics is based
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minimizers. This approach faces serious obstacles, most notably in multi-
dimensional problems, where the persistence of oscillations at ever finer scales
prevents compactness. Indeed, these oscillations are an indication, consistent
with recent theoretical results, of the possible lack of existence/uniqueness
of solutions within the standard framework of integrable functions. It is in
this context that Young measures – parametrized probability measures which
can describe the limits of such oscillatory sequences – offer the more general
paradigm of measure-valued solutions for these problems.
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We present viable numerical algorithms to compute approximate measure-
valued solutions, based on the realization of approximate measures as laws
of Monte Carlo sampled random fields. We prove convergence of these al-
gorithms to measure-valued solutions for the equations of compressible and
incompressible inviscid fluid dynamics, and present a large number of numer-
ical experiments which provide convincing evidence for the viability of the
new paradigm. We also discuss the use of these algorithms, and their exten-
sions, in uncertainty quantification and contexts other than fluid dynamics,
such as non-convex variational problems in materials science.
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PART ONE

Motivation and background

1. Introduction

We aim to address the question of convergence, under mesh refinement,
of numerical approximations for a large class of non-linear partial differen-
tial equations. We begin with a representative example by considering the
compressible Euler equations, which describe the motion of an inviscid, com-
pressible flow, whose study is of fundamental importance in aerodynamics,
astrophysics, climate science and more (Dafermos 2010). The compressible
Euler equations form the following system of non-linear partial differential
equations (PDEs): 

∂tρ+∇x · (ρv) = 0,

∂t(ρv) +∇x · (ρv ⊗ v + pI) = 0,

∂tE +∇x · ((E + p)v) = 0.

(1.1)

Here, ρ is the density of the flow, v ∈ Rd (d = 1, 2, 3) is the velocity vector,
p is the pressure, E denotes the total energy and I ∈ Rd×d is the identity
matrix. The equation is closed by specifying an algebraic equation of state
that relates the thermodynamic variables, p, ρ and E.

In order to motivate the central issue addressed in this paper, we con-
sider a numerical experiment involving a prototypical state-of-the-art and
widely used numerical method for approximating the compressible Euler
equations (1.1). This numerical scheme is a high-resolution finite volume
scheme, based on an approximate Riemann solver of the HLLC type, a non-
oscillatory monotonized-central limiter-based piecewise linear reconstruc-
tion, in combination with a second-order, strong stability-preserving Runge–
Kutta time-stepping routine. It is implemented within a massively parallel
astrophysics code (Käppeli et al. 2011). This scheme is used to discretize the
compressible Euler equations (1.1) in the two-dimensional domain x ∈ [0, 1]2

with periodic boundary conditions and with initial conditions shown in Fig-
ure 1.1. The initial data are known as the Richtmyer–Meshkov problem
(Landau and Lipschitz 1987) and consist of an initial (large) jump in the
density and pressure across a slightly perturbed interface. We compute at
different mesh resolutions ranging from 1282 to 10242. The computed dens-
ity at time t = 4 is plotted in Figure 1.2. As shown in the figure, the solution
is fairly complex: the initial shock waves generated from the explosion have
exited and re-entered the domain (on account of periodic boundary con-
ditions) and are interacting with an unstable interface. Furthermore, the
re-entered shock creates a complex pattern of small-scale eddies on hitting
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Figure 1.1. Initial data for the Richtmyer–Meshkov problem (7.2).

the interface. These structures are formed at ever finer scales as the mesh
is refined.

The appearance of structures at ever finer scales under mesh refinement
may inhibit convergence of the scheme. To test this proposition, we compute
the difference in the approximate solutions for two successive resolutions:

EN = ‖ρ2N − ρN‖L1([0,1]2). (1.2)

Here, N represents the number of mesh points in each direction. The results
are shown in Figure 1.3 and demonstrate that the numerical approximation
does not form a Cauchy sequence, let alone converge, as the mesh is re-
fined. Similar results are also obtained with other Lp norms. This lack
of convergence is not an artifact of the scheme discussed here; as reported
in Fjordholm, Käppeli, Mishra and Tadmor (2016a), very similar results
have been obtained with other state-of-the-art schemes, such as the high-
order TeCNO schemes (Fjordholm, Mishra and Tadmor 2012) and WENO
schemes (Fuchs et al. 2011).

Is this non-convergent behaviour a feature of the compressible Euler equa-
tions only, or can it be observed in a larger class of PDEs? We address this
question with another numerical example by considering the incompressible
Euler equations, which model the motion of an ideal, inviscid incompressible
fluid: {

∂tu+∇x · (u⊗ u) +∇p = 0,

∇x · u = 0.
(1.3)

Here, u is the divergence-free velocity field, u(·, t) : D ⊂ Rd → Rd, and
the pressure p acts as a Lagrange multiplier to impose the divergence-free
constraint.
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Figure 1.2. Approximate density at time t = 4 for a single sample, computed
with the high-resolution finite volume scheme of Käppeli et al. (2011), for the
Richtmyer–Meshkov problem (7.2) for different grid resolutions.

We consider the two-dimensional version (d = 2) of the incompressible
Euler equations (1.3) in the two-dimensional periodic torus D = [0, 2π]2

with initial data shown in Figure 1.4 (see also (8.1)). The initial datum is
a (slightly) perturbed version of the two-dimensional flat vortex sheet. We
approximate this problem numerically with a widely used spectral method ;
see Section 4 and Gottlieb, Hussaini and Orszag (1984). We compute a se-
quence of approximate solutions with an increasing number of Fourier modes
ranging from N = 128 to N = 1024. In order to visualize the resulting solu-
tion, we plot the pointwise (in the spatial domain) kinetic energy u2

1 + u2
2

at time t = 2 in Figure 1.5. As the figure shows, the local energy appears
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Figure 1.3. Cauchy rates (1.2) for the density (y-axis) in a single sample of the
Richtmyer–Meshkov problem (7.2) at time t = 4, with respect to different grid
resolutions (x-axis).
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Figure 1.4. Initial data for the perturbed vortex sheet (8.1).

to be concentrated (distributed) on smaller-scale structures as the number
of Fourier modes is increased. This suggests a lack of convergence of the
approximation, which we further quantify in terms of ‘Cauchy rates’ – the
difference in the approximate (velocity) solutions on successive resolutions:

EN = ‖u2N − uN‖L2([0,2π]2). (1.4)

We plot this difference in Figure 1.6. The figure clearly shows that there
is no convergence for the spectral method in this case, as the difference in
successive approximations remains O(1) with increasing resolution. Similar
non-convergent results have also been obtained with a spectral viscosity
method (Lanthaler and Mishra 2015) and with a finite difference projection
method (Leonardi and Mishra 2016).
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Figure 1.5. Flat vortex sheet (8.1) for the incompressible Euler equations. Point-
wise kinetic energy at time t = 2, computed with the spectral method (6.4) at
Fourier mode resolutions ranging from 1282 to 10242.

The two numerical experiments presented above consider two different
types of non-linear systems of PDEs as well as very different numerical
methods, one a finite volume scheme and the other a spectral approxima-
tion. Still, they both illustrate the phenomenon of lack of convergence of nu-
merical approximations as the resolution is increased. This non-convergence
can be attributed to at least two phenomena:

• the appearance of oscillations at ever finer scales as the mesh is refined,

• the unstable behaviour of these oscillations with respect to mesh res-
olution, numerical method, small initial perturbations, etc.
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Figure 1.6. Cauchy rates (1.4) for the computation of flat vortex sheet (8.1) for
the incompressible Euler equations: non-convergence of the spectral method (6.4)
with respect to an increasing number of Fourier modes N .

These phenomena are not new, and have already manifested themselves
in past computation of ill-posed problems, such as the prototype example
of incompressible motion of perturbed vortex sheets. Computation of the
underlying Kelvin–Helmholtz instability necessitates an increasingly finer
resolution involving N degrees of freedom, which leads to faster noise amp-
lification of order eNt/2. Several methodologies were developed to address
this phenomenon by containing noise amplification to below machine ac-
curacy, as in the meticulous computations of Krasny (1986a, 1986b), who
was the first to compute beyond critical time of singularity formation. But
errors of different orders and uncertainties of different sources are here to
stay, and as noted by Majda and Bertozzi (2002, p. 371), the phenomenon
of their prohibitive growth ‘is a feature of the underlying equation itself as
opposed to an instability of the numerical method.’

It seems that the current notions of weak solutions for these equations,
based on integrable functions, do not suffice to describe the limits of widely
used numerical approximations for such problems. This raises the question
whether there exists a suitable framework of solutions for these classes of
non-linear PDEs which can accommodate solutions with unstable oscilla-
tions at arbitrarily small scales, as illustrated in their numerical approxima-
tion. We postulate that measure-valued solutions, first proposed by DiPerna
(1985), can provide an appropriate solution paradigm for the analysis and
computation of these large classes of non-linear PDEs.

Although measure-valued solutions have been available for the past thirty
years and many theoretical results have been established (Demoulini, Stu-
art and Tzavaras 2012, DiPerna and Majda 1987a, Frid and Liu 1998, Frid
and Liu 1995, Panov 1994, Panov 1993, Kröner and Zajaczkowski 1996,
Málek, Nečas, Rokyta and Ružička 1996, Schochet 1989, Székelyhidi Jr and
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Wiedemann 2012), the computation of measure-valued solutions is fairly re-
cent. Algorithms for computing measure-valued solutions in the context of
turbulent mixing were proposed by Glimm and co-workers (Glimm, Grove
and Zhang 1999, Lim et al. 2008), and were discussed in Roy and Acharya
(2006, p. 1730) in the context of mesoscopic field dislocation mechanics.
However, rigorous convergence analysis of these algorithms is not avail-
able. Fjordholm et al. (2016a) have proposed a novel algorithm for comput-
ing entropy measure-valued solutions of the compressible Euler equations
(1.1), as a prototype example of the larger class of systems of conserva-
tion laws (reviewed in Section 2.1 below). The algorithm, which is out-
lined in Section 4 below, realizes the underlying Young measures as laws
of Monte Carlo-sampled random fields and, under verifiable assumptions
on the space-time discretizations, has been proved to converge to an en-
tropy measure-valued solution of the system of conservation laws in ques-
tion. Lanthaler and Mishra (2015) have extended the algorithm to compute
admissible measure-valued solutions of the incompressible Euler equations
(1.3) (reviewed in Section 2.2 below). Most notably, unlike the computa-
tions of weak solutions shown in Figures 1.3 and 1.6, the errors of these
measure-valued computations do decrease under mesh refinement, which
demonstrates that numerical approximations converge to measure-valued –
rather than weak – solutions of the compressible and incompressible Euler
equations. Thus, measure-valued solutions (and suitable variants thereof)
may serve as an appropriate solution paradigm for these PDEs.

The aim of the current paper is to review these algorithms for computing
measure-valued solutions, present them within a unified framework, illus-
trate them with a large number of numerical experiments, and discuss short-
comings as well as extensions of these algorithms. To this end, we organize
the rest of the paper as follows. In Section 2 we provide a brief review of
theoretical developments, in the context of admissible weak solutions, for
both systems of conservation laws and incompressible Euler equations. The
definitions of Young measures and measure-valued solutions are presented
in Section 3. In Section 4 we present algorithms to compute measure-valued
solutions and discuss convergence of these algorithms. In Sections 5 and 6,
respectively, these algorithms are used to compute approximate measure-
valued solutions for systems of conservation laws and for the incompress-
ible Euler equations. Numerical experiments are presented in Sections 7
and 8. The question of uniqueness (stability) of measure-valued solutions,
the related framework of statistical solutions and its significance for uncer-
tainty quantification are discussed in Sections 9 and 10. In Section 11 we
present other algorithms, particularly of the multi-level Monte Carlo type,
to approximate measure-valued solutions. The use of Young measures in
materials science is discussed in Section 12.
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2. A brief review of theoretical results

Our main goal in this paper is to present efficient, convergent algorithms for
computing measure-valued solutions of certain classes of non-linear PDEs.
As mentioned in the Introduction, we focus on two specific classes of PDEs:
systems of conservation laws (with the compressible Euler equations (1.1)
being the prototypical example) and the incompressible Euler equations
(1.3). In order to provide the context for the approximation of measure-
valued solutions for these PDEs, we collect some of the available theoretical
results for these PDEs in the following. Our focus is on the main results of
well-posedness, that is, those of (global) existence, uniqueness and stability.

2.1. Systems of conservation laws

The system of compressible Euler equations (1.1) is the prototypical example
of the class of systems of conservation laws which take the generic form

∂tu+∇x · f(u) = 0, (x, t) ∈ Rd × R+,

u(x, 0) = u0(x), x ∈ Rd.
(2.1)

Here, u = u(x, t) : Rd × R+ → RN is the unknown vector of conserved
variables dictated by the flux functions f = (f1, . . . , fd) : RN → RN×d, and
the goal is to identify the solution which evolves over time, u0(·) 7→ u(·, t)
for t ∈ R+ := [0,∞).

In this section we recall some of the theoretical results for systems of
conservation laws which will be needed below. Much of the theory for
such systems was driven by the example of compressible Euler equations
(1.1) with u = (ρ, ρv,E)>, expressing the conservation of the density ρ,
momentum m := ρv and energy E. We begin with the definition of weak
solutions for (2.1).

Definition 2.1. A function u ∈ L∞(Rd × R+,RN ) is a weak solution of
(2.1) if it satisfies (2.1) in the sense of distributions:∫
R+

∫
Rd

∂tϕ(x, t)u(x, t)+∇xϕ(x, t)·f(u(x, t)) dx dt+

∫
Rd

ϕ(x, 0)u0(x) dx = 0

(2.2)
for all test functions ϕ ∈ C1

c (Rd × R+).

Weak solutions are not necessarily unique. We need to specify additional
admissibility conditions in order to select physically meaningful weak solu-
tions. These take the form of entropy conditions (Lax 1971), given in terms
of entropy pairs.

Definition 2.2. A pair of functions (η, q) with η : RN → R, q : RN → Rd
is called an entropy pair if η is convex and q satisfies the compatibility
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condition q′ = η′ · f ′, that is,

∇uqi(u)> = ∇uη(u)>∇ufi(u)

for i = 1, . . . , d and all u ∈ RN .

The notion of entropy pairs is driven by the example of compressible Euler
equations (1.1), which are equipped with a family of entropy pairs (η, q) =
(−ρh(s),−ρvh(s)), where the specific entropy is given by s := ln(pρ−γ).
The convexity of η = η(ρ,m,E) is attained, for example, with the canonical
pair h(s) = s. The behaviour of Euler entropic solutions as a limiting
case for the Navier–Stokes equations motivates the following condition; see
Godunov (1961), Kružkov (1970, Section 7) and Lax (1971).

Definition 2.3. A weak solution u of (2.1) is an entropy solution if the
entropy inequality

∂tη(u) +∇x · q(u) ≤ 0 in D′(Rd × R+)

is satisfied for all entropy pairs (η, q), that is, if∫
R+

∫
Rd

∂tϕ(x, t)η(u(x, t)) (2.3)

+∇xϕ(x, t) · q(u(x, t)) dx dt+

∫
Rd

ϕ(x, 0)η(u0(x)) dx ≥ 0

for all non-negative test functions 0 ≤ ϕ ∈ C1
c (Rd × R+).

2.1.1. Scalar conservation laws
The simplest examples of conservation laws are scalar conservation laws,
that is, N = 1 in (2.1). In this case, every convex function η gives rise to
an entropy pair with corresponding entropy flux q(u) :=

∫ u
η′(ξ)f ′(ξ) dξ.

This rich family of entropy pairs was used by Kružkov (1970) to obtain the
following existence, uniqueness and stability of solutions for scalar conser-
vation laws.

Theorem 2.4 (Kružkov 1970). Let u0 ∈ L1(Rd)∩L∞(Rd). Then there
exists a unique entropy solution u ∈ L∞(Rd ×R+) ∩C(R+, L

1(Rd)) of the
scalar conservation law (2.1). Furthermore, if u(·, t) = Stu0 denotes this
unique solution, then the corresponding solution solution operator

St : L1(Rd) ∩ L∞(Rd)→ L1(Rd) ∩ L∞(Rd)

satisfies

‖Stu0 − Stv0‖L1(Rd) ≤ ‖u0 − v0‖L1(Rd) for all t > 0. (2.4)

Thus, the entropy solution operator for a scalar conservation law forms an
L1 contractive semi-group.
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The existence of entropy solutions for scalar conservation laws can be
established as the limit of vanishing viscosity approximations or approx-
imations generated by monotone finite volume schemes (Godlewski and
Raviart 1991). The key aspect in this context is propagation of com-
pactness: if {uε} is a family of uniformly bounded approximate solutions
with a limit limn→∞ u

εn = u∞, then (2.4) implies their bounded vari-
ation compactness, and one can pass to the strong limit in (2.2) and (2.3),
limn→∞ f(uεn) = f(u∞), to recover that the limit u∞ is the desired entropy
solution.

2.1.2. One-dimensional systems

Next, we consider one-dimensional systems of conservation laws (2.1) with
d = 1,

∂tu+ ∂xf(u) = 0, (x, t) ∈ R× R+,

u(x, 0) = u0(x) x ∈ R.
(2.5)

A key role is played by the flux Jacobian A(u) := ∂uf(u). The system of
conservation laws (2.5) is called hyperbolic if the eigenvalues λ1, . . . , λN of
the Jacobian A are real and the corresponding eigenvectors r1, . . . , rN ∈
RN are linearly independent. The system is called strictly hyperbolic if, in
addition, the eigenvalues of A are distinct. We say that the ith wave family
is genuinely non-linear if ∇uλi(u)·ri(u) > 0 for all u ∈ RN , and it is linearly
degenerate if ∇λi(u) · ri(u) ≡ 0 for all u.

The first (global) existence result for one-dimensional systems was ob-
tained by Lax (1957) in the special case of Riemann problems, where the
initial data consist of two sufficiently close constant states separated by a
jump discontinuity. The solution in this case consists of constant states,
separated by discontinuous shocks, contact discontinuities or self-similar
continuous rarefaction waves.

The fundamental result concerning global existence of entropy solutions
subject to general initial data with small total variation (TV) is due to
Glimm.

Theorem 2.5 (Glimm 1965). Assume that the system (2.5) is strictly
hyperbolic and that each wave family is either genuinely non-linear or lin-
early degenerate. Then there exists a constant ε > 0 such that for every
initial condition u0 ∈ L1(R,RN ) with

TV(u0) ≤ ε, (2.6)

the corresponding Cauchy problem (2.5) admits an entropy solution for all
T > 0.

Glimm’s proof relied on constructing approximations using the Glimm
scheme (or the random choice method) and obtaining uniform bounds on
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the total variation of the approximating sequence. Alternative proofs using
the wave-front tracking method and the convergence of vanishing viscos-
ity approximations have been obtained by Dafermos (2010) and Bianch-
ini and Bressan (2005), respectively. One advantage of the constructions
using either the wave-front tracking method or the vanishing viscosity ap-
proximation is the fact that the corresponding operator forms an L1 stable
semi-group.

Theorem 2.6. There exists a domain U ⊂ L1(R,RN ) containing all func-
tions u with sufficiently small total variation, and a constant L > 0 such
that for all initial data u0 ∈ U, approximate weak solutions constructed by
front tracking or vanishing viscosity methods converge to a unique entropy
solution u = Stu0 of (2.5), with the map St : U→ U forming a semi-group
that satisfies

‖Stu0 − Stv0‖L1(R) ≤ L‖u0 − v0‖L1(R). (2.7)

For the general case of entropy solutions, the above result has been ex-
tended by Bressan, Crasta and Piccoli (2000) to obtain the following global
uniqueness result.

Theorem 2.7. Let u ∈ C([0, T ], U) be an entropy solution to (2.5) which
satisfies the following tame oscillation condition: there exist constants C,
λ > 0 such that, for every x ∈ R and every t, h > 0, we have

|u(x, t+ h)− u(x, t)| ≤ C · TV[x−λh,x+λh](u(·, t)). (2.8)

Then u(·, t) = Stu0. In particular, the entropy solution is unique.

The assumption of initial data with sufficiently small total variation seems
to be an essential requirement for the existence of general one-dimensional
systems of conservation laws. This assumption can be relaxed, however,
for global existence results of special classes of such systems, for example,
2 × 2 systems (N = 2 in (2.5)) or systems in the Temple class (Bressan
2000). As in the scalar case, the common approach to establishing existence
in these cases is that of bounded variation compactness arguments and
their refinement (in particular, compensated compactness arguments: see
Tartar 1979), which allow the passage of a strong limit in the non-linear
flux limn→∞ f(uεn) = f(u∞).

2.1.3. Multi-dimensional systems

Compared to the scalar case or to one-dimensional systems, there are very
few global existence results for multi-dimensional systems. Local (in time)
existence and uniqueness results for a system of conservation laws (2.1)
with a strictly convex entropy were obtained by Kato (1975). Global exist-
ence results for entropy solutions have only been obtained for very special
systems; see Benzoni-Gavage and Serre (2007) for a comprehensive review.
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Notable exceptions are the striking results of Chen and Feldman (2010)
addressing the von Neumann conjecture concerning the global existence
of steady two-dimensional Euler equations. However, there are no similar
global existence results for physically realistic systems of multi-dimensional
time-dependent conservation laws. Indeed, except for those special cases,
there does not seem to exist an invariant regularity space which propagates
compactness for general classes of multi-dimensional systems of conserva-
tion laws (d ≥ 2), and the question of existence of weak solutions for such
systems remains wide open.

2.1.4. Non-uniqueness
The above-mentioned results cover the global existence and uniqueness of
entropy solutions for scalar conservation laws, and for one-dimensional sys-
tems (with small initial variation). However, there are no global existence
results for general classes of multi-dimensional systems, and there are severe
difficulties with the question of uniqueness.

Adapting the original construction of De Lellis and Székelyhidi Jr (2009),
a recent paper by Chiodaroli, De Lellis and Kreml (2015) proves the non-
uniqueness of solutions of the two-dimensional isentropic Euler equations.
This is a reduced system of the compressible Euler equations (1.1), where
the density ρ and velocity v = (v1, v2)> are governed by the system of
conservation law (2.1) with

u =

 ρ
ρv1

ρv2

, f j(u) =

 ρvj
ρv1vj + pδ1j

ρv2vj + pδ2j

, j = 1, 2. (2.9)

Here, the closure for the pressure is given by the γ-law p(ρ) = κργ . The
system is equipped with an entropy pair (E, v(E + γp)), where the total
energy

E =
1

2

(
ρ|v|2 +

p

γ − 1

)
serves as the convex entropy.

Theorem 2.8 (De Lellis and Székelyhidi Jr 2009, Chiodaroli et al.
2015). There exist initial data u0 ∈ L1(R2,R3) for which the two-dimen-
sional isentropic Euler equations (2.9) have infinitely many entropy solu-
tions.

In principle, this construction can be extended to the full compressible
Euler system (1.1).

2.2. Incompressible Euler equations

We begin with a brief overview of the incompressible Euler equations (1.3).
A more detailed study can be found in standard textbooks (Chorin and
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Marsden 1993, Marchioro and Pulvirenti 1994, Chemin 1998, Majda and
Bertozzi 2002, Lions 1996) or review papers (Constantin 2007, Bardos and
Titi 2007, Bardos and Titi 2013) and the references therein. We first ob-
serve that the incompressible Euler equations (1.3) can be expressed as
a system of d-dimensional conservation laws (2.1) for the velocity field
u = (u1, . . . , ud)

> : D → Rd:

∂tu+∇x · f(u) = 0, f j(u) = P(uju), j = 1, . . . , d, (x, t) ∈ D × R+.
(2.10)

For simplicity we focus on either the Cauchy problem, D = Rd, or the case of
periodic boundary conditions over the d-dimensional torus, D = Td. Here,
P := I − ∇x∆−1divx is the Leray projection onto the space of divergence-
free fields. This reflects an essential feature: the global character of the
incompressible Euler fluxes.

Next, we introduce the notion of weak solutions for the incompressible
Euler equations.

Definition 2.9. A divergence-free function

u ∈ L2([0, T ];D) ∩ C([0, T ];L2
w(D))

is a weak solution of the incompressible Euler equations (1.3) if∫ T

0

∫
D

[u(x, t) · ∂tϕ(x, t) + (u⊗ u) : ∇xϕ] dx dt+

∫
D
u0(x) · ϕ(x, 0) dx = 0

(2.11)

is satisfied for every divergence-free test function ϕ ∈ C∞c ([0, T )×D).

Note that (2.11) results from considering (1.3) in the sense of distribu-
tions, with the divergence-free condition on the test function ϕ eliminating
the pressure term, thus demonstrating that it merely serves as a Lagrange
multiplier to enforce the divergence-free constraint in (1.3).

Weak solutions (2.11) need not be unique, and therefore additional ad-
missibility criteria or exclusion principles must be prescribed in order to
select physically relevant solutions. One such universal admissibility cri-
terion follows.

Definition 2.10. A weak solution u of the incompressible Euler equations
(1.3) is admissible if it also satisfies the energy inequality∫

D
|u(x, t)|2 dx ≤

∫
D
|u0(x)|2 dx, for all t ∈ [0, T ]. (2.12)

Thus, admissibility requires that kinetic energy associated with weak solu-
tions can only dissipate in time, in complete analogy with the admissibility
criterion of entropy dissipation (2.3) for weak solutions of non-linear con-
servation laws.
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A key quantity of interest in the incompressible Euler equations is the
vorticity ω := curl(u), which formally evolves according to

ωt + (u · ∇x)ω = −(ω · ∇x)u, (2.13)

where the velocity can be recovered from the vorticity, ω  u{ω}, in terms
of the streamfunction (Majda and Bertozzi 2002, Section 2). Both the-
oretical and numerical studies of the incompressible Euler equations (1.3)
have alternated between the use of the velocity–pressure and the vorticity–
streamfunction forms of the equations.

2.2.1. Classical well-posedness results
One of the earliest theoretical results about the incompressible Euler equa-
tions pertains to the following result of Lichtenstein (1925) on the short-time
existence of classical solutions,

Theorem 2.11 (Lichtenstein 1925). Consider the divergence-free ini-
tial data u0 ∈ C1,α(D) with 0 < α < 1. Then there exists a time T ∗ > 0
depending on u0, a velocity field

u ∈ Cb([0, T ∗];C1,α(D)) ∩ C1([0, T ∗];C0,α(D))

and pressure p ∈ Cb([0, T ∗];C1,α(D)), such that the pair (u, p)) solves the
incompressible Euler equations (1.3) in the time interval [0, T ∗], in the clas-
sical sense.

Note that the above short-time existence result is valid for both two and
three space dimensions. The question of whether one can extend this short-
time existence for all times depends on the uniform bound∫ T

0
‖∇u(·, t)‖L∞ dt <∞.

In fact, certain linear combinations of the entries of ∇u will suffice for global
regularity. The following celebrated result of Beale, Kato and Majda (1984)
provides a sufficient condition for the interval of existence, which reflects
the prominent role of the vorticity.

Theorem 2.12 (Beale et al. 1984). Let

u ∈ C([0, T );Hs(D)3) ∩ C1([0, T ];Hs−1(D)3),

with s > 5/2, be a smooth solution of the three-dimensional Euler equations
(1.3) in the time interval [0, T ), and assume that∫ T

0
‖curl(u(·, t))‖L∞(D) dt <∞. (2.14)

Then u can be uniquely extended to a smooth solution in the interval [0, T+
δ) for some δ > 0.
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Thus, it is enough to control the vorticity ω = curl(u), rather than the
full gradient ∇u, in order to obtain global solutions. In fact, an even more
refined result (Constantin, Fefferman and Majda 1996) shows that control of
variations in the direction of the vorticity ω suffices to extend the interval
of existence of regular solutions. Obtaining an L∞ bound on the three-
dimensional vorticity, however, appears to be very difficult, due to possible
vortex stretching driven by the right-hand side of the vorticity equation
(2.13). In fact, the question of whether smooth solutions of the incompress-
ible Euler equations blow up in finite time is still open. Numerical results
(see Hou 2008 and references therein) do suggest finite-time blow-up, par-
ticularly for problems with no-penetration boundary conditions.

The vorticity equation becomes considerably simpler in the case of two
space dimensions, precisely because the vortex stretching term on the right-
hand side of (2.13) vanishes. Consequently, one obtains the following global
existence and uniqueness results for two-dimensional weak solutions.

Theorem 2.13 (Yudovich 1963). Consider divergence-free initial data
u0 ∈ L2(D,R2) with initial vorticity ω0 = curl(u0) ∈ L∞(D,R2). Then
there exists a unique admissible weak solution of the two-dimensional in-
compressible Euler equations (1.3) for all times t > 0.

For the mere existence of two-dimensional weak solutions, one can relax
the assumption on initial regularity by considering larger classes of initial
vorticities, ω0 ∈ X, which are compact in H−1(D), including X = Lp(D)
and the larger Morrey spaces X = Mp(D) with p > 1 or Lorentz space
X = L(1,2)(D) (Lopes Filho, Nussenzveig and Tadmor 2000). This brings
us to the ‘largest’ borderline space of Radon measures X = M(D) which,
among others, realizes initial vortex sheets (DiPerna and Majda 1987b). In
this context, we recall the celebrated existence result of Delort.

Theorem 2.14 (Delort 1991). Consider the incompressible Euler equa-
tions (1.3) in two dimensions, subject to initial vorticity in the so-called
Delort class of bounded measures with a distinguished (say, positive) sign,
ω0 ∈ X := H−1(D) ∩M+(D). Then there exists a weak solution u that
remains in the Delort class, ω ∈ L∞((0, T ), X).

The proof is based on mollifying the initial data, resulting in the gener-
ation of a sequence of approximate (smooth) solutions to the Euler equa-
tions. The resulting vorticity will be of a definite sign as it satisfies a max-
imum principle. The strong compactness of the approximating sequence is
based on localized L1 control of the vorticity and uses the fact that the
vorticity is of definite sign in a crucial manner; see also Majda (1993) and
Schochet (1995). The question of uniqueness of solutions in the Delort class
remains open.
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2.2.2. Non-uniqueness

A recent series of remarkable results by De Lellis and Székelyhidi prove the
non-uniqueness of admissible weak solutions for the incompressible Euler
equations.

Theorem 2.15 (De Lellis and Székelyhidi Jr 2009, 2010). Consider
the incompressible Euler equations on a domain D ⊂ Rd for d = 2, 3, and
let T > 0. There exist initial data u0 ∈ L2(D,R2) ∩ L∞(D,R2) for which
there are infinitely many admissible weak solutions u ∈ L2((0, T ) × D)) ∩
C([0, T );L2

w(D)). Moreover, there are infinitely many such initial data u0.

The results of De Lellis and Székelyhidi significantly extend the construc-
tions of Scheffer (1993) and Shnirelman (2000) that led to the realization
of compactly supported (in space-time) non-trivial solutions of the Euler
equations. This set of infinitely many admissible weak solutions is based
on an intricate construction that adds very high-frequency oscillations in
an iterative procedure to construct a convergent sequence of approximate
solutions of the Euler equations. The class of initial data, called wild initial
data, is very rich and forms a dense subset of L2. In particular, vortex
sheets are admissible wild initial data in this sense, although the resulting
solutions no longer lie in the Delort class. Recent results by Buckmaster,
De Lellis, Isett and Székelyhidi Jr (2015) have further refined the original
construction of De Lellis and Székelyhidi Jr (2009), and demonstrate the
existence of infinitely many admissible Hölder-continuous weak solutions of
the Euler equations.

3. Measure-valued solutions

A standard paradigm to establish the existence of weak solutions of non-
linear conservation laws (including the non-local fluxes of incompressible
Euler equations) is based on propagation of compactness in appropriate
regularity spaces, St : X → X, so that the construction of appropriate
approximate solutions, {uε(·, t) = Stu

ε
0} ⊂ X, admits strongly conver-

ging subsequences limn→∞ u
εn = u∞ which allow the passage to a limit

inside the non-linear flux, limn→∞ f(uεn) = f(u∞); see, for example, Tad-
mor (2012, Section 4.4). So far, such regularity spaces have been mainly
limited to scalar equations and one-dimensional systems. In particular,
multi-dimensional conservation laws which involve d ≥ 2 spatial dimen-
sions and three-dimensional incompressible Euler equations (or even the
two-dimensional equations with ‘rough’ data), do not seem to admit known
regularity space, which propagates the (compensated) compactness required
to handle their respective non-linearities. Instead, we can resort to the en-
tropy bound

∫
D η(uε(x, t)) dx <∞ and the corresponding L2 energy bound

of (approximate) Euler weak solutions, ‖uε(·, t)‖L2(D) <∞, to conclude the
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existence of a subsequence uεn with a weak limit, uεn
n→∞
⇀ u∞. This raises

the question of the corresponding weak limit f(uεn).

3.1. Young measures

In this section we present a brief but self-contained overview of the theory
of Young measures. Young measures were introduced in the context of
PDEs by Tartar (1979) in order to represent weak* limits of L∞ bounded
sequences of highly oscillatory functions, in the spirit of L. C. Young (1969).
The early studies of Tartar and Murat (see Murat 1978, 1979, 1981) were
generalized by Schonbek (1982) and Ball (1989) for sequences of measurable
functions, and further generalization has been provided by Fjordholm et al.
(2016a) for sequences of Young measures which do not leak mass at infinity.
Here, we will review some of the material presented in the aforementioned
references.

3.1.1. Probability measures

We let M(RN ) denote the set of finite, signed Radon measures on RN
(Folland 1999, Chapter 7). Let C0(RN ) be the space of continuous real-
valued functions on RN which vanish at infinity, equipped with the su-
premum norm. By the Riesz–Kakutani theorem, M(RN ) can be identified
with the dual space of C0(RN ) via the pairing

〈µ, g〉 =

∫
RN

g(ξ) dµ(ξ), µ ∈M(RN ), g ∈ C0(RN )

(Folland 1999, Section 7.3). We do not distinguish between these two equi-
valent definitions of M. By a slight abuse of notation, we shall sometimes
write

〈µ, g(ξ)〉 =

∫
RN

g(ξ) dµ(ξ).

For instance, the first moment of µ is

〈µ, ξ〉 =

∫
RN

ξ dµ(ξ).

The duality between C0(RN ) and M(RN ) gives rise to a topology on
M(RN ), that of weak* convergence. A sequence µn ∈ M(RN ) converges
weak* to µ ∈ M(RN ) provided 〈µn, g〉 → 〈µ, g〉 for all g ∈ C0(RN ). (This
is also called vague convergence: see Folland 1999.)

The set of probability measures on RN is the subset

P(RN ) :=
{
µ ∈M(RN ) : µ ≥ 0, µ(RN ) = 1

}
.
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3.1.2. Young measures

A Young measure from D ⊂ Rk to RN is a function which maps z ∈ D
to a probability measure on RN . More precisely, a Young measure is a
weak*-measurable map ν : D → P(RN ), meaning that:

The mapping z 7→ 〈νz, g〉 is Borel-measurable for every g ∈ C0(RN ).

The set of all Young measures from D into RN is denoted by Y(D,RN ).
In the particular context of our discussion above, Young measures provide

a complete description for bounded sequences of approximate solutions
un = uεn(x, t) with weak* limits un(x, t) ⇀ u∞(x, t). We ask what can be
said about the corresponding weak* limits f(un) ⇀ f∞ for all continuous
functions f ∈ C0(RN ). Fix (x, t) ∈ D×R+. Since f∞(x, t) depends linearly
and positively on f ∈ C0, it follows that there exists a Young measure νx,t
such that f∞ = 〈νx,t, f(ξ)〉.

Example 3.1. The most familiar example of Young measures are the so-
called atomic Young measures associated with Borel-measurable functions
u : D → RN :

νz = δu(z). (3.1)

The strong convergence un → u∞ is characterized by such atomic measures:

f(un(x, t))→ 〈δu∞(x,t), f〉.

This is in sharp contrast to the persistence of oscillations in weak conver-
gence.

Example 3.2. Let u : D → RN be a bounded function on the 2π-periodic
torus D = Tk, and consider un(x) = u(nx). Then

un ⇀ u∞ =
1

(2π)k

∫
Tk

u(x) dx,

and hence the corresponding weak* limits f∞ differ from f(u∞),

f(un) ⇀ f∞ =
1

(2π)k

∫
Tk

f(u(x)) dx,

and are described by the Young measure

〈ν, f〉 = (2π)−k
∫
Tk

f(u(x)) dx.

The Young measure ν ∈ Y(D,RN ) is uniformly bounded if there is a
compact set K ⊂ RN such that supp νz ⊂ K for almost every z ∈ D. Note
that if ν is atomic, ν = δu, then ν is uniformly bounded if and only if
‖u‖L∞(D) <∞.
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Just as for the space M(RN ), there is a natural topology on Y(D,RN ):

a sequence νn ∈ Y(D,RN ) converges weak* to ν ∈ Y(D,RN ) if 〈νn, g〉 ∗⇀
〈ν, g〉 in L∞(D) for all g ∈ C0(RN ), that is,∫

D
ϕ(z)〈νnz , g〉dz →

∫
D
ϕ(z)〈νz, g〉dz for all ϕ ∈ L1(D).

The fundamental theorem of Young measures was first introduced by Tar-
tar for L∞ bounded sequences (Tartar 1979) and then generalized by Schon-
bek (1982) and Ball (1989) for sequences of measurable functions. A fur-
ther generalization has been presented by Fjordholm et al. (2016a): every
sequence νn ∈ Y(D,RN ) which does not ‘leak mass at infinity’ (condition
(3.2)) has a weak* convergent subsequence.

Theorem 3.3. Let νn ∈ Y(D,RN ) for n ∈ N be a sequence of Young
measures. Then there exists a subsequence νm which converges weak* to a
non-negative measure-valued function ν : D →M+(RN ) in the sense that

(i) 〈νmz , g〉
∗
⇀ 〈ν, g〉 in L∞(D) for all g ∈ C0(RN ),

and moreover satisfies

(ii) ‖νz‖M(RN ) ≤ 1 for a.e. z ∈ D, and

(iii) if K ⊂ RN is closed and supp νnz ⊂ K for a.e. z ∈ D and n large, then
supp νz ⊂ K for a.e. z ∈ D.

Suppose further that there exists a non-negative function κ ∈ C(RN ) with
lim|ξ|→∞ κ(ξ) =∞ such that

sup
n

∫
D
〈νnz , κ〉dz <∞. (3.2)

Then

(iv) ‖νz‖M(RN ) = 1 for a.e. z ∈ D,

whence ν ∈ Y(D,RN ).

The proof of this theorem is given in Appendix A.1 of Fjordholm et al.
(2016a).

3.2. Measure-valued solutions for non-linear systems of conservation laws

Given the current lack of existence and uniqueness results for entropy weak
solutions, as well as the lack of convergence reported in Section 1, we con-
sider the different notion of entropy measure-valued solutions. As stated
earlier, entropy measure-valued solutions for non-linear systems of conser-
vation laws were introduced by DiPerna (1985). Here, we follow the present-
ation of Fjordholm et al. (2016a).
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Definition 3.4. Let σ ∈ Y(Rd, RN ) be uniformly bounded initial data. A
family of uniformly bounded Young measures νt ∈ Y(Rd, RN ) is a measure-
valued solution (MV solution) of (2.1) with data σ if∫

R+

∫
Rd

(
〈νx,t, ξ〉∂tϕ+ 〈νx,t, f(ξ)〉 · ∇ϕ

)
dx dt+

∫
Rd

ϕ(x, 0)〈σx, ξ〉dx = 0

(3.3)
for all ϕ ∈ C∞c (Ω).

Note that we allow for uncertainty in the initial data by considering gen-
eral initial Young measure σ, rather than restricting attention to atomic
initial data σ = δu0 .

As in the case of weak solutions, we need to impose additional admissibil-
ity criteria to enforce uniqueness of the measure-valued solution (3.3). This
brings us to the following entropy inequalities.

Definition 3.5. A measure-valued solution ν is an entropy measure-valued
solution (EMV solution) of (2.1) if ν satisfies the following entropy inequal-
ity for all entropy pairs (η, q):∫

R+

∫
Rd

(
〈νx,t, η(ξ)〉∂tϕ(x, t) + 〈νx,t, q(ξ)〉 · ∇xϕ(x, t)

)
dx dt

+

∫
Rd

ϕ(x, 0)〈σx, η〉dx ≥ 0 (3.4)

for all non-negative test functions 0 ≤ ϕ ∈ C1
c (Rd × R+).

Remark 3.6. Note that we have assumed that the Young measure ν in
Definitions 3.4 and 3.5 is uniformly bounded. In particular, we will implicitly
assume a uniform L∞ bound on any sequences that generate the entropy
measure-valued solution ν.

Remark 3.7. The formulation (3.3) imposes the initial data σ in a very
weak manner. Roughly speaking, (3.3) requires limt→0〈νx,t, ξ〉 = 〈σx, ξ〉,
that is, the barycentres (or means) of νx,0 and σx should coincide. The
requirement that the barycentres of these two measures should coincide
will, together with the entropy condition (3.4), imply that the measures
themselves coincide only if the initial data are atomic. Extensions to more
general classes of initial data are postponed to Section 9.

Among the many examples of EMVs for systems of conservation laws, we
mention Kröner and Zajaczkowski (1996) for compressible Euler equations,
Gwiazda (2005) for isentropic Euler equations, Carrillo, Feireisl, Gwiazda
and Swierczewska-Gwiazda (2015) for ‘flocking hydrodynamics’, E and Kohn
(1991) for hyperbolic systems with linearly degenerate fields, and Málek
et al. (1996) for non-Newtonian fluids.
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The existence of EMV solutions for general multi-dimensional systems
of conservation laws will be established as a proper limit of a numerical
approximation procedure outlined in the next section. Uniqueness will be
discussed in Section 9.

3.3. Generalized measure-valued solution for incompressible Euler
equations

A straightforward definition of measure-valued solutions for the incom-
pressible Euler equations (1.3) will seek divergence-free Young measures
νt ∈ Y(D, Rd), which satisfy∫

R+

∫
D

(
〈νx,t, ξ〉∂tϕ+ 〈νx,t, ξ ⊗ ξ〉 : ∇xϕ(x, t)

)
dx dt

+

∫
D
u0(x)ϕ(x, 0) dx = 0 (3.5)

for all ϕ ∈ C∞c (D × [0,∞);RN ) with ∇x · ϕ = 0, and∫
R+

∫
D
〈νx,t, ξ〉 · ∇xψ(x, t) dx dt = 0

for all ψ ∈ C∞c (D × [0,∞)).
The distinctive feature of (approximate) solutions to the incompressible

Euler equations is their L2 energy bound, ‖uεn(·, t)‖L2(D) <∞. In contrast
to general systems of conservation laws, however, one should not expect for
higher Lp bounds, p > 2, and in particular un = uεn need not be uniformly
bounded in any such Lp space. Consequently, Young measures describe
the oscillations present in the weak limits f(un) for all functions f with less
than quadratic growth, |f(u)| = o(|u|2) as |u| → ∞, but there is a possibility
of mass leakage at infinity for quadratic f . This is precisely the case one
encounters with the quadratic flux in incompressible Euler equations u⊗ u
(or f j(u) = P(uju) in (2.10)).

3.3.1. Concentration and generalized Young measures

We begin with the following corollary of Theorem 3.3 (see Remark 2 of Ball
1989). Let N ∈ N, fix a bounded D ⊂ Rk and let {uε}ε>0 be an Lp bounded
sequence uε ∈ Lp(D,RN ) for some p > 1. Then, there is a subsequence uεn

and a Young measure ν ∈ Y(D,RN ) such that

g(uεn)
∗
⇀ 〈ν, g〉 in M(D) as n→∞

for all g with growth strictly slower than |u|p, namely,∫
D
ϕ(x)g(uεn(x)) dx =

∫
D
ϕ(x)〈νx, g〉 dx
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for all g of the form g(u) = (1 + |u|p)g0(u) with g0 ∈ C0(RN ). The above
result does not address the question of convergence of g(uε) for g with
growth equal to |u|p,

∃gb ∈ Cb(RN ) such that g(u) = (1 + |u|p)gb(u) for all u ∈ RN . (3.6)

What can go wrong in such cases is that uε can concentrate mass at a rate
of |uε|p as ε → 0, so that there exist sets Kε ⊂ D of Lebesgue measure
|Kε| → 0 with ∫

Kε

|uε(x)|p dx ≥ c for all ε > 0 (3.7a)

for some c > 0, while for any q < p we have∫
Kε

|uε(x)|q dx ≤
(∫

Kε

|uε(x)|p dx

)q/p
|Kε|p/(p−q) ≤ C|Kε|p/(p−q) → 0

(3.7b)

as ε → 0. Thus, the concentration of mass is not detected by functions
behaving like |u|q for q < p. This scenario may be encountered in the
setting of systems of conservation laws (2.1) (and the incompressible Euler
equations (1.3)), with a generic L2 bound ‖u(·, t)‖L2(Rd) ≤ C. We can view
{u(·, t)}t≥0 as a sequence of functions indexed by t, such that u(·, t) might
exhibit concentration of mass at a rate of |u|2 as t → T for some T > 0,
in the sense that there are spatial subsets Kt ⊂ Rd of Lebesgue measure
|Kt| → 0 as t→ T such that (cf. (3.7a))∫

Kt

|u(x, t)|2 dx ≥ c > 0 for all t < T.

Example 3.8. Let T = 1 and

u(x, t) :=


1√

1− t
if |x| < 1− t,

0 else,

for 0 ≤ t ≤ 1.

Then, for t < 1, ∫
R
|u(x, t)|2 dx =

∫ 1−t

−(1−t)
|u(x, t)|2 dx ≡ 2.

Hence, if Kt := [−(1− t), 1− t] then (3.7a) holds with p = 2, c = 2, while∫
R
|u(x, t)|q dx = 2(1− t)1−q/2 →

{
0 if q < 2,

∞ if q > 2,
as t→ 1.

Since u(x, t) → 0 as t → 1 for every x ∈ R, the Young measure associated
with the sequence {u(·, t)}t<1 is simply νx ≡ δ0, but clearly

∫
R |u(x, t)|2 dx

does not converge to
∫
R〈νx, |ξ|

2〉dx = 0.
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Given the above discussion, we need a framework to describe the lim-
its of functions (or, more generally, Young measures) that exhibit both
oscillations as well as concentration. General frameworks which provide
a detailed description of both oscillations and concentrations include Tar-
tar’s H-measures (Tartar 1990) and Gérard’s microlocal defect measures
(Gérard 1991). Here we use the notion of generalized Young measures,
introduced by DiPerna and Majda (1987a) precisely to address the question
of concentration in the context of the incompressible Euler equations. We
follow the general framework of Alibert and Bouchitté (1997).

Definition 3.9 (Alibert and Bouchitté 1997, Székelyhidi Jr and
Wiedemann 2012). Let D be an open set in Euclidean space, and let
SN−1 denote the unit sphere in RN . A generalized Young measure on D is
a triple (ν, λ, ν∞) consisting of a Young measure ν : D → P(RN ), a measure
λ ∈ M+(D) which is singular with respect to Lebesgue measure, and a
weak*-measurable map ν∞ : D → P(SN−1) defined for λ-a.e. z ∈ D. The
objects ν, λ and ν∞ are called the oscillation measure, the concentration
measure and the concentration-angle measure, respectively.

3.3.2. Convergence of L1 bounded sequence of functions

For the sake of notational simplicity we will consider sequences of functions
which are bounded in L1(D), and study functions g with at most linear
growth, that is, (3.6) with p = 1. The general setting is considered in
Section 3.3.3. Here and below, D denotes an arbitrary open set in Euclidean
space, and L will denote Lebesgue measure on D.

We let B := {z ∈ RN : |z| < 1} denote the open unit ball in RN , and B̄
its closure. Let C(E) be the space of continuous, real-valued functions on
E. We can identify C(D × RN ) with C(D ×B) via

g̃(x, z) := g

(
x,

z

1− |z|

)
(1− |z|), (x, z) ∈ D ×B. (3.8)

Note that if g has linear growth (i.e., it satisfies (3.6) with p = 1) then
g̃ ∈ Cb(D×B). We let C1 denote the set of those g ∈ C(D×B) with linear
growth for which g̃ can be extended to a continuous function on D × B̄:

C1 :=
{
g ∈ C(D × RN ) : ∃ Φ ∈ C(D × B̄) such that Φ

∣∣
D×B = g̃

}
.

By a slight abuse of notation, we denote this unique extension by g̃ ∈ C(D×
B̄), for g ∈ C1. The recession function of g is defined by g∞ := g̃

∣∣
D×SN−1 ,

the restriction of g̃ to the unit sphere SN−1 = ∂B. Thus, for g ∈ C1,

g̃(x, z) =

g
(
x,

z

1− |z|

)
(1− |z|) if z ∈ B,

g∞(x, z) if x ∈ SN−1.
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Conversely, for Φ ∈ C(D × B̄), we define the inverse operation

Φ̂(x, u) := Φ

(
x,

u

1 + |u|

)
(1 + |u|), (x, u) ∈ D × RN . (3.9)

Then Φ̂ ∈ C1, and in particular, ̂̃g = g for all g ∈ C1. Clearly, C0(D×RN ) ⊂
C1, and if g ∈ C0(D × RN ) then g∞ ≡ 0.

Theorem 3.10 (Alibert and Bouchitté 1997). Let {un}n⊂L1(D,RN )
be a sequence of functions such that∫

D
|un(x)| dx ≤ C for all n. (3.10)

Then there exists a subsequence, still denoted {un}n, and a generalized
Young measure (ν, λ, ν∞) such that

g(un)L
∗
⇀ 〈ν, g〉L + 〈ν∞, g∞〉λ in M(D) (3.11)

for all g ∈ C1, that is,∫
D
ϕ(x)g(x, un) dx→∫

D
ϕ(x)

∫
RN

g(x, u) dνx(u) dx+

∫
D
ϕ(x)

∫
SN−1

g∞(x, z) dν∞x (z) dλ(x)

for all ϕ ∈ C0(D).

3.3.3. Convergence of Lp bounded functions
Although the framework described in the previous section only deals with
sequences of Young measures (or, as a particular case, functions) that are
L1 bounded, this theory may be easily extended to Lp bounds as follows.

Fix p ≥ 1. The Lp recession function g∞ of a function g ∈ C(D ×RN ) is
defined as

g∞(x, z) := lim
s→∞

g(x, sz)

sp
, z ∈ SN−1 (3.12)

(provided the limit exists). We define Cp as

Cp :=
{
g ∈ C(D × RN ) : g(x, u) = g1(x, u)|u|p−1 for some g1 ∈ C1

}
.

Corollary 3.11. Let {un}n be a sequence of functions such that∫
D
|un|p dx ≤ C for all n (3.13)

for some p ≥ 1. Then there exists a subsequence, still denoted {un}n, and
a generalized Young measure (ν, λ, ν∞) such that

g(un)L
∗
⇀ 〈ν, g〉L + 〈ν∞, g∞〉λ in M(D) (3.14)

for all g ∈ Cp.
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Proof. Define ũn := un|un|p−1. Then ũn satisfies the integrability condi-

tion (3.10). Let (ν̃, λ̃, ν̃∞) be the generalized Young measure associated with
un. For a fixed g ∈ Cp, let g̃(x, ũ) := g(x, ũ|ũ|1/p−1), and define (ν, λ, ν∞) as

〈νx, g〉 :=

∫
RN

g̃(x, ξ̃) dν̃x(ξ̃), ν∞ := ν̃∞, λ := λ̃

for g ∈ C0(RN ). Clearly, both ν and ν∞ are Young measures. We conclude
that

g(x, un) = g̃(x, ũn)
∗
⇀ 〈ν̃, g̃〉L + 〈ν̃∞, g̃∞〉λ̃ = 〈ν, g〉L + 〈ν∞, g∞〉λ.

Theorem 3.10 and Corollary 3.11 can be easily generalized to sequences
of ‘Lp bounded’ Young measures νn : D → P(RN ), such that

〈νnx , |ξ|p〉 =

∫
RN

|ξ|p dνnx (ξ) <∞.

Theorem 3.12. Let p ≥ 1 and let {νn}n be a sequence of Young measures
such that ∫

D
〈νnx , |ξ|p〉 dx ≤ C. (3.15)

Then there exists a subsequence, still denoted {νn}n, and a generalized
Young measure (ν, λ, ν∞) such that

〈νn, g〉L ∗
⇀ 〈ν, g〉L + 〈ν∞, g∞〉m in M(D)

for all g ∈ Cp, that is,∫
D
ϕ(x)

∫
RN

g(x, ξ) dνnx (ξ) dx→∫
D
ϕ(x)

∫
RN

g(x, ξ) dνx(ξ) dx+

∫
D
ϕ(x)

∫
SN−1

g∞(x, z) dν∞x (z) dλ(x)

for all ϕ ∈ C0(D).

The proof of this theorem is presented in the Appendix.

3.3.4. Generalized measure-valued solutions of incompressible Euler
equations

Equipped with above notation, we define generalized measure-valued solu-
tions of the incompressible Euler equations as follows.

Definition 3.13. A family of generalized Young measures (νt, λt, ν
∞
t ) on

D, parametrized by t ≥ 0, is a measure-valued solution of the incompressible
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Euler equations (1.3) with initial data u0 if it satisfies∫
R+

∫
D
〈νx,t, ξ〉∂tϕ(x, t) + 〈νx,t, ξ ⊗ ξ〉 : ∇xϕ(x, t) dx dt (3.16a)

+

∫
R+

∫
D
〈ν∞x,t, θ ⊗ θ〉 : ∇xϕ(x, t) dλt(x) dt+

∫
D
u0(x)ϕ(x, 0) dx = 0

for all ϕ ∈ C∞c (D × R+; RN ) with ∇x · ϕ = 0, and∫ ∞
0

∫
D
〈νx,t, ξ〉 · ∇xψ(x, t) dx dt = 0 (3.16b)

for all ψ ∈ C∞c (D × [0,∞)).

Note that if the Young measure is atomic, that is, νx,t = δu(x,t) and λ ≡
0, then the definition of measure-valued solutions reduces to the standard
notion of weak solutions (2.11).

The global existence of measure-valued solutions was shown by DiPerna
and Majda (1987a).

Theorem 3.14 (DiPerna and Majda 1987a). LetD ⊂ Rd for d = 2, 3,
and consider the incompressible Euler equations (1.3) subject to initial data
u0 ∈ L2(D). Then they admit a measure-valued solution so that (3.16)
holds. Moreover, this measure-valued solution is the weak* limit (up to a
subsequence) of a sequence of Leray–Hopf weak solutions of the incompress-
ible Navier–Stokes equations with vanishing viscosity.

Thus, measure-valued solutions are a framework of solutions for which
global existence is guaranteed. Furthermore, they do characterize the (phys-
ically relevant) zero-viscosity limit of the Navier–Stokes equations, thus ap-
proximating very high Reynolds number flows. On the other hand, the
question of uniqueness of measure-valued solutions is more delicate. At the
very least, we require the following notion of admissibility.

Definition 3.15. A measure-valued solution (νt, λt, ν
∞
t ) with initial data

u0 ∈ L2(D,R2) is called admissible if∫
D
〈νx,t, |ξ|2〉 dx+ λt(D) ≤

∫
D
|u0(x)|2 dx (3.17)

for almost all t ∈ [0,∞).

Remark 3.16. The L2 recession function of the function g(ξ) = |ξ|2 is
g∞ ≡ 1 (see Section 3.3.3), so the ‘squared L2 norm’ of (νt, λt, ν

∞
t ) is∫

D
〈νx,t, g〉 dx+

∫
D
〈ν∞x,t, g∞〉dλt(x) =

∫
D
〈νx,t, |ξ|2〉dx+ λt(D).
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Hence the left-hand side of (3.17).

Given the fact that weak solutions are also measure-valued solutions (in
particular, atomic MV solutions), Theorem 2.15 implies that there are also
infinitely many admissible measure-valued solutions of the incompressible
Euler equations. However, one can prove the following MV-strong unique-
ness result.

Theorem 3.17 (Brenier, De Lellis and Székelyhidi Jr 2011). Let
u ∈ C([0, T ];L2(D,Rd)) (with d = 2 or 3) be a weak solution of (1.3) with∫ T

0
‖∇u+∇u>‖L∞ dt <∞,

and let (νt, λt, ν
∞
t ) be an admissible measure-valued solution with initial

data ν0 = δu0(x) and u0 ∈ L2(D). Then νx,t = δu(x,t) and λ = 0, that is, v
is the unique admissible MV solution.

Thus, admissible measure-valued solutions of the Euler equations coin-
cide with classical solutions when they exist. The question of uniqueness
(stability) of admissible measure-valued solutions is further investigated in
Section 9.

3.4. Generalized measure-valued solutions for systems of conservation laws

It is possible to extend the notion of generalized entropy measure-valued
solutions for systems of conservation laws (2.1) without an L∞ bound. The
main feature here is that the Lp growth of the flux f ,

|f(u)| ≤ C(1 + |u|p) for all u ∈ RN , (3.18)

is controlled by an Lp growth of an entropy bound. To this end, we assume
that (2.1) is equipped with an entropy function η(u) with ‘Lp growth’ for
some p > 1, in the sense that there exist c1, c2 > 0 such that

c1|u|p ≤ η(u) ≤ c2|u|p for all u ∈ RN . (3.19)

The entropy condition (2.3) then leads to a uniform Lp bound

ess sup
t∈R+

‖u(t)‖Lp(Rd) ≤ C. (3.20)

The Lp boundedness of u then implies that f(u) is integrable. Using the
machinery of generalized Young measures we proceed with the following no-
tion of generalized entropy measure-valued solution subject to initial Young
measure data σ.
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Definition 3.18. Let σ ∈ Y(Rd,RN ) be the initial data. A generalized
Young measure (νt, λt, ν

∞
t ) on Rd, parametrized by t ∈ R+, is a measure-

valued solution of (2.1) with data σ if∫
R+

[∫
Rd

(
〈νx,t, ξ〉∂tϕ+ 〈νx,t, f〉 · ∇ϕ

)
dx+

∫
Rd

〈ν∞x,t, f∞〉 dλt
]

dt

+

∫
Rd

ϕ(x, 0)〈σx, ξ〉dx = 0 (3.21)

for all ϕ ∈ C∞c (Ω). (Here, f∞ is the Lp recession function of the flux
function f .)

There are infinitely many generalized measure-valued solutions of the
compressible Euler equations. Additional admissibility criteria are required
to rule out non-uniqueness. We begin with the following weak–strong unique-
ness result for the isentropic Euler equations (2.9).

Theorem 3.19 (Gwiazda et al. 2015). Let (ρ, v) ∈W 1,∞×C1([0, T ]×
Td) be a classical solution of the isentropic Euler equations (2.9) with ini-
tial data 0 < c < ρ0 ∈ Lγ(Td), ρ0|v0|2 ∈ L1(Td). Let (νt, λt, ν

∞
t ) be a

generalized measure-valued solution subject to the same initial data. Then
νx,t = δρ,√ρv(x,t) and (λt, ν

∞
t ) ≡ 0, that is, ν is the unique admissible gener-

alized measure-valued solution. Thus, admissible measure-valued solutions
of the Euler equations coincide with strong solutions as long as the latter
exist.

As in the case of weak solutions, we need to impose some additional
admissibility criteria to enforce uniqueness of the measure-valued solution
(3.21). DiPerna (1985) (see also Fjordholm et al. 2016a) imposes a suitable
variant of the entropy condition (2.3). However, as we are working with
generalized Young measures, it may not be possible to interpret the entropy
flux q(u), since q will in general have a speed of growth larger than |u|p as
|u| → ∞. Consequently, we work with the notion of dissipative measure-
valued solutions, as proposed by Demoulini et al. (2012).

Definition 3.20. A measure-valued solution of (2.1) is a dissipative MV
solution if ∫

R+

(∫
Rd

〈νx,t, η〉 dx+

∫
Rd

〈ν∞x,t, η∞〉 dλt(x)

)
dφ

dt
(t) dt

+

∫
Rd

〈σx, η〉φ(0) dx ≥ 0 (3.22)

for all 0 ≤ φ ∈ C∞c (R+).

Note that, formally speaking, the entropy condition (3.22) corresponds
to setting ϕ(x, t) = φ(t) in (2.3). We observe that the assumption (3.22)
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implies that a dissipative measure-valued solution satisfies a generalization
of the admissibility condition for the incompressible Euler equations (Defin-
ition 3.15 with p = 2).

The existence of dissipative measure-valued solutions for generic multi-
dimensional systems of conservation laws (with a strictly convex entropy)
will be obtained in the next section by constructing a dissipative measure-
valued solution using a numerical approximation procedure. Uniqueness
will be discussed in Section 9.

PART TWO

Numerical approximation

In Section 4 we will review a novel algorithm to numerically approximate
admissible measure-valued solutions, introduced by Fjordholm et al. (2016a)
in the context of systems of conservation laws. In Sections 5 and 6 we discuss
the application of this algorithm to systems of conservation laws and the
incompressible Euler equations, respectively. We end Part 2 by presenting
several numerical experiments in Sections 7 and 8.

4. The FKMT algorithm for approximating measure-valued
solutions

In Fjordholm, Käppeli, Mishra and Tadmor (2016a) we propose a novel
algorithm to compute measure-valued solutions. The algorithm can be cast
into a more generic form that allows it to be employed for approximating
measure-valued solutions for any class of PDEs.

4.1. General initial data

Algorithm 4.1. Let the initial data for an underlying time-dependent
PDE be given as a Young measure σ ∈ Y(D,RN ).

Step 1: Let u0 : Ω 7→ Lp(Rd) be a random field on a probability space
(Ω,X,P) with law σ, that is, σ(E) = P(u0(ω) ∈ E).

Step 2: Evolve the initial random field by applying a suitable numerical
scheme, with solution map S∆

t , to the initial data u0(ω) for every ω ∈
Ω, obtaining an approximate random field u∆(ω; ·, t) := S∆

t u0(ω; ·).

Step 3: Define the approximate measure-valued solution ν∆ as the law of
u∆ with respect to P, that is, for all Borel sets E ⊂ RN ,

ν∆
x,t(E) = P(u(ω;x, t) ∈ E).
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It was shown in Fjordholm et al. (2016a, Appendix A.3.1) that ν∆ are
indeed Young measures. The existence of a random field u0 with a given
law σ, as required in Step 1, is guaranteed by the following result.

Lemma 4.2 (Proposition A.3 in Fjordholm et al. 2016a). We let
σ ∈ Y(D, RN ) be a Young measure on D ⊂ Rd. Then there exists a
random field u0 : Ω×D → RN on a probability space (Ω,X,P) such that u
has law σ, in the sense that

σx(E) = P(u0(ω;x) ∈ E)

for any Borel set E ⊂ RN and almost every x ∈ D.

Note that we have not specified the ‘suitable numerical scheme’ S∆
t . In-

stead, Algorithm 4.1 serves as a general recipe for approximating measure-
valued solutions for a large class of problems. Examples of suitable solution
operators S∆

t , mentioned in Step 2, will be provided in subsequent sections.
Depending on the appropriate choice of S∆

t , we will show that the computed
measure-valued solution ν∆ converges to an (admissible) measure-valued
solution as the discretization parameter ∆ is refined.

4.2. Atomic initial data

As mentioned in Section 2, measure-valued solutions will not be unique in
general, when the initial Young measure σ is non-atomic – that is, when σ
cannot be written as σx = δu0(x) for some function u0. This non-uniqueness
holds even for scalar conservation laws; see Fjordholm et al. (2016a, Ex-
ample 3.2) and Section 9. The case of atomic initial data is special as
one has some possibility of uniqueness of admissible measure-valued solu-
tions. In Fjordholm et al. (2016a) we propose the following algorithm to
approximate measure-valued solutions corresponding to atomic initial data
σ = δu0 .

Algorithm 4.3. Let u0 ∈ Lp(Rd,RN ) be the initial data of the underlying
PDE. Fix a number ε > 0.

Step 1: Let X : Ω → Lp(Rd) be a random field on a probability space
(Ω,X,P) such that ‖X(ω)‖Lp(Rd) ≤ 1 P-almost surely. Perturb u0 by
defining

uε0(ω;x) := u0(x) + εX(ω;x).

Let σε be the law of uε0.

Step 2: For each ω ∈ Ω, let u∆,ε(ω; ·, t) := S∆
t u

ε
0(ω), with S∆

t being the
solution operator corresponding to any numerical scheme.

Step 3: Let ν∆,ε be the law of u∆x,ε with respect to P.
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Note that Algorithm 4.3 is a special case of Algorithm 4.1 with u0(ω) =
u0 +εX(ω). We will subsequently show that for suitable choice of numerical
schemes S∆

t , the computed Young measures ν∆,ε converge as ∆, ε → 0 to
an (admissible) measure-valued solution of systems of conservation laws (or
incompressible Euler equations) with atomic initial data δu0 .

4.3. Monte Carlo approximation

The last ingredient in our numerical approximation of measure-valued solu-
tions is to find, and approximate, the random field u0(ω;x) which appears in
Algorithms 4.1 and 4.3. We do this with a Monte Carlo sampling procedure.

Algorithm 4.4. Let ∆ = (∆x1, . . . ,∆xd) denote the grid size parameter
and let M ∈ N. Let σ∆ ∈ Y(Rd,RN ) be the initial Young measure.

Step 1: For some probability space (Ω,X,P), draw M independent and

identically distributed random fields u∆,1
0 , . . . , u∆,M

0 : Ω × Rd → RN ,
all with the same law σ∆.

Step 2: For each k and for a fixed ω ∈ Ω, use the finite difference scheme
(5.1a) to numerically approximate the conservation law (2.1) with ini-

tial data u∆,k
0 (ω). Denote u∆,k(ω; ·, t) = S∆

t u
∆,k
0 (ω; ·).

Step 3: Define the approximate measure-valued solution

ν∆,M
x,t :=

1

M

M∑
k=1

δu∆,k(ω;x,t). (4.1)

Note that, as in any Monte Carlo method, the approximation ν∆,M de-
pends on the choice of ω ∈ Ω, that is, the choice of seed in the random
number generator. However, one can prove that the quality of approxima-
tion is independent of this choice, P-almost surely.

Theorem 4.5. Algorithm 4.4 converges P-almost surely for some sub-
sequence Mn →∞:

ν∆x,Mn ∗
⇀ ν∆x as n→∞.

Equivalently, for every ψ ∈ C0(Rd × R+) and g ∈ C0(RN ),

lim
n→∞

1

Mn

Mn∑
k=1

∫
R+

∫
Rd

ψ(x, t)g(u∆x,k(x, t)) dx dt

=

∫
R+

∫
Rd

ψ(x, t)〈ν∆x
x,t , g〉 dx dt (4.2)

for P-almost every choice of ω ∈ Ω. The above limits are uniform in ∆x.
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The proof, provided in Fjordholm et al. (2016a, Appendix B), involves an
adaptation of the law of large numbers in the present set-up of realizing the
laws of measure-valued solutions using the Monte Carlo sampling procedure.

4.4. Interpretation of weak* convergence

The convergence of the approximate Young measures ν∆ generated by Al-
gorithms 4.1 and 4.3 is in the weak* topology, that is,∫

R+

∫
R
ϕ(x, t)〈ν∆

x,t, g〉dx dt→
∫
R+

∫
R
ϕ(x, t)

∫
RN

g(u) dνx,t(u) dx dt

+

∫
R+

∫
R
ϕ(x, t)

∫
SN−1

g∞(z) dν∞x,t(z) dλ(x, t) (4.3)

for all ϕ ∈ C0(R×R+) and for all g ∈ Cp. As described in Fjordholm et al.
(2016a), this convergence amounts to convergence of statistics of functionals
of interest. In particular, if p ≥ 1 in (3.19), then we can choose g(ξ) = ξ to
obtain the mean of the measure-valued solution; if p ≥ 2 then the variance
can be computed by choosing the test function g(ξ) = ξ⊗ξ. In practice, the
goal of any numerical simulation is to accurately compute statistics of space-
time averages of solution variables and to compare them to experimental
or observational data. Thus, the weak* convergence of approximate Young
measures, computed by Algorithms 4.1 and 4.3, provides an approximation
of exactly these observable quantities of interest.

In order to compute statistics of space-time averages in (4.3), we need to
compute phase space integrals with respect to the measure ν∆x:

〈ν∆x
x,t , g〉 =

∫
RN

g(ξ) dν∆x
x,t (ξ), g ∈ C(RN ).

The Monte Carlo method described in Algorithm 4.4 takes advantage of the
representation of the measure ν∆x as the law of a random field u∆x,

〈ν∆x
x,t , g〉 :=

∫
RN

g(ξ) dν∆x
x,t (ξ) =

∫
Ω
g(u∆x(ω;x, t)) dP(ω), (4.4)

and replaces the integral over Ω with the approximation

〈ν∆x
x,t , g〉 ≈ 〈ν∆x,M , g〉 =

1

M

M∑
k=1

g(u∆x,k(ω)).

Thus, the space-time average (4.3) is approximated by∫
R+

∫
Rd

ϕ(x, t)〈ν∆x
x,t , g〉dx dt ≈ 1

M

M∑
k=1

∫
R+

∫
Rd

ϕ(x, t)g(u∆x,k(ω;x, t)) dx dt.

(4.5)
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We note that the Monte Carlo sequence u∆x,k does not depend on the
choice of the observable g; by Theorem 4.5, the same sequence u∆x,k can be
used for every observable. Hence, the Monte Carlo approximation ν∆x,M

provides a unified approximation of all possible observables.

5. Systems of conservation laws

In this section we will provide details of numerical methods used in Step 2
of Algorithms 4.1 and 4.3 and describe convergence of these algorithms to
dissipative measure-valued solutions of systems of conservation laws (2.1).
We start with a description of numerical schemes for approximating conser-
vation laws.

5.1. Numerical schemes for one- and multi-dimensional conservation laws

For simplicity, we begin with the description of a numerical scheme for
the one-dimensional system of conservation laws (2.5). We discretize our
computational domain into cells Ci := [xi−1/2, xi+1/2) with mesh size ∆x =
xi+1/2 − xi−1/2 and with midpoints

xi =
xi−1/2 + xi+1/2

2
.

Note that we consider a uniform mesh size ∆x only for the sake of simplicity
of the exposition. Next, we discretize the one-dimensional system (2.5) with
the following semi-discrete finite difference scheme for u∆x

i (t) ≡ u∆x(xi, t):

d

dt
u∆x
i (t) +

1

∆x

(
F∆x
i+1/2(t)− F

∆x
i−1/2(t)

)
= 0 t > 0, i ∈ Z,

u∆x
i (0) = u∆x

0 (xi) i ∈ Z.
(5.1a)

See, for example, Godlewski and Raviart (1991), LeVeque (2002) and Tad-
mor (2012, Section 3.3). Here, u∆x

0 is an approximation to the initial data u0

using cell averages (for finite volume schemes) or cell midpoint values (for fi-
nite difference schemes). Henceforth, the dependence of u and F on ∆x will
be suppressed for notational convenience. Different schemes are specified by
choosing different numerical flux functions, Fi+1/2(t), which quantify the flux
across the interface at xi+1/2 as a function of the 2m neighbouring gridvalues
{u(xj , t), j = i−m+ 1, . . . , i+m}, and are assumed to be consistent with
the differential flux f in the sense that F (u, . . . , u) = f(u) for all u ∈ RN .
For simplicity of exposition, we deal only with three-point schemes, that is,
m = 1.

The semi-discrete scheme (5.1a) needs to be integrated in time to define
a fully discrete numerical approximation. Again for simplicity, we will use
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an exact time integration, resulting in

u∆x
i (t+ ∆t) = u∆x

i (t)− 1

∆x

∫ t+∆t

t
(Fi+1/2(τ)− Fi−1/2(τ)) dτ. (5.1b)

We require that for all ∆x > 0 and i ∈ N, the function t 7→ u(xi, t) is differ-
entiable almost everywhere. We denote the evolution operator associated
with the one-dimensional scheme (5.1) with mesh size ∆x by S∆x

t , so that
u∆x(·, t) = S∆x

t u∆x
0 .

A similar framework applies to systems of conservation laws in several
space dimensions. To simplify the notation we restrict ourselves to the two-
dimensional case: we relabel the spatial variables (x1, x2) 7→ (x, y) so that
these equations take the form

∂tu+ ∂xf
x(u) + ∂yf

y(u) = 0. (5.2)

We discretize our two-dimensional computational domain into cells with
mesh size ∆ := (∆x,∆y). The resulting two-dimensional cells

Ci,j := [xi−1/2, xi+1/2)× [yj−1/2, yj+1/2)

are assumed to have a fixed mesh ratio, ∆x = xi+1/2 − xi−1/2 and ∆y =
yj+1/2 − yj−1/2, such that ∆y = c∆x for some constant c > 0. Further, let

xi =
xi−1/2 + xi+1/2

2
, yj =

yj−1/2 + yj+1/2

2
.

We end up with the following semi-discrete finite difference scheme for
u∆x,∆y
ij = u∆x,∆y(xi, yj , t):

d

dt
u∆x,∆y
ij (t) +

1

∆x

(
F x,∆xi+1/2,j(t)− F

x,∆x
i−1/2.j(t)

)
+

1

∆y

(
F y,∆yi,j+1/2(t)− F

y,∆y
i,j−1/2(t)

)
= 0, (5.3a)

u∆x,∆y
ij (0) = u∆x,∆y

0 (xi, yj)

for all i, j ∈ Z and t > 0 (see again LeVeque 2002, Godlewski and Raviart

1991). Here, u∆x,∆y
0 ≈ u0 is the approximate initial data and F x,∆xi+1/2,j , F

y,∆y
i,j+1/2

are the numerical flux functions which are assumed to be consistent with
the flux function f = (fx, fy). We integrate the semi-discrete scheme (5.3a)
exactly in time to obtain

u∆x,∆y
ij (t+ ∆t) = u∆x,∆y

ij (t)− 1

∆x

∫ t+∆t

t

(
F x,∆xi+1/2,j(τ)− F x,∆xi−1/2,j(τ)

)
dτ

− 1

∆y

∫ t+∆t

t

(
F y,∆yi,j+1/2(τ)− F y,∆yi,j−1/2(τ)

)
dτ. (5.3b)

We let S∆
t denote the evolution operator corresponding to (5.3).
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5.2. Weak* convergence to measure-valued solutions

We use the numerical evolution operator S∆x
t in Step 2 of Algorithm 4.1 so

that realizations of the initial random field u0(ω) are evolved using finite
volume (difference) schemes such as (5.1a). We show that the resulting
approximate Young measures ν∆x converge weak* (up to a subsequence)
to a dissipative measure-valued solution of systems of conservation laws as
∆x→ 0. We begin with the one-dimensional case (2.5).

Theorem 5.1. Let the one-dimensional system of conservation laws (2.5)
be equipped with a strictly convex entropy η that satisfies the growth con-
dition (3.19) with p ≥ 1. Moreover, assume that

|f(u)| ≤ C(1 + |u|r), |f ′(u)| ≤ C(1 + |u|r−1) for all u ∈ RN (5.4)

for some r ≤ p. Assume that the approximate solutions u∆x generated by
the numerical scheme (5.1a) satisfy the following conditions.

• Weak bounded variation. There exists an exponent s ≥ p/(p− r + 1)
such that the following (fractional) bounded variation (BV) estimate
of order s holds:

lim
∆x→0

∫ T

0

∑
i

|u∆x
i+1(ω; t)− u∆x

i (ω; t)|s∆x dt = 0 (5.5)

for all ω ∈ Ω.

• Entropy consistency. The numerical scheme (5.1a) is entropy-stable
with respect to (η, q) in the sense that there exists a numerical entropy
flux

Q∆x
i+1/2(t) = Q(u∆x

i (t), u∆x
i+1(t)),

consistent with the entropy flux q, such that computed solutions satisfy
the discrete entropy inequality

d

dt
η(u∆x

i ) +
1

∆x

(
Q∆x
i+1/2 −Q

∆x
i−1/2

)
≤ 0 (5.6)

for all t > 0, i ∈ Z, ω ∈ Ω.

• Local Lipschitz continuity. The numerical flux function is locally Lip-
schitz in the sense that

|Fi+1/2 − f(ui)| ≤ C
(
1 + max

(
|ui|r−1, |ui+1|r−1

))
|ui+1 − ui| (5.7)

for all ui, ui+1 ∈ RN .

• Consistency with initial data. If σ∆x is the law of u∆x
0 , then

lim
∆x→0

∫
R
ψ(x)〈σ∆x

x , ξ〉 dx =

∫
R
ψ(x)〈σx, ξ〉 dx (5.8)
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for all ψ ∈ C1
c (R), and

lim sup
∆x→0

∫
R
ψ(x)〈σ∆x

x , η〉dx ≤
∫
R
ψ(x)〈σx, η〉 dx (5.9)

for all 0 ≤ ψ ∈ C1
c (R).

Then the approximate Young measures ν∆x generated by Algorithm 4.1
converge weak* (up to a subsequence) as ∆x→ 0 to a dissipative measure-
valued solution (ν, λ, ν∞) of (2.5) with initial data σ.

Remark 5.2. If the approximate solution is uniformly bounded, that is,

‖u∆x(ω; ·, t)‖ ≤ C <∞

for all t and for almost all ω ∈ Ω, then the convergence stated in Theorem 5.1
follows under the weak BV estimate (5.5) (Fjordholm et al. 2016a, Theor-
ems 6,7). Here, convergence is established under the weaker assumption of
an Lp bound which is adapted to an entropy bound with an Lp growth,
η(u) ∼ |u|p.

Proof. By integrating the discrete entropy inequality (5.6) in time, we see
that for all t ∫

R
η(u∆x(ω;x, t)) dx ≤ C for all ω ∈ Ω.

Hence, the strict convexity condition (3.19) implies the uniform Lp bound

‖u∆x‖p :=

(∫
Ω

∫ T

0

∑
i

|u∆x
i |p ∆x dt dP

)1/p

< C. (5.10)

Hence, ∫ T

0

∫
R
〈ν∆x
x,t , |ξ|p〉dx dt < C,

so by the fundamental theorem of generalized Young measures, there exist
a generalized Young measure (ν, λ, ν∞) on R× [0, T ] and a subsequence of

ν∆x (still indexed by ∆x) such that ν∆x ∗⇀ (ν, λ, ν∞) as ∆x→ 0. We show
below that this generalized Young measure is indeed a dissipative measure-
valued solution of the conservation law.

To this end, we multiply the finite volume scheme (5.1a) by ϕ(xi, t) for
some ϕ ∈ C∞c (R×R+) and by integrating and summing over x ∈ R, ω ∈ Ω,
i ∈ Z yields

0 =

∫
Ω

∫ T

0

∑
i

du∆x
i

dt
(ω; t)ϕ(xi, t)

+
Fi+1/2(ω; t)− Fi−1/2(ω; t)

∆x
ϕ(xi, t) ∆x dt dP



On the computation of measure-valued solutions 605

= −
∫

Ω

∑
i

u∆x
i (ω; 0)ϕ(xi, 0) ∆x dP

−
∫

Ω

∫ T

0

∑
i

u∆x
i (ω; t)

∂ϕ

∂t
(xi, t) ∆x dtdP

−
∫

Ω

∫ T

0

∑
i

Fi+1/2(ω; t)
ϕ(xi+1, t)− ϕ(xi, t)

∆x
∆x dtdP︸ ︷︷ ︸

=A

.

Using the equivalence of random fields and Young measures and the con-
sistency with initial data (5.8), we observe that the first term converges to

−
∫
R
〈σx, ξ〉ϕ(x, 0) dx,

while the second term converges to

−
∫
R+

∫
R
〈ν, ξ〉∂ϕ

∂t
dx dt

as ∆x→ 0. We claim that the third term A converges to∫
R+

∫
R
〈ν, f〉∂ϕ

∂x
dx dt+

∫
R+

∫
R
〈ν∞, f∞〉∂ϕ

∂x
dλ,

thus proving that (ν, λ, ν∞) is a measure-valued solution of (2.5). We have

A =

∫
Ω

∫ T

0

∑
i

Fi+1/2(ω; t)
ϕ(xi+1, t)− ϕ(xi, t)

∆x
∆x dt dP

=

∫
Ω

∫ T

0

∑
i

f(u∆x
i )∆iϕ∆x dt dP︸ ︷︷ ︸

=A1

+

∫
Ω

∫ T

0

∑
i

(Fi+1/2 − f(u∆x
i ))∆iϕ ∆x dt dP︸ ︷︷ ︸

=A2

, (5.11)

where we let

∆iϕ =
ϕ(xi+1, t)− ϕ(xi, t)

∆x
.
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For the first term in (5.11) we have

A1 =

∫
Ω

∫ T

0

∑
i

f(u∆x
i )∆iϕ∆x dtdP

=

∫
Ω

∫
R+

∫
R
f(u∆x)ϕx dx dt dP︸ ︷︷ ︸

=A1,1

+

∫
P

∫ T

0

∑
i

f(u∆x
i )(∆iϕ−∆i−1/2ϕ) ∆x dt dP︸ ︷︷ ︸

=A1,2

,

where

∆i−1/2ϕ =
ϕ(xi+1/2, t)− ϕ(xi−1/2, t)

∆x
=

1

∆x

∫
C∆x
i

∂xϕdx.

By the fundamental theorem of Young measures, the first term A1,1 con-
verges to ∫

R+

∫
R
〈ν, f〉∂ϕ

∂x
dx dt+

∫
R+

∫
R
〈ν∞, f∞〉∂ϕ

∂x
dλt(x) dt.

The term A1,2 vanishes as ∆x→ 0:

|A1,2| ≤
∫

Ω

∫ T

0

∑
i

|f(u∆x
i )| |∆iϕ−∆i−1/2ϕ| ∆x dtdP

≤ C
∫

Ω

∫ T

0

∑
i

(1 + |u∆x
i |r) |∆iϕ−∆i−1/2ϕ| ∆x dt dP

= C

(∫ T

0

∑
i

|∆iϕ−∆i−1/2ϕ| ∆x dt

+

∫
Ω

∫ T

0

∑
i

|u∆x
i |r |∆iϕ−∆i−1/2ϕ| ∆x dtdP

)
≤ C

(
‖∆ϕ−∆·−1/2ϕ‖1 + ‖∆ϕ−∆·−1/2ϕ‖a′ ‖u∆x‖rp

)
→ 0,

where we have used Hölder’s inequality with exponent a = p/r ≥ 1, the fact
that ∆ϕ−∆·−1/2ϕ→ 0 in both L1 and La

′
, and (5.10).
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To bound the second term in (5.11), we apply (5.7) to obtain

|A2| ≤ C
∫

Ω

∫ T

0

∑
i

|u∆x
i+1 − u∆x

i | |∆iϕ| ∆x dtdP︸ ︷︷ ︸
=A2,1

+ C

∫
Ω

∫ T

0

∑
i

|u∆x
i |r−1 |u∆x

i+1 − u∆x
i | |∆iϕ| ∆x dtdP︸ ︷︷ ︸

=A2,2

+ C

∫
Ω

∫ T

0

∑
i

|u∆x
i+1|r−1 |u∆x

i+1 − u∆x
i | |∆iϕ| ∆x dtdP︸ ︷︷ ︸

=A2,3

.

Denote

‖[[u∆x]]‖s :=

(∫
Ω

∫ T

0

∑
i

|u∆x
i+1(t)− u∆x

i (t)|s ∆x dtdP

)1/s

→ 0 (5.12)

as ∆x→ 0, where the limit follows from (5.5). For the first term in A2,1 we
have

A2,1 =

∫
Ω

∫ T

0

∑
i

|u∆x
i+1 − u∆x

i | |∆iϕ| ∆x dtdP ≤ ‖[[u∆x]]‖s ‖ϕx‖s′ → 0

as ∆x → 0, by Hölder’s inequality and (5.12). The terms A2,2 and A2,3

behave the same way as ∆x → 0, so it suffices to show that the first one
vanishes as ∆x → 0. Indeed, for s ≥ p/(p− r + 1), there exists a ∈ [1,∞]
such that the generalized Hölder’s inequality with exponents (p/(r − 1), s, a)
implies ∫

Ω

∫ T

0

∑
i

|u∆x
i |r−1 |u∆x

i+1 − u∆x
i | |∆iϕ| ∆x dtdP

≤ ‖u∆x‖r−1
p ‖[[u∆x]]‖s ‖∆ϕ‖a, for

r − 1

p
+

1

s
+

1

a
= 1.

We conclude that

A2,2 + A2,3 ≤ 2‖u∆x‖r−1
p ‖[[u∆x]]‖s ‖∆ϕ‖a → 0

as ∆x→ 0, by (5.10) and (5.12).
The proof of convergence to a dissipative measure-valued solution (i.e.,

consistency with (3.22)) in the limit ∆x→ 0 is a straightforward adaptation
of the above proof to the discrete entropy inequality (5.6).

Theorem 5.1 can be readily extended to several space dimensions. We
present the two-dimensional version.
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Theorem 5.3. Let the two-dimensional system of conservation laws (5.2)
be equipped with a strictly convex entropy S that satisfies the growth con-
dition (3.19) with p ≥ 1. Moreover, assume that

|f(u)| ≤ C(1 + |u|r), |∇f(u)| ≤ C(1 + |u|r−1) for all u ∈ RN (5.13)

for some r ≤ p. Assume that the approximate solutions u∆ generated by
the numerical scheme (5.3a) satisfy the following conditions.

• Weak bounded variation. There exists an exponent s ≥ p/(p− r + 1)
such that the following (fractional) BV estimate of order s holds:

lim
∆→0

∫ T

0

∑
i,j

(
|u∆
i+1,j(ω; t)− u∆

i,j(ω; t)|s (5.14)

+ |u∆
i,j+1(ω; t)− u∆

i,j(ω; t)|s
)
∆x∆y dt = 0

for all ω ∈ Ω.

• Entropy consistency. The numerical scheme (5.3a) is entropy-stable
with respect to (η, q) in the sense that there exist numerical entropy
fluxes Qxi+1/2,j , Q

y
i,j+1/2, consistent with the entropy flux q, such that

computed solutions satisfy the discrete entropy inequality

d

dt
η(u∆

i,j) +
1

∆x

(
Qxi+1/2,j −Q

x
i−1/2,j

)
+

1

∆y

(
Qyi,j+1/2 −Q

y
i,j−1/2

)
≤ 0,

(5.15)

for all t > 0, i, j ∈ Z, ω ∈ Ω.

• Local Lipschitz continuity. The numerical flux functions are locally
Lipschitz, that is, they satisfy

|F xi+1/2,j − f
x(u∆

i,j)| ≤ C
(
1 + max

(
|u∆
i,j |r−1, |u∆

i+1,j |r−1
))
|u∆
i+1,j − u∆

i,j |,

|F yi,j+1/2 − f
y(u∆

i,j)| ≤ C
(
1 + max

(
|u∆
i,j |r−1, |u∆

i,j+1|r−1
))
|u∆
i,j+1 − u∆

i,j |,
(5.16)

for all i, j ∈ Z.

• Consistency with initial data. If σ∆x is the law of u∆x
0 , then it satisfies

(5.8) and (5.9).

Then, the approximate Young measures ν∆ generated by Algorithm 4.1 con-
verge weak* (up to a subsequence) as ∆x,∆y → 0 to a dissipative measure-
valued solution (ν, λ, ν∞) of (5.2) with initial data σ.

Combining the Monte Carlo convergence Theorem 4.5 with the conver-
gence established in Theorems 5.1 and 5.3, we conclude with the following.

Corollary 5.4 (convergence with mesh refinement). Under the as-
sumptions of Theorem 5.1 (or Theorem 5.3 in two dimensions), there are
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subsequences ∆n → 0 and Mn →∞ and a dissipative measure-valued solu-
tion (ν, λ, ν∞) of (2.1) with initial data σ, such that

ν∆n,Mn ∗
⇀ (ν, λ, ν∞) as n→∞.

5.3. Convergence for atomic initial data

The special case of atomic initial data σ = δu0 requires us to use Al-
gorithm 4.3 to compute underlying dissipative measure-valued solutions.
We have the following convergence theorem for Algorithm 4.3 in the two-
dimensional case.

Theorem 5.5. Consider the two-dimensional system of conservation laws
(5.2). Let {ν∆,ε}∆,ε>0 be the family of approximate measure-valued solu-
tions constructed by Algorithm 4.3 using the numerical scheme (5.3a). Then
there exists a subsequence (∆n, εn)→ 0 such that ν∆n,εn converges weak* to
a dissipative measure-valued solution (ν, λ, ν∞) with atomic initial data u0.

Proof. By Theorem 5.3 we know that for every ε > 0 there exists a sub-
sequence ∆k → 0 as k → ∞ such that ν∆k,ε converges weak* as k → ∞
to a dissipative measure-valued solution (νε, λε, ν∞,ε) of (5.2) with initial
data σε. Thus, (3.21) and (3.22) hold with (ν, λ, ν∞) and σ replaced by
(νε, λε, ν∞,ε) and σε, respectively. We abbreviate the corresponding state-
ment of measure-valued solution and dissipative measure-valued solution
by (3.21)ε and (3.22)ε. The existence of a subsequence εm → 0 as m→∞
such that (νεm , λεm , ν∞,εm)

∗
⇀ (ν, λ, ν∞) for some generalized Young meas-

ure (ν, λ, ν∞), is a consequence of Theorem 3.3. The fact that (ν, λ, ν∞) is
a (dissipative) measure-valued solution follows at once by taking the limit
εm → 0 in (3.21)εm and (3.22)εm . Finally, we extract a diagonal sequence

{(∆n, εn)}n∈N such that ν∆n,εn ∗
⇀ (ν, λ, ν∞).

5.4. Convergent schemes for scalar conservation laws

Monotone finite difference (volume) schemes (see Godlewski and Raviart
1991 for a precise definition) for scalar equations are uniformly bounded in
L∞ (as they satisfy a discrete maximum principle), satisfy a discrete entropy
inequality (using the Crandall–Majda numerical entropy fluxes: Crandall
and Majda 1980) and are total variation decreasing (TVD), that is, the
total variation of the approximate solutions is non-increasing over time.
Consequently, the approximate solutions satisfy the weak BV estimate (5.5)
(resp. (5.14) in the multi-dimensional case) with r = 1. Thus, monotone
schemes, approximating scalar conservation laws, satisfy all the abstract
criteria of Theorems 5.1 and 5.3. Furthermore, the uniform L∞ bound
on approximations implies that there is no concentration and the limit is
completely described by the Young measure ν. In Fjordholm et al. (2016a)
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we have shown the following convergence theorem for monotone schemes of
scalar conservation laws,

Theorem 5.6. Let ν∆x be generated by Algorithm 4.1, and let ν be the
law of the entropy solution u(ω). If TV(u0(ω)) ≤ C for all ω ∈ Ω, then

ν∆x ∗⇀ ν as ∆x→ 0.

5.5. Convergent schemes for systems of conservation laws

We know of at least three classes of numerical methods that satisfy the
criteria of convergence Theorems 5.1 and 5.3.

5.5.1. The ELW scheme

The entropy-stable Lax–Wendroff (ELW) schemes introduced in Fjordholm
(2013, Section 4.2), are finite difference schemes of the form (5.1a) with a
numerical flux of the form

Fi+1/2 := F̃
(k)
i+1/2 − di+1/2|[[v]]i+1/2|k−1[[v]]i+1/2, di+1/2 > 0. (5.17)

Here, the jump [[v]]i+1/2 := vi+1 − vi is expressed in terms of the entropy

variables, v := η′(u), and F̃
(k)
i+1/2 is a kth-order accurate entropy conservative

numerical flux which is characterized by the compatibility requirement with
the corresponding entropy flux q(u), introduced in Tadmor (1987):〈

vi+1 − vi, F̃ (k)
i+1/2

〉
= ζq(vi+1)− ζq(vi), ζq(v) := 〈v, f(u(v)〉 − q(u(v)).

(5.18)

The schemes based on such fluxes F̃
(k)
i+1/2, that is, (5.17) and (5.18) with

di+1/2 ≡ 0, are entropy conservative in the sense of satisfying the equalit-
ies (5.6) and (5.15). This results in the desired entropy inequalities (5.6)
and (5.15) by adding a judicious amount of kth-order numerical viscosity
di+1/2|[[v]]i+1/2|k−1[[v]]i+1/2 parametrized with positive viscosity amplitudes
di+1/2 > 0.

A general class of such second-order entropy conservative fluxes was con-
structed in Tadmor (2003), and a particularly ‘affordable’ version for the
compressible Euler equations was given in Ismail and Roe (2009) in terms
of the rescaled variables z := (ρ/p)1/2(1, v1, v2, p)

>:

F̃
(2),1
i+1/2 = (z2)i+1/2(z4)ln

i+1/2, zi+1/2 :=
1

2
(zi + zi+1), zln

i+1/2 :=
[[zi+1/2]]

[[log(z)i+1/2]]
,

F̃
(2),2
i+1/2 =

(z4)i+1/2

(z1)i+1/2
+

(z2)i+1/2

(z1)i+1/2
F̃

(2),1
i+1/2,
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F̃
(2),3
i+1/2 =

(z3)i+1/2

(z1)i+1/2
F̃

(2),1
i+1/2,

F̃
(2),4
i+1/2 =

1

2(z1)i+1/2

(
γ + 1

γ − 1

1

(z1)ln
i+1/2

F̃
(2),1
i+1/2 + (z2)i+1/2F̃

(2),2
i+1/2 + (z3)i+1/2F̃

(2),3
i+1/2

)
.

A general recipe to convert such second-order methods to arbitrarily high-

order entropy conservative fluxes, F̃
(2)
i+1/2  F̃

(k)
i+1/2, was derived in LeFloch,

Mercier and Rohde (2002) and utilized in Fjordholm et al. (2012) and Fjord-
holm (2013). The resulting ELW schemes are readily seen to be (i) (form-
ally) kth-order accurate and (ii) entropy-stable in the sense of satisfying the
entropy consistency (5.6) and (5.15), and (iii) they can be shown to sat-
isfy the weak BV bounds (5.5) and (5.14) and converge strongly for scalar
conservation laws (Fjordholm 2013, Propositions 4.2 and 4.3).

5.5.2. TeCNO finite difference schemes

The TeCNO schemes, introduced in Fjordholm et al. (2012) and Fjordholm
(2013), are finite difference schemes of the form (5.1a) with numerical flux

Fi+1/2 := F̃
(k)
i+1/2 −

1

2
Di+1/2

(
v+
i+1/2 − v

−
i+1/2

)
. (5.19)

Here, F̃
(k)
i+1/2 is the same entropy conservative flux satisfying (5.18), Di+1/2 is

a positive definite (viscosity) matrix, and v±i+1/2 are the cell interface values

obtained by the following kth-order accurate ENO reconstruction (Harten,
Engquist, Osher and Chakravarty 1987). Specifically, starting with the
given piecewise constant approximate solution,

∑
i vi1Ci

(x), one constructs
a piecewise polynomial approximation v∆(x):∑

i

vi1Ci
(x)  v∆(x) :=

∑
i

pi(x)1Ci
(x),

where {pi(x)} are a judicious choice of kth-order accurate essentially non-
oscillatory (ENO) polynomials introduced in Harten et al. (1987). We then
set the ENO reconstructed pointvalues across the cell interface, v±i+1/2 =

v∆(xi+1/2±), namely,

v+
i+1/2 = pi+1(xi+1/2), v−i+1/2 = pi(xi+1/2).

The multi-dimensional (Cartesian) version was designed in Fjordholm et al.
(2012) (see also Fjordholm 2013). The class of TeCNO schemes was shown
by Fjordholm et al. (2012) and Fjordholm (2013) to have the following
properties.

• They are (formally) kth-order accurate.



612 U. S. Fjordholm, S. Mishra and E. Tadmor

• They are entropy-stable. Using the sign property sign(v+
i+1/2−v

−
i+1/2) =

sign(vi+1 − vi) proved in Fjordholm, Mishra and Tadmor (2013), it
follows that the TeCNO schemes are entropy-stable in the sense of
satisfying the discrete entropy inequality (5.6), and the corresponding
two-dimensional inequality (5.15) (Fjordholm et al. 2012).

• They have weakly bounded variation when k = 1 and k = 2, that is,
they satisfy a bound of the form (5.5) in the one-dimensional case
and (5.14) in two dimensions; see Fjordholm (2013, Theorem 6.6) and
Fjordholm (2013, Section 3.2) for the general multi-dimensional case.
The weak total variation bound for k ≥ 3 depends on a conjectured
result for the ENO reconstruction method which remains to be proved;
see Fjordholm (2013, Section 5.5).

In light of these properties, the approximate measure-valued solutions gen-
erated by the TeCNO scheme converge to an EMV solution of (2.1).

5.5.3. Shock-capturing space-time discontinuous Galerkin schemes

Finite difference and finite volume schemes of the type (5.1a) are particu-
larly suitable for Cartesian grids. For problems which involve spatial do-
mains with complex geometries that necessitate the use of unstructured
grids (triangles, tetrahedra), an alternative discretization procedure is the
space-time discontinuous finite element procedure of Johnson and Szepessy
(1987), Jaffre, Johnson and Szepessy (1995), Barth (1999) and Hiltebrand
and Mishra (2014). In this discontinuous Galerkin (DG) procedure, entropy-
stable numerical fluxes expressed in terms of the entropy variables, such as
those in (5.19), are used at cell interfaces. Hiltebrand and Mishra (2014)
showed that the space-time DG method augmented with a shock-capturing
streamline diffusion term satisfies a suitable version of the weak BV bound
(5.5) and is entropy-stable in the sense of satisfying the discrete entropy
inequality (5.15). Arguing along the lines of Hiltebrand and Mishra (2014,
Theorem 4.1), it follows that this DG method converges to a dissipative
measure-valued solution of (2.1). We remark that the space-time DG meth-
ods are fully discrete, in contrast to semi-discrete finite difference schemes
such as (5.1a).

6. Incompressible Euler equations

In this section we specify the numerical methods used in Step 2 of Al-
gorithms 4.1 and 4.3 for computing admissible measure-valued solutions of
the incompressible Euler equations (1.3). We review two sets of numerical
methods: spectral methods and projection finite difference methods. We
start with spectral methods.
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6.1. Spectral (viscosity) methods for the incompressible Euler equations

6.1.1. The numerical method SNt
Spectral methods approximate the Euler equations (1.3) in Fourier space
(Gottlieb et al. 1984). Let Td denote the d-dimensional Torus. If (u, p) is
a solution of the Euler equation (1.3) with periodic boundary conditions,
then (formally) it also satisfies the convective form of the equations{

∂tu+ u · ∇u+∇p = 0

∇x · u = 0
in Td × R+. (6.1)

Consider the spatial Fourier expansion

u(x, t) =
∑
k∈Zd

ûk(t) eik·x

with coefficients given by

ûk(t) =
1

(2π)d

∫
Td

u(x, t) e−ik·x dx, k ∈ Zd.

If u is a solution of (6.1), the above expression yields

d

dt
ûk =

1

(2π)d

∫
Td

ut e−ik·x dx

= − 1

(2π)d

∫
Td

(u · ∇u+∇p) e−ik·x dx

= − i

(2π)d

∑
`,m

(û` ·m)ûm

∫
Td

ei(`+m−k)·x dx− ik

(2π)d

∫
Td

p e−ik·x dx

= −i
∑
`,m

`+m−k=0

(û` ·m)v̂m − ikp̂k.

We note that

div(u) = i
∑
k

(ûk · k) eik·x = 0

is equivalent to ûk ⊥ k for all k. Using m = k − ` and û` ⊥ ` for all terms
in the summation, we can thus rewrite the last equation in the form

d

dt
ûk = −i

∑
`,m

`+m−k=0

(û` · k)ûm − ikp̂k. (6.2)

This is the Fourier space version of the Euler equations (1.3). It becomes
evident that the pressure term −ikp̂k, which is parallel to k, serves as the
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orthogonal L2 projection of the non-linear term

−i
∑
`,m

`+m−k=0

(û` · k)ûm

to the orthogonal complement of k, thus keeping u divergence-free.
For the coefficient ûk with k = 0, equation (6.2) yields (d/dt)û0 = 0. This

corresponds to conservation of momentum. Using the Galilean invariance
of the Euler equations, we can assume without loss of generality that

û0 =
1

(2π)d

∫
Td

udx = 0.

To obtain a discretized approximation to system (6.2), we restrict our
attention to the Fourier modes below some threshold N . We thus consider
divergence-free fields of the form

u(x, t) =
∑
|k|≤N

uk(t) eik·x,

and use the N -term Leray projection

PN
(∑
k∈Z2

ŵk eik·x
)

:=
∑
|k|≤N

(ŵk − kq̂k) eik·x, q̂k :=
ŵk · k
|k|2

to ensure the divergence-free constraint (ŵk − kq̂k) ⊥ k. We can also add
a small amount of numerical viscosity to ensure stability of the resulting
scheme. This idea results in the following scheme. For initial data u0(x),
we obtain an approximate solution uN (x, t) ≈ u(x, t) by solving the finite-
dimensional problem

∂tuN + PN (uN · ∇uN ) = εN∆uN ,

uN (x, 0) = PNu0(x).
(6.3)

In this scheme, the numerical diffusion coefficient εN > 0 depends on N and
goes to zero as N →∞.

A refined version of this basic scheme was introduced by Tadmor (1989).
In this version we choose an integer m = m(N) ∼ θN for some θ ∈ (0, 1)
which serves as a threshold between small and large Fourier modes. We
apply a viscous regularization only to the large Fourier modes. With a
judicious choice of εN and m(N), the resulting method can be shown to
be spectrally accurate (see Tadmor 1989, Bardos and Tadmor 2015, and
Section 3.4 of Tadmor 2012). We obtain the corresponding spectral viscosity
approximation

∂tuN + PN (uN · ∇uN ) = εN∇ · (QN∇uN ),

uN (x, 0) = PNu0(x).
(6.4)
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Here QN denotes a smooth cut-off onto the higher modes, |k| ≥ θN , for
some θ < 1:

QNw(x) :=
∑

θN≤|k|≤N

σ

(
|k|
N

)
ŵk eik·x, σ(t) = (t− θ)2p

+ .

The fully viscous spectral method (6.3) corresponds to the special choice of
θ = 0 and p = 0. The application of spectral viscosity for simulations of
three-dimensional Euler equations can be found in Karamanos and Karni-
adakis (2000), Pasquetti (2006) and Avrin and Xiao (2014).

Lanthaler and Mishra (2015) derived the following stability estimate.

Lemma 6.1 (stability). If uN is the solution of the semi-discrete system
(6.4), then

1

2
‖uN (t)‖2L2 + εN

∫ t

0
‖QN∇uN (s)‖2L2 ds =

1

2
‖PNu0‖2L2 ≤

1

2
‖u0‖2L2 . (6.5)

In particular, we have ‖uN (t)‖L2 ≤ ‖u0‖L2 , independent of the choice of
N,m and εN .

The following consistency estimate was also proved in Lanthaler and
Mishra (2015).

Lemma 6.2 (consistency). If uN is the solution of the semi-discrete sys-
tem (6.4), then for all divergence-free test functions ϕ in C∞c ([0, T )× Td),

lim
N→∞

∫
R+

∫
Td

∂tϕ · uN +∇ϕ : uN ⊗ uN dx dt = 0. (6.6)

Furthermore, we have uniform Lipschitz continuity

uN ∈ Lip([0, T ];H−d/2−1(Td)).

6.1.2. Approximation of measure-valued solutions

Next, we apply the numerical method described above to the FKMT al-
gorithm. Relabelling ∆  N , we let SNt u0 := uN denote the approximate
spectral viscosity solution computed by (6.4), and apply this to Step 2 of
Algorithm 4.1. The following convergence theorem for Algorithm 4.1 was
proved in the recent paper by Lanthaler and Mishra (2015).

Theorem 6.3. Consider the approximate measure-valued solution νN com-
puted by Algorithm 4.1 using the spectral viscosity method (6.4) as the
numerical solution operator SNt . Assume that the (kinetic) energy of the
initial Young measure σ is finite, that is,∫

Td

〈σx, |ξ|2〉dx <∞.
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Then νN converges weak* (up to a subsequence) to an admissible measure-
valued solution (ν, λ, ν∞) of the incompressible Euler equations (1.3) with
initial data σ.

The following theorem proves the analogous result for Algorithm 4.3 for
atomic initial data.

Theorem 6.4. Let u0 ∈ L2(Td). Let νN,ε be the family of approximate
measure-valued solutions constructed by Algorithm 4.3, with the spectral
viscosity method (6.4) defining the numerical solution operator SNt . Then
there exists a subsequence Nn →∞, εn → 0 such that

νNn,εn ∗
⇀ (ν, λ, ν∞) as n→∞

for an admissible measure-valued solution (ν, λ, ν∞) of the incompressible
Euler equations (1.3) with atomic initial data u0.

It was also shown by Lanthaler and Mishra (2015) that the Monte Carlo
version (using Algorithm 4.4) also converges to an admissible measure-
valued solution of the incompressible Euler equations (1.3).

6.2. A finite difference projection method for the incompressible Euler
equations

Although spectral (viscosity) methods such as (6.4) can be highly efficient
for periodic boundary conditions, it is not possible to use them when more
complicated domains and different boundary conditions are required. In
this context, finite difference projection methods, such as those developed
by Chorin (1968) (see Bell, Colella and Glaz 1989 for modern variants) are
more promising. Here, we present a variant of the Chorin finite difference
projection algorithm, considered in Leonardi and Mishra (2016), which can
be used to define the numerical solution operator in Step 2 of Algorithms 4.1
and 4.3.

6.2.1. The numerical method Sht
For simplicity of the exposition, we restrict ourselves to the two-dimensional
version of the incompressible Euler equations (1.3) and discretize the domain
into Cartesian cells with mesh size ∆ := (∆x,∆y). These two-dimensional
cells,

Ci,j := [xi−1/2, xi+1/2)× [yj−1/2, yj+1/2),

are assumed to have similar mesh sizes, that is, ∆x = xi+1/2 − xi−1/2 and
∆y = yj+1/2 − yj−1/2, such that ∆y = ch,∆x = h for some c, h > 0. Let

(xi, yj) =

(
xi−1/2 + xi+1/2

2
,
yj−1/2 + yj+1/2

2

)
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denote the midpoint of the cells. For a scalar function ϕ that is represented
on the grid with its point values at c, we let gradh denote a cell-centred
central, second-order discrete gradient operator defined as

gradhϕi,j =


ϕi+1,j − ϕi−1,j

∆x
ϕi,j+1 − ϕi,j−1

∆y

.
We introduce the notation ∆h for a standard five-point discrete Laplace
operator:

∆hϕi,j =
ϕi+1,j − 2ϕi,j + ϕi−1,j

∆x
+
ϕi,j+1 − 2ϕi,j + ϕi,j−1

∆y
.

For a function u = (u1, u2) (the alias for the two-dimensional velocity field),
represented on the grid by its point values at (xi, yj), we define the discrete

divergence operator divh as a cell-centred central divergence operator:

divhui,j =
(u1)i+1,j − (u1)i−1,j

∆x
+

(u2)i,j+1 − (u2)i,j−1

∆y
.

Equipped with the above notation, we define the following fully discrete
fractional step predictor–corrector finite difference scheme for approximat-
ing the velocity field ui,j ≈ u(xi, yj):

u∗,n+1 − un

∆t
+ C(un, ūn+1/2) = Dūn+1/2, (6.7a)

un+1 − un

∆t
= P

(
u∗,n+1 − un

∆t

)
, (6.7b)

gradhpn+1/2 = Q
(
un+1 − un

∆t

)
. (6.7c)

We have used the following terms in the scheme (6.7).

(i) Time-averaged velocity. We use a time-averaged velocity ūn+1/2 := θun+
(1−θ)u∗,n+1, θ ∈ [0, 1/2) in order to prove some essential stability properties.
This time-averaged velocity is used in both the convective and numerical
diffusion terms. It makes the convective step (6.7a) implicit.

(ii) Numerical diffusion operator D. We use Lax–Wendroff-type diffusion
operators of the form

Du =
di+1/2,j |[[u1]]xi+1/2,j |

k−1[[u1]]xi+1/2,j + di−1/2,j |[[u1]]xi−1/2,j |
k−1[[u1]]xi−1/2,j

∆x

+
di,j+1/2|[[u2]]yi,j+1/2|

k−1[[u2]]yi,j+1/2 + di,j−1/2|[[u2]]yi,j−1/2|
k−1[[u2]]yi,j−1/2

∆y
,
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expressed in terms of the respective jumps [[a]]x := ai+1,j − ai,j and [[a]]y :=
ai,j+1−ai,j , where dα,β are positive viscosity amplitudes and k is an integer
(k = 2 being a common choice).

(iii) Projection operator P. We let P denote a discrete projection operator
onto a discretely divergence-free vector space (i.e., such that divhu = 0) and
Q = I− P (the gradient, or irrotational, part of the vector field, where I is
the identity map). The discrete projection is implemented by setting Pu :=
u − gradh(∆h

2)−1divhu, where ∆h
2 = divhgradh is a standard cell-centred

five-point Laplacian acting on cell-centres in checkerboard formation:

∆h
2ϕi,j =

ϕi+2,j − 2ϕi,j + ϕi−2,j

4∆x2 +
ϕi,j+2 − 2ϕi,j + ϕi,j−2

4∆y2
,

for a grid function ϕ.

(iv) The non-linear (convective) term C. The non-linear convective term is
evaluated at two different discrete quantities, namely the ‘lagged’ velocity
un and the time-averaged ūn+1/2. Moreover, we use an energy conservative
(second-order, consistent) flux term:

C(u, v)i,j =
F x(ui,j , ui+1,j , vi,j , vi+1,j)− F x(ui−1,j , ui,j , vi−1,j , vi,j)

∆x

+
F y(ui,j , ui,j+1, vi,j , vi,j+1)− F y(ui,j−1, ui,j , vi,j−1, vi,j)

∆y
.

We employ the following numerical fluxes:

F x(u−, u+, v−, v+) =
1

4

(
(u+

1 + u−1 )(v+
1 + v−1 )

(u+
1 + u−1 )(v+

2 + v−2 )

)
,

F y(u−, u+, v−, v+) =
1

4

(
(u+

2 + u−2 )(v+
1 + v−1 )

(u+
2 + u−2 )(v+

2 + v−2 )

)
.

6.2.2. Approximation of measure-valued solutions

We apply the same Algorithm 4.1, but this time with the projection evolu-
tion Sht replacing S∆

t in Step 2. The following convergence result is proved
in Leonardi and Mishra (2016).

Theorem 6.5. Consider the approximate measure-valued solution νh gen-
erated by Algorithm 4.1 using the finite difference projection method (6.7)
as the numerical solution operator Sht . Assume that the (kinetic) energy of
the initial Young measure σ is finite, that is,∫

Tn

〈σx, |ξ|2〉dx <∞.
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Then νh converges weak* (up to a subsequence) to an admissible measure-
valued solution (ν, λ, ν∞) of the incompressible Euler equations (1.3) with
initial data σ.

The proof is based on several properties of the scheme (6.7), such as the
equivalence between the conservative and convective forms of the scheme,
L2 stability bounds and suitable weak BV estimates. We refer the reader
to Leonardi and Mishra (2016) for further details. Similarly, one can prove
convergence of Algorithm 4.3 for computing admissible measure-valued solu-
tions of (1.3) with atomic initial data.

7. Numerical experiments: compressible Euler equations

In this and the next section we will present various numerical experiments
to illustrate the convergence and performance of Algorithms 4.1 and 4.3 in
computing admissible measure-valued solutions of systems of conservation
laws and the incompressible Euler equations.

We will focus on the prototype for multi-dimensional systems of conser-
vation laws (2.1), the two-dimensional version of the compressible Euler
equations (1.1):

∂

∂t


ρ
ρv1

ρv2

E

+
∂

∂x1


ρv1

ρ(v1)2 + p
ρv1v2

(E + p)v1

+
∂

∂x2


ρv2

ρv1v2

ρ(v2)2 + p
(E + p)v2

 = 0. (7.1)

Here, the density ρ, velocity field (v1, v2), pressure p and total energy E are
related by the equation of state

E =
p

γ − 1
+
ρ((v1)2 + (v2)2)

2
,

with adiabatic constant γ = 1.4. The relevant entropy pair (η, q) is given in
terms of the thermodynamic entropy s := log(pρ−γ),

η =
−ρs
γ − 1

, q ≡ (q1, q2) = (v1η, v2η).

7.1. The Richtmyer–Meshkov problem

We consider the two-dimensional Euler equations (7.1) in the computational
domain x ∈ [0, 1]2 with periodic boundary conditions and with initial data

p(x) =

{
20 if r < 0.1,

1 otherwise,
ρ(x) =

{
2 if r < I(ω;x),

1 otherwise,
v1 = v2 = 0,

(7.2)
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where r := |x− (0.5, 0.5)| denotes the distance to the centre of the domain.
The radial density interface I(ω;x) = 0.25 + εY (ω;φ(x)) is perturbed with

Y (ω;φ) =
K∑
n=1

an(ω) cos(φ+ bn(ω)), (7.3)

where φ(x) = arccos((x1 − 1/2)/r) and

anj = anj (ω) ∈ [0, 1], bnj = bnj (ω) ∈ [−π, π], i = 1, 2, n = 1, . . . ,K,

are uniformly distributed random numbers. The coefficients anj have been
normalized such that

K∑
n=1

anj = 1,

to guarantee that |Ij(ω;x)− Jj | ≤ ε for j = 1, 2. We set K = 10.
We remark that the above initial data can be written as in Step 1 of

Algorithm 4.3 with an appropriate random field X. Thus, the initial data
can be thought of as a small perturbation of the spherically symmetric
initial data obtained by letting I ≡ 0.25 in (7.2), and we can apply the
procedure outlined in Algorithm 4.3 to compute an approximate measure-
valued solution to these unperturbed initial data.

The results presented here were first shown in Fjordholm et al. (2016a).

7.1.1. Single realization
As a first test, we fix ω ∈ Ω and compute approximate solutions using
the second-order accurate Monte Carlo limiter and HLLC flux-based finite
volume scheme of Käppeli et al. (2011). The computed density, at time
T = 4, on a sequence of successively refined grids ranging from 1282 to
10242, is shown in Figure 1.2. As stated in the Introduction, the solution is
quite complex at this time as the leading shock wave has exited the domain
but has re-entered from the corners on account of the periodic boundary con-
ditions. Furthermore, this re-entry shock wave interacts with and strongly
perturbs the interface, forming a very complex region of small-scale eddy-
like structures. As seen in Figure 1.2, there seems to be no convergence as
the mesh is refined. This lack of convergence is quantified in Figure 1.3,
where we present differences in L1 for successive mesh resolutions (1.2), and
we see that the approximate solutions for a single sample do not even form
a Cauchy sequence, let alone converge.

7.1.2. Ensemble of solutions
Next, we apply Algorithm 4.3 using the Monte Carlo approximation of Al-
gorithm 4.4, with the perturbed initial data (7.2). We use M = 400 Monte
Carlo samples and compute up to t = 4 using grid resolutions from 1282 up
to 10242 grid points.
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Figure 7.1. The mean density for the Richtmyer–Meshkov problem with initial
data (7.2) for different grid resolutions at time t = 4. All results are obtained with
400 Monte Carlo samples.
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Figure 7.2. Cauchy rates (7.5) for the mean (a) and variance (b) versus grid
resolutions (x-axis) at time t = 4 for the Richtmyer–Meshkov problem (7.2). All
results are obtained with 400 Monte Carlo samples.

In Figure 7.1, for each grid resolution ∆x we plot the mean of the density
variable:

ρ̄∆x(x, t) :=
1

M

M∑
k=1

ρ∆x,k(ω;x, t), (7.4)

where ρ∆x,k(ω) is the mass density of each individual Monte Carlo sample.
We observe that small-scale features are averaged out in the mean, and
only large-scale structures, such as the strong re-entrant shocks (recall the
periodic boundary conditions) and mixing regions, are retained through the
averaging process. The figure indicates that, unlike the individual samples
shown in Figure 1.2, the mean converges as the mesh is refined. This con-
vergence is quantified in Figure 7.2(a), where we plot the difference in the
mean density for successive resolutions:

‖ρ̄∆x(·, t)− ρ̄∆x/2(·, t)‖L1 . (7.5)

The figure indicates that this quantity goes to zero, so the approximate
means form a Cauchy sequence and hence converge.

Figure 7.3 shows the variance of the mass density:

Var(ρ∆x)(x, t) :=
1

M

M∑
k=1

(
ρ∆x,k(ω;x, t)− ρ̄∆x(ω;x, t)

)2
.

As in Figure 7.1, the variances of the approximate Young measures seem to
converge as the mesh is refined. This is again quantified in Figure 7.2(b),
where the L1 differences of the variances at successive mesh resolutions
are plotted. Note from Figure 7.3 that the variance is concentrated at the
shocks, and even more so in the mixing layer around the original interface.
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Figure 7.3. Variance of the density with initial data (7.2) for different grid resolu-
tions at time t = 4. All results are obtained with 400 Monte Carlo samples.
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7.2. The Kelvin–Helmholtz problem

We consider the two-dimensional compressible Euler equations of gas dy-
namics (7.1) with initial data

u0(x) =

{
uA if J1 < x2 < J2,

uB if otherwise,
x ∈ [0, 1]2, (7.6)

with ρA = 2, ρB = 1, (v1)A = −0.5, (v1)B = 0.5, (v2)A = (v2)B = 0
and pA = pB = 2.5. The interface is specified by setting J1 = 0.25 and
J2 = 0.75. We use periodic boundary conditions on the computational
domain x ∈ [0, 1]2.

Note that the initial data (7.6) are a steady-state solution of the Euler
equations (7.1). Our aim is to compute a dissipative measure-valued solu-
tion of (7.1) with atomic initial data (7.6). To this end, we will employ
Algorithm 4.3, adding a random perturbation of the initial data. We follow
Fjordholm et al. (2016a) and randomly perturb the interfaces in (7.6) by
setting

u0(x, ω) =

{
uA if I1(ω;x) < x2 < I2(ω;x),

uB if otherwise,
x ∈ [0, 1]2, (7.7)

where

Ij(ω;x) := Jj + εYj(ω;x), j = 1, 2,

which are small perturbations around J1 = 0.25 and J2 = 0.75, respectively,
and

Yj(ω;x) =

K∑
n=1

anj (ω) cos(bnj (ω) + 2nπx1), j = 1, 2.

Here,

anj = anj (ω) ∈ [0, 1], bnj = bnj (ω) ∈ [−π, π], i = 1, 2, n = 1, . . . ,K,

are uniformly distributed random numbers. The coefficients anj have been
normalized such that

K∑
n=1

anj = 1,

to guarantee that |Ij(ω;x)− Jj | ≤ ε for j = 1, 2. We set K = 10.
Observe that by making ε small, this ω-ensemble of initial data lies inside

a small ball centred at u0. Indeed, it is readily checked that measured in,
say, the Lp([0, 1]2) norm, every sample u0(ω; ·) is O(ε1/p) away from the
unperturbed steady state (7.6).

The lack of convergence with mesh refinement for single realizations has
already been reported in Figures 6.2 and 6.3 of Fjordholm et al. (2016a).
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Figure 7.4. Approximate density at time T = 2, computed with the TeCNO2
scheme for a single sample with initial data (7.6) for different initial perturbation
amplitudes ε on a grid of 10242 points.
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Figure 7.5. The Cauchy rates (L1 difference for successively reduced ε) for the
density at t = 2 (y-axis), versus different values of the perturbation parameter ε
(x-axis).

On the other hand, Figure 6.4 (resp. Figure 6.6) of Fjordholm et al. (2016a)
demonstrated that statistical quantities of interest such as the mean and
variance, when computed with Algorithm 4.1 (for any fixed value of ε),
converge when the mesh is refined. Moreover, convergence with respect to a
Wasserstein-type metric was also observed (Figures 6.7 and 6.8 of Fjordholm
et al. 2016a).

7.2.1. Convergence as ε→ 0

Here we demonstrate the convergence of Algorithm 4.3. First, observe that
the perturbed initial data (7.7) converge (in any reasonable metric) to the
initial data (7.6) as ε → 0. Following Algorithm 4.3, we wish to study the
limit behaviour of approximate solutions ν∆x,ε as ε → 0. To this end, we
compute approximate solutions using the TeCNO2 scheme (see Fjordholm
et al. 2012) at a very fine mesh resolution of 10242 points for different values
of ε.

Results for a single sample at time t = 2 for different values of ε are
presented in Figure 7.4. The figures indicate that there is no convergence
as ε→ 0. The spread of the mixing region seems to remain large even when
the perturbation parameter is reduced. This lack of convergence is further
quantified in Figure 7.5, where we plot the L1 difference of the approximate
density for successively reduced values of ε. This difference remains large
even when ε is reduced by an order of magnitude.

Next, we apply Algorithm 4.3 using the Monte Carlo approximation of
Algorithm 4.4, with the perturbed initial data (7.7). We useM = 400 Monte
Carlo samples and compute up to t = 2 on a fixed grid resolution of 10242

points, using different values of the perturbation parameter ε. The mean
of the mass density (7.4) is plotted in Figure 7.6. The figure clearly shows
convergence as ε → 0, to a limit different from the steady-state solution
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Figure 7.6. Approximate sample means of the density for the Kelvin–Helmholtz
problem (7.6) at time t = 2 and different values of perturbation parameter ε. All
the computations are on a grid of 10242 mesh points and 400 Monte Carlo samples.
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Figure 7.7. Cauchy rates for the sample mean and the sample variance of the
density (y-axis) for the Kelvin–Helmholtz problem (7.6) for different values of ε
(x-axis). All the computations are on a grid of 10242 mesh points and 400 Monte
Carlo samples.

(7.6). This convergence of the mean with respect to decaying ε is quantified
in Figure 7.7(a), where we compute the L1 difference (7.5) of the mean for
successive values of ε. We observe that the approximations of the mean
form a Cauchy sequence, and hence converge.

Similar computations of the variance for different values of ε are presented
in Figures 7.8 and 7.7(b). These figures clearly show convergence of variance
as ε→ 0. Moreover, Figure 7.8 clearly indicates that in the ε→ 0 limit, the
limit variance is non-zero. This strongly suggests that dissipative measure-
valued solution can be non-atomic, even for atomic initial data. These
results are consistent with the claims of Theorem 5.5.

To further demonstrate the non-atomicity of the resulting measure-valued
solution, we have plotted the probability density functions (PDFs), ap-
proximated by empirical histograms, for the mass density at the points
x = (0.5, 0.7) and x = (0.5, 0.8) in Figure 7.9. We see that the initial unit
mass centred at ρ = 2 (ρ = 1, respectively) at t = 0 is smeared out over
time, and at t = 2 the mass has spread out over a range of values of ρ
between 1 and 2.

Figure 7.10 shows the same quantities, but for a fixed time t = 2, over a
series of meshes. Although a certain amount of noise seems to persist on the
finer meshes – most likely due to the low number of Monte Carlo samples –
the probability density functions seem to converge with mesh refinement.
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Figure 7.8. Approximate sample variances of the density for the Kelvin–Helmholtz
instability at time t = 2 and different values of perturbation parameter ε. All the
computations are on a grid of 10242 mesh points and 400 Monte Carlo samples.
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Figure 7.9. Time evolution of the approximate PDF for density ρ at the points
x = (0.5, 0.7) (a–e) and x = (0.5, 0.8) (f–j) on a grid of 10242 mesh points.
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Figure 7.10. The approximate PDF for density ρ at the points x = (0.5, 0.7) (a–d)
and x = (0.5, 0.8) (e–h) on a series of meshes.
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8. Numerical experiments: incompressible Euler equations

In this section we will consider the two-dimensional version of the incom-
pressible Euler equations (1.3) and present a numerical experiment to illus-
trate Algorithms 4.1 and 4.3 for computing an admissible measure-valued
solution.

8.1. Flat vortex sheet

We consider (1.3) in two dimensions with initial data

u0(x) =

{
(−1, 0) if π/2 < x2 < 3π/2,

(1, 0) otherwise,
(8.1)

on a periodic domain x ∈ [0, 2π]2. The initial vorticity in this case is a
bounded measure concentrated on the sets x2 = π/2 and x2 = 3π/2. It
is straightforward to check that the initial data for the flat vortex sheet
(8.1) is a steady-state weak solution of the two-dimensional Euler equations.
However, this datum also belongs to the class of wild initial data in the sense
of Székelyhidi (2011). Thus, infinitely many admissible weak solutions with
this initial datum can be constructed, as was done in Székelyhidi (2011).

Our objective is to compute an (admissible) measure-valued solution for
these atomic initial data by employing Algorithm 4.3. To this end, we mol-
lify the initial data v0 to obtain a smooth approximation uρ0 = (π1u

ρ
0, π2u

ρ
0)

of (8.1). This guarantees the existence of a smooth solution. Specifically,
we used

π1u
ρ
0(x) =


tanh

(
x2 − π/2

ρ

)
if x2 ≤ π,

tanh

(
3π/2− x2

ρ

)
if x2 > π,

π2u
ρ
0(x) = 0.

with a small parameter ρ. The parameter ρ controls the sharpness of the
transition from −1 to +1 across the interfaces. A small value of ρ corres-
ponds to a very sharp transition.

We further introduce perturbations of the two interfaces by making a
perturbation ansatz for each interface of the form

I(ω;x) = ε

K∑
k=1

αk(ω) sin(kx1 − βk(ω))

for uniformly distributed random numbers α1, . . . , αK ∈ R, β1, . . . , βK ∈
[0, 2π) with

∑K
k=1 |αk|2 = 1. The parameters {αk, βk}1≤k≤K are independ-

ent random variables that are different for the two interfaces. For our com-
putations, we used a fixed value of K = 10 perturbation modes.
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Figure 8.1. Perturbed initial data with ε = 0.0512, ρ = 0.001.

The result of this ansatz is a random field

uρ0(x1, x2 − I(x, ω))

depending on two parameters ρ and ε. The parameter ε controls the mag-
nitude of the perturbation, while ρ determines the smoothness across the
interfaces. Projecting this random field back to the space of divergence-free
vector fields using the Leray projection, we obtain our perturbed initial data
uρ,ε0 , as illustrated in Figure 8.1. For a fixed number of Fourier modes N , we
aim to compute the corresponding approximate Young measure νρ,ε,N using
the spectral method from Section 6.1.1 in Step 2 of Algorithm 4.3). The
measure-valued solution of (1.3) will then be realized as a limit of νρ,ε,N as
N →∞ and ρ, ε→ 0.

8.1.1. Single realization

First, we fix a single realization of the random field u0(ω). To visualize the
resulting approximate solutions, we plot the local kinetic energy at time
t = 2 in Figure 1.5. The results for this figure were obtained using ε = 0.01,
ρ = 0.001 and different Fourier modes N . We see from the figure that as the
resolution is increased, the distribution of kinetic energy is quite different for
each resolution. In particular, the energy seems to concentrate on structures
at ever smaller scales. This indicates that the underlying velocity field may
not converge as the number of Fourier modes is increased. This is indeed
verified in Figure 1.6, where we show the successive L2 differences of the
approximate velocity field (1.4) . The differences do not seem to go to zero,
indicating that the approximate solutions may not form a Cauchy sequence,
let alone converge.

Next, we consider the stability with respect to the perturbation para-
meter ε of single realizations of approximate solutions. We fix N = 512 and
compute for different values of ε. To visualize the resulting solution, we plot
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Figure 8.2. Passively advected tracer at t = 2 for ε = 0.0512 (a), 0.0256 (b),
0.0128 (c), 0.0064 (d).
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Figure 8.3. Cauchy rates (L2 differences in successive approximations) with respect
to ε for a single sample of the flat vortex sheet (8.1)
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a tracer, initially concentrated in x2 ∈ [π/2, 3π/2] and passively advected
by the computed velocity field. We show the passively advected tracer at
time t = 2 in Figure 8.2. The figure clearly shows that the tracer distri-
bution is very different for different values of ε. As shown in Figure 8.3,
the L2 difference for successive values of ε does not decrease as ε decreases.
Hence, the perturbed solutions do not converge as the perturbation tends
to zero, indicating instability of the flat vortex sheet (8.1) with respect to
perturbations.

8.1.2. Ensemble of solutions
Having seen the lack of convergence and stability for single realizations of the
perturbed vortex sheet, we apply Algorithm 4.3 to compute the approximate
Young measure. To this end, we use the Monte Carlo Algorithm 4.4 with
M = 400 samples. We compute the mean of the approximate measure-
valued solution

〈νρ,ε,N,Mx,t , ξ〉 =
1

M

M∑
i=1

vρ,ε,N,i(x, t)

as well as the second moments

〈νρ,ε,N,Mx,t , ξ ⊗ ξ〉 =
1

M

M∑
i=1

(vρ,ε,N,i ⊗ vρ,ε,N,i)(x, t).

The mean of u1 and the second component of u2 at time t = 2, computed
for different number of Fourier modes, are shown in Figures 8.4 and 8.5.
In complete contrast to Figure 1.5 (which uses a single sample), and as
predicted by Theorem 6.4, both the mean and the variance seem to converge
as the number of Fourier modes is increased. This convergence is further
verified in Figure 8.6, which displays successive L2 differences of the mean
velocity field and the second moment ξ2ξ2. The convergence in the second
moment is slower than that of the mean; this is not unexpected as we use
the same samples for the computation of the mean and the second moment.
Furthermore, from Figures 8.4 and 8.5 we observe that small-scale features
are averaged out in the statistical quantities such as the mean and variance.

As we are approximating atomic initial Young measure concentrated on
the flat vortex sheet (8.1) by the perturbation-based Algorithm 4.3, we will
let the perturbation parameter ε→ 0. For this purpose, we fix N = 512 and
consider approximate Young measures νρ,ε,N for successively smaller values
of ε. The results for the mean of the first component of the velocity field
and the variance of the second component of the velocity field are plotted
in Figures 8.7 and 8.8. The figures indicate that these statistical quantities
also converge with decreasing perturbation amplitude. This convergence is
verified in Figure 8.9, where successive L2 differences of the mean and the
second moment are displayed.
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Figure 8.4. Convergence of mean of the x-component of the velocity at time t = 2,
for the flat vortex sheet with respect to N (number of Fourier modes).
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Figure 8.5. Convergence of second moment of the y-component of the velocity at
time t = 2, for the flat vortex sheet, with respect to N (number of Fourier modes).
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Figure 8.7. Convergence of mean, at time t = 2, for the x-component of the velocity,
with respect to ε.
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Figure 8.8. Convergence of second moment at time t = 2, for the y-component of
the velocity field, with respect to ε.
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Figure 8.9. Cauchy rates with respect to ε.
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(a) mean (b) variance

Figure 8.10. One-dimensional slices of the mean (a) and the variance (b) computed
with different values of ε.

The convergence results for statistical quantities such as the mean and the
variance, with respect to the resolution and the perturbation parameter, are
consistent with the prediction of weak* convergence in Theorem 6.4. The
convergence in fact seems to be even stronger than the predicted weak*
convergence. To test this assertion, the 1-Wasserstein distance between suc-
cessive approximations ε and ε/2 was computed and presented in Figure 14
of Lanthaler and Mishra (2015). This figure demonstrated convergence in
the stronger 1-Wasserstein metric as ε→ 0.

As the initial data are an atomic measure in this case, it is interesting to
find out whether the computed admissible measure-valued solution is also
atomic. To this end, we make use of a symmetry property of the limit Young
measure (Theorem 5.1(2) of Lanthaler and Mishra 2015) that it would be
invariant in the x1-direction. We fix N = 512, and present an x1 = const.
slice of the mean and the variance of the velocity field v1 in the x2-direction
for different values of ε. The results shown in Figure 8.10 show that there is
convergence as ε → 0. Furthermore, the mean in the ε → 0 limit does not
coincide with the initial velocity profile. The variance is also very different
from zero, with two distinct non-zero patches (which are symmetric with
respect to x2 = π). We call these two patches the turbulence zones. These
results strongly indicate that the computed measure-valued solution is not
atomic. We remark that this non-atomicity of the limit Young measure
is presented in Lanthaler and Mishra (2015) as convincing numerical evid-
ence for the non-uniqueness of Delort solutions of the incompressible Euler
equations.
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8.2. Stability/uniqueness of computed measure-valued solutions

Next, we examine whether the computed measure-valued solutions are stable
in a suitable sense. Following Fjordholm et al. (2016a) and Lanthaler and
Mishra (2015), we observe that Algorithm 4.3 (and Algorithm 4.4) rely on
two inputs, the numerical method (in Step 2 of Algorithm 4.3) and the
type of perturbations (modelled by the random field X in Step 1 of Al-
gorithm 4.3). Both these inputs can be chosen freely provided that they
satisfy some structural properties, for instance those required of the numer-
ical method in Theorem 5.1. We wish to investigate whether the computed
measure-valued solutions – at least for atomic initial data – are stable with
respect to the choice of numerical method and to the choice of random ini-
tial perturbations. This issue is investigated in Fjordholm et al. (2016a) in
the context of compressible Euler equations and in Lanthaler and Mishra
(2015) for the incompressible Euler equations. We present some results
for the incompressible Euler equations from Lanthaler and Mishra (2015)
below.

8.2.1. Stability with respect to the numerical method
We have described two very different numerical methods for approximating
the incompressible Euler equations (1.3): the spectral (viscosity) method
(6.4) and the finite difference projection method (6.7). Both were shown
to converge to a measure-valued solution of the incompressible Euler equa-
tions, but do they converge to the same measure-valued solution? To answer
this question, we use Algorithm 4.3 to compute measure-valued solutions
for the flat vortex sheet (8.1). We fix the same initial random field as de-
scribed in Section 8.1 with parameters (ρ, ε) = (0.001, 0.01), and compute
the resulting measure-valued with the spectral method (6.4) and the finite
difference projection method (6.7) with 512 Fourier modes and 512 mesh
points (in each direction), respectively. The mean and variance of the com-
puted measure-valued solution for the spectral method (6.4) has already
been shown in Figures 8.4 and 8.5(d), respectively. The mean and variance
of the measure-valued solution, computed with the finite difference projec-
tion method (6.7), is shown in Figure 8.11. A comparison of the two sets
of figures clearly shows that the statistics of the measure-valued solution,
computed with two very different methods, are very similar. Hence, and
also based on a similar comparison between different methods for approx-
imating the compressible Euler equations, it appears that the computed
measure-valued solution is very stable with respect to the choice of numer-
ical methods.

8.2.2. Stability with respect to different perturbations
Having demonstrated the robustness of Algorithm 4.3 with respect to the
choice of numerical method in Step 2, we investigate whether the algorithm
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Figure 8.11. Flat vortex sheet: (a) mean of the x-component of the velocity field,
(b) second moment of y-component of the velocity field (from Leonardi and Mishra
2016) on a 5122 grid, to be compared with the spectral method.

is sensitive with respect to the type of perturbations in Step 1. To do
this, we consider the most general perturbation to the initial data (8.1) by
adding a random field that is constant on local patches, and which exhibits
uncorrelated fluctuations of equal strength in all of space. More precisely, we
consider random fields of the formX0 =

∑
i,j X

0
i,j1Ci,j

, where the patches are

Ci,j =
{

(x, y) ∈ T2 : ik∆x ≤ x < (i+ 1)k∆x, jk∆y ≤ y < (j + 1)k∆y
}
,

with k = 16 comprising 16 × 16 mesh cells. The random variables X0
i,j

are independent and identically distributed random variables, uniformly
distributed, with respect to the Lebesgue measure, on [−1, 1]2. We obtain
our initial perturbations Z0

δ as the projection of u0 + δX0 to the space
of divergence-free vector fields. We refer to the results obtained from this
perturbation procedure as ‘uncorrelated’ below.

Note that we can (formally) rewrite the evolution equation for the mean
ν of the measure-valued solutions of incompressible Euler equations (1.3) as

∂tν + ν · ∇ν +∇p = −div〈ν, (ξ − ν)⊗ (ξ − ν)〉.

If the fluctuations of the mean ν in the neighbourhood of any given point
are an indication of the fluctuations of ν, then we should expect the relevant
contributions to the evolution of ν to originate at the two interfaces, where
ν has a large jump. Hence, we localize the above uncorrelated perturbation
to the initial data by multiplying it with cut-off functions that are supported
around the two interfaces. We refer to the results from these localizations
as ‘uniform’ or ‘Gaussian’ according to the corresponding distribution the
values of the X0

i,j were chosen from. Hence, ‘uniform’ and ‘Gaussian’ refer
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Figure 8.12. Flat vortex sheet: mean for the x-component of the velocity field, at
time t = 2, computed with N = 1024 Fourier modes and with different types of
initial perturbations.

to the localized perturbations around the interfaces, but with uniformly and
normally distributed random variables, respectively. The results of applying
Algorithm 4.3 with these perturbations, with amplitude ε = 0.05 and the
spectral method (6.4), are shown in Figures 8.12 (mean) and 8.13 (second
moment) at time t = 4. Clearly the computed solutions are very similar to
those computed with the sinusoidal perturbations, described in Section 8.1.
Thus, the nature of underlying distribution does not seem to affect the
computed measure-valued solution.

Summarizing these results and those for the compressible Euler equations
presented in Fjordholm et al. (2016a), we see that the computed measure-
valued solutions are stable with respect to the type of initial perturbations
as well as to the underlying numerical method that approximates them, at
least when the initial data are atomic.
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Figure 8.13. Flat vortex sheet: second moment for the y-component of the velocity
field, at time t = 2, computed with N = 1024 Fourier modes and with different
types of perturbations.

PART THREE

Related concepts, methods and applications

9. Statistical solutions

The numerical experiments in Sections 7 and 8 strongly hint that measure-
valued solutions behave in a much more stable, predictable manner than do
individual (approximate) weak solutions. However, it is fairly easy to see
that non-atomic measure-valued solutions are non-unique. We include here
a counter-example to uniqueness, taken from Fjordholm et al. (2016a).
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Example 9.1. Consider the Burgers equation,

∂tu+ ∂x

(
u2

2

)
= 0.

Let λ denote the Lebesgue measure on R and let λA be the restriction of
λ to a subset A ⊂ R, that is, λA(B) = λ(A ∩ B). We define Ω = [0, 1],
X = B([0, 1]) (the Borel σ-algebra on [0, 1]) and P = λ[0,1]. Let u0 and ũ0

be the random fields

u0(ω;x) :=

{
1 + ω for x < 0,

ω for x > 0,
ũ0(ω;x) :=

{
1 + ω for x < 0,

1− ω for x > 0,

for ω ∈ [0, 1], x ∈ R. It is readily checked that the law of both u0 and ũ0

in (Ω,X, P ) equals

σx =

{
λ[1,2] for x < 0,

λ[0,1] for x > 0.

The entropy solutions u(ω) and ũ(ω) of the Riemann problems with initial
data u0(ω) and ũ0(ω) are given by

u(ω;x, t) =

{
1 + ω if x/t < 1/2 + ω,

ω if x/t > 1/2 + ω,
ũ(ω;x, t) =

{
1 + ω if x/t < 1,

1− ω if x/t > 1,

and it is straightforward to compute the pointwise laws νx,t = Law(u(·;x, t))
and ν̃x,t = Law(ũ(·;x, t)):

νx,t =


λ[1,2] if x/t < 1/2,

λ[x/t+1/2,2] + λ[0,x/t−1/2] if 1/2 < x/t < 3/2,

λ[0,1] if 3/2 < x/t,

ν̃x,t =

{
λ[1,2] if x/t < 1,

λ[0,1] if x/t > 1.

Both νx,t and ν̃x,t converge to σx strongly as t → 0 for all x 6= 0. Thus,
ν and ν̃ are EMV solutions with the same initial MV data σ, but do not
coincide.

For more counter-examples, see Schochet (1989). It is clear that as soon
as the measure νx,t spreads out (i.e., it becomes non-atomic, which in Ex-
ample 9.1 happens at t = 0), one can parametrize νx,t as distinct random
fields u(ω;x, t) and ũ(ω;x, t), leading to distinct measure-valued solutions
νx,s and ν̃x,s for s > t. This deficiency is inherent to measure-valued solu-
tions and it seems unlikely that any type of entropy condition can avoid it.
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9.1. Solutions as random fields

The first remedy that might come to mind is to define a ‘solution’ to be
precisely a random field u(ω;x, t) which satisfies the PDE in some strong
(e.g., u(ω) is an entropy solution for all ω ∈ Ω) or weak sense (e.g., the
PDE holds when integrated against some class of test functions Φ(ω)). The
former is an approach taken in several works on stochastic conservation
laws; see, for example, Mishra and Schwab (2012) and references therein,
as well as Section 10. The parameter ω is usually a point in some abstract
probability space (Ω,X, P ). But it is always possible to reparametrize the

random field u(ω) as ũ(ω̃) over a different space (Ω̃, X̃, P̃ ), yielding a distinct
‘solution’ (albeit with the same statistical properties). Hence, the approach
of random field solutions is inherently non-unique.

9.2. Statistical solutions I

A refinement of the random field approach which is independent of arbitrary
parametrizations is to consider only the law of the above random fields. If,
for example, u(ω; ·, t) ∈ Lp(D) for all ω ∈ Ω and t ≥ 0, then the law of u
would be a probability measure on Lp(D):

µt = Law(ω 7→ u(ω; ·, t)) ∈ P(Lp(D)).

Pointwise reparametrizations such as in Example 9.1 would no longer be
possible, since such a reparametrization would inevitably give rise to distinct
laws µt, µ̃

t (although possibly with the same pointwise laws). The idea of
a (time-parametrized) probability measure as the solution of a PDE was
introduced by Foiaş (1972, 1973) (see also Foiaş, Manley, Rosa and Temam
2001), who defined statistical solutions of the Navier–Stokes equations. A
statistical solution of a PDE (e.g., the Navier–Stokes equations) is a time-
parametrized map t 7→ µt ∈ P(F) for some appropriate function space F,
which satisfies the PDE in some weak sense. A major challenge in this
context is to find the appropriate weak formulation of the PDE: it must be
strong enough to yield uniqueness of solutions, but not so strong that it
depends on the existence of a solution operator u0 7→ u(t); as the numerical
experiments in Sections 7 and 8 suggest, there may not exist a well-defined
solution operator within F = Lp(D), for any 1 ≤ p ≤ ∞.

9.3. Correlation measures

An alternative approach to avoiding the kind of deficiencies seen in Ex-
ample 9.1 is to add information about correlations. In this example we
were free to parametrize νx1 however we wanted, independent of the para-
metrization of νx2 at any other point x2. To counteract this, we can add
information about two-point correlation in the form of a Young measure
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ν2
x1,x2

for every pair (x1, x2) ∈ D2. The number ν2
x1,x2

(A1 × A2) can be
interpreted as ‘the probability that u(x1) ∈ A1 and u(x2) ∈ A2’; compare
this with the interpretation of νx1(A1) as ‘the probability that u(x1) ∈ A1’.
The two-point correlations of the two initial random fields in Example 9.1
are

σ2
x1,x2

(ξ1, ξ2) =


δξ1(ξ2)λ[1,2](ξ1) if x1, x2 < 0,

δξ1+1(ξ2)λ[0,1](ξ1) if x1 < 0 < x2,

δξ1−1(ξ2)λ[1,2](ξ1) if x2 < 0 < x1,

δξ1(ξ2)λ[0,1](ξ1) if 0 < x1, x2,

σ̃2
x1,x2

(ξ1, ξ2) =


δξ1(ξ2)λ[1,2](ξ1) if x1, x2 < 0,

δ2−ξ1(ξ2)λ[0,1](ξ1) if x1 < 0 < x2,

δ2−ξ1(ξ2)λ[1,2](ξ1) if x2 < 0 < x1,

δξ1(ξ2)λ[0,1](ξ1) if 0 < x1, x2.

Since these are clearly distinct, the two-point correlations σ2, σ̃2 can ‘tell
the difference’ between the two random fields, even though they have the
same one-point statistics σ. A more sophisticated choice of random fields
u, ũ could, however, have the same one- and two-point laws, but still para-
metrize different families of functions. This argument can be readily iter-
ated to any number of points at which the statistical information is given.
Thus, to address the shortcomings of measure-valued solutions pointed out
in Example 9.1, one would have to consider a whole family ν1, ν2, ν3, . . .
of Young measures, the kth member of which would be a Young measure
νk ∈ Y(Dk, (RN )k), with the interpretation that νkx1,...,xk

(A1 × · · · × Ak) is
‘the probability that u(xi) ∈ Ai for all i = 1, . . . , k’. The full definition is
as follows. (Here and below we denote U = RN .)

Definition 9.2 (Fjordholm, Lanthaler and Mishra 2016b). A corre-
lation measure is a collection ν = (ν1, ν2, . . . ) satisfying the following prop-
erties.

(i) Weak* measurability. The map νk : Dk → P(Uk) is weak*-measurable,
in the sense that the map x 7→ 〈νkx , f〉 from x ∈ Dk into R is Borel-
measurable for all f ∈ C0(Uk) and k ∈ N. In other words, νk is a
Young measure from Dk to Uk.

(ii) Lp boundedness. νk is bounded in F, in the sense that

‖νk‖p,k :=

(∫
Dk

〈νkx , |ξ1|p · · · |ξk|p〉 dx
)1/p

< +∞ for all k ∈ N. (9.1)

(iii) Symmetry. If σ is a permutation of {1, . . . , k} and f ∈ C0(Rk), then

〈νkσ(x), f(σ(ξ))〉 = 〈νkx , f(ξ)〉
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for almost every x ∈ Dk.

(iv) Consistency. If f ∈ C0(Rk) is of the form

f(ξ1, . . . , ξk) = g(ξ1, . . . , ξk−1)

for some g ∈ C0(Uk−1), then

〈νkx1,...,xk
, f〉 = 〈νk−1

x1,...,xk−1
, g〉

for almost every (x1, . . . , xk) ∈ Dk.

Each element νk is called a correlation marginal. We let Lp = Lp(D,U)
denote the set of all correlation measures from D to U . We say that a
correlation measure ν ∈ Lp(D,U) is diagonally consistent (or DC ) if, for
all k ∈ N, all f ∈ C0(Uk+1) and almost every x = (x1, . . . , xk) ∈ Dk,

(i) the point (x1, . . . , xk, xk) ∈ Dk+1 is a Lebesgue point for the map
Dk+1 3 y 7→ 〈νk+1

y , f〉, and

(ii) 〈νk+1
x1,...,xk,xk

, f(ξ1, . . . , ξk, ξk+1)〉 = 〈νkx1,...,xk
, f(ξ1, . . . , ξk, ξk)〉.

9.4. The equivalence between P(Lp(D)) and Lp(D)

In Fjordholm, Lanthaler and Mishra (2016b) we prove the equivalence of
the two approaches outlined: for every probability measure µ ∈ P(Lp(D,U))
there is a corresponding unique correlation measure (ν1, ν2, . . . ), and vice
versa.

Theorem 9.3 (Fjordholm et al. 2016b). For every diagonally consist-
ent correlation measure ν ∈ Lp(D,U), there exists a unique probability
measure µ ∈ P(Lp(D,U)) satisfying∫

F

‖u‖pkF dµ(u) <∞ for all k ∈ N (9.2)

such that ∫
Dk

∫
Uk

g(x, ξ) dνkx(ξ) dx =

∫
F

∫
Dk

g(x, u(x)) dx dµ(u) (9.3)

for all g ∈ L1(Dk, C0(Uk)). Conversely, for every probability measure µ ∈
P(Lp(D,U)) with the fast decay rate (9.2), there exists a unique diagonally
consistent correlation measure ν ∈ Lp(D,U) satisfying (9.3).

The relation (9.3) still holds if g is of either of the forms

g(x, ξ) = |ξ1|p · · · |ξk|p or g(x, ξ) = (φ1(x1) · ξ1) · · · (φk(xk) · ξk) (9.4)

for φ1, . . . , φk ∈ F∗.
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9.5. Statistical solutions II

Now consider the one-dimensional conservation law (2.5). In the proof of
Theorem 9.3, it is found that the moments, defined formally as

mk(x) := 〈νkx , ξ1 ⊗ · · · ⊗ ξk〉 =

∫
F

u(x1)⊗ · · · ⊗ u(xk) dµ(u)

for x = (x1, . . . , xk) ∈ Dk, uniquely determine both the correlation measure
(ν1, ν2, . . . ) and the probability measure µ. In view of this fact, we derive
evolution equations for each of these moments. Let u(x, t) be a smooth
solution of the one-dimensional conservation law (2.5). Then, suppressing
dependency on t,

∂t(u(x1) · · ·u(xk)) =
k∑
i=1

u(x1) · · · ∂u(xi)

∂t
· · ·u(xk)

= −
k∑
i=1

u(x1) · · · ∂f(u(xi))

∂xi
· · ·u(xk)

= −
k∑
i=1

∂xi(u(x1) · · · f(u(xi)) · · ·u(xk)).

Letting

νkx,t = δu(x1,t) ⊗ · · · ⊗ δu(xk,t)

denote the (atomic) correlation measure concentrated at u, the above can
be written as

∂t〈νkx,t, ξ1 · · · ξk〉+
k∑
i=1

∂xi〈νkx,t, ξ1 · · · f(ξi) · · · ξk〉 = 0 (9.5)

for x ∈ Dk, t > 0, k ∈ N. This expression makes sense even if ν is non-
atomic. Moreover, since it is written in divergence form, it can be inter-
preted in the sense of distributions. We take this as the definition of a
statistical solution, which we formulate for multi-dimensional systems of
conservation laws (2.1).

Definition 9.4. Let µ0 ∈ P(L1(Rd,RN )) satisfy (9.2). A statistical solu-
tion of (2.1) with initial data µ0 is a weak*-measurable mapping t 7→ µt ∈
P(L1(Rd,RN )) satisfying (9.2) for all t > 0, such that the corresponding
correlation measures (νk,t)k∈N satisfy (9.5) in the sense of distributions,



On the computation of measure-valued solutions 649

that is, ∫
R+

∫
Rk

〈νk,tx , ξ1 ⊗ · · · ⊗ ξk〉 : ∂tϕ

+
k∑
i=1

〈νk,tx , ξ1 ⊗ · · · ⊗ f(ξi)⊗ · · · ⊗ ξk〉 : ∇xi · ϕdx dt

+

∫
Rk

〈ν̄kx , ξ1 ⊗ · · · ⊗ ξk〉 : ϕ
∣∣
t=0

dx = 0

for every ϕ ∈ C∞c ((Rd)k × R+)k and every k ∈ N.

9.6. Existence and uniqueness

Assume now that (under some admissibility condition) there is a solution
operator St : u0 7→ u(t) of the PDE (2.1). (The special case of a scalar
conservation is one example of this.) It is then straightforward to show that
µt := St#µ0 (where # denotes the pushforward operator) is a statistical
solution (Fjordholm et al. 2016b). This solution is called the canonical
statistical solution.

In Fjordholm et al. (2016b) we consider the case of a scalar conservation
law, and derive an entropy condition which – inspired by the Kružkov en-
tropy condition – enforces stability with respect to certain combinations of
constant entropy solutions. It is shown that this entropy condition guaran-
tees stability and uniqueness of solutions.

Theorem 9.5 (Fjordholm et al. 2016b). Let µt and ρt be entropy stat-
istical solutions of the scalar conservation law (2.1) with initial data µ0, ρ0 ∈
P(L1(D,R)), respectively. Then

W1(µt, ρt) ≤W1(µ0, ρ0) for all t > 0.

In particular, the entropy statistical solution is unique and coincides with
the canonical statistical solution.

Here, the stability is expressed in terms of the Wasserstein distance W1,
which is a metric on P(L1(D,R)).

We emphasize that although the well-posedness Theorem 9.5 considers a
PDE where there exists a unique entropy solution, the concept of statist-
ical solutions does not in any way depend on this well-posedness. Unlike
measure-valued solutions, which suffer from the deficiencies detailed in Ex-
ample 9.1, statistical solutions seem like objects much more suitable for a
well-posedness theory. The challenge for equations such as (7.1) or (1.3)
will be to find the appropriate admissibility condition.
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9.7. Numerical approximation

It turns out that the Monte Carlo Algorithm 4.4 can be readily extended
to compute a statistical solution. The resulting algorithm is as follows.

Algorithm 9.6. Let ∆ = (∆x1, . . . ,∆xd) denote the grid size parameter
and let M ∈ N. Let µ0 ∈ P(Lp(Rd,RN )) be the initial probability measure.

Step 1: For some probability space (Ω,X,P), draw M independent and

identically distributed random fields u∆,1
0 , . . . , u∆,M

0 : Ω→ Lp(Rd,RN ),
all with the same law µ0.

Step 2: For each k and for a fixed ω ∈ Ω, use the finite difference scheme
(5.1a) to numerically approximate the conservation law (2.1) with ini-

tial data u∆,k
0 (ω). Denote u∆,k(ω; ·, t) = S∆

t u
∆,k
0 (ω; ·).

Step 3: Define the approximate statistical solution

µ∆,M
t :=

1

M

M∑
k=1

δu∆,k(ω;·,t), t > 0. (9.6)

The convergence of this Monte Carlo algorithm to a statistical solution
of (2.1) in the limit ∆→ 0 and M →∞, will be shown in Fjordholm, Lye
and Mishra (2016c).

10. Uncertainty quantification

10.1. What is uncertainty quantification?

Any PDE, such as systems of conservation laws (2.1), requires inputs such
as the initial data, boundary conditions, flux coefficients and source terms.
In practice, these inputs are obtained by some process of measurement.
However, all measurements are inherently uncertain, that is, it is not pos-
sible to specify measured values exactly. These measurement errors lead
to an intrinsic uncertainty in the inputs to a PDE, such as (2.1). These
uncertainties are propagated by the solution map of the PDE and result
in uncertainties in the corresponding solutions to the underlying PDE. The
modelling, analysis and computation of these uncertain solutions falls under
the rubric of uncertainty quantification (UQ).

UQ is a rapidly emerging interdisciplinary research area that spans ap-
plied mathematics, scientific computing, statistics and engineering. Al-
though UQ involves various aspects in the modelling and computation of
uncertainty, we focus here on the rather limited aspect of computational
uncertainty propagation. Uncertainty propagation, also called forward UQ,
refers to the computation of solutions of PDEs with uncertain inputs such
as initial data, boundary conditions, coefficients and source terms. Given
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our focus on PDEs that model fluid dynamics, we shall discuss forward UQ
in the limited context of systems of conservation laws (2.1). The reader is
referred to Ghanem, Higdon and Owhadi (2016) for a comprehensive discus-
sion of UQ in the context of elliptic, parabolic and linear hyperbolic PDEs.

10.2. UQ with random fields

As stated in Section 9, the most popular paradigm for UQ in the context of
hyperbolic systems of conservation laws (2.1) has been to use random fields
to model uncertain inputs as well as uncertain solutions. For simplicity of
the exposition, we only consider the case where the initial data in (2.1) is
uncertain. We let (Ω,X,P) denote a complete probability space and model
the initial data u0 as a random field, that is, a map u0 : Ω 7→ L1(D) which
is measurable with respect to the Borel σ-algebra B(L1(D)) Here, D ⊂ Rd
denotes the spatial domain. The initial random field u0 could be described in
terms of a finite number of uncertain parameters or could be given in terms
of a Karhunen–Loève expansion. Formally, the system of conservation laws
(2.1) becomes

∂tu(ω;x, t) +∇x · f(u(ω;x, t)) = 0,

u(ω;x, 0) = u0(ω;x).
(10.1)

Following Mishra and Schwab (2012), we define a random entropy solution
of (10.1) as follows.

Definition 10.1. A random field u : Ω → C([0, T ), L1(D)) is a random
entropy solution of the uncertain system of conservation laws (10.1) if u(ω)
satisfies (2.2) for almost every ω ∈ Ω as well as the entropy inequality (2.3)
for almost every ω ∈ Ω.

Thus, random entropy solutions are a pathwise (in Ω) concept of solutions
for the random conservation laws. Rigorous well-posedness results for ran-
dom entropy solutions of (10.1) were obtained in the special case of scalar
conservation laws in Mishra and Schwab (2012). The authors constructed
this random entropy solution as simply specifying

u(ω; ·, t) = Stu0(ω; ·),

where St is the solution map defined in Theorem 2.4. Well-posedness results
for the random entropy solutions for scalar conservation laws, but with
uncertain fluxes, have also been obtained by Mishra, Risebro, Schwab and
Tokareva (2016). Since random entropy solutions are a pathwise concept,
no well-posedness results for random entropy solutions have been obtained
for (multi-dimensional) systems of conservation laws, on account of the lack
of well-posedness results for the deterministic problem.
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10.2.1. Computation of random entropy solutions

A large variety of numerical methods have been developed for UQ, particu-
larly in the context of elliptic and parabolic PDEs. Some of them have been
adapted, with varying degrees of success, to non-linear hyperbolic PDEs
such as (10.1). We will provide a very brief survey of these methods, and
refer readers to the book by Bijl, Lucor, Mishra and Schwab (2014) for a
detailed discussion and comparison of these methods.

Stochastic Galerkin methods, based on generalized polynomial chaos,
have been widely used in UQ for elliptic and parabolic problems (Ghanem
and Spanos 1991). Some of these methods have been extended to compute
random entropy solutions of (10.1), such as those in Després, Poëtte and
Lucor (2009) and Tryoen, Le Mâıtre, Ndjinga and Ern (2010) and references
therein. However, these methods suffer from the fact that they are intrusive:
new code needs to be written and existing codes for solving (2.1) cannot be
used directly. Furthermore, the lack of regularity in hyperbolic PDEs limits
the use of these methods to problems that contain only a small number of
uncertain parameters.

Stochastic collocation methods are non-intrusive deterministic alternat-
ives to stochastic Galerkin methods (Xiu and Hesthaven 2005). Variants of
these methods have been developed, based on weak forms of the underlying
PDE, such as the stochastic collocation finite volume methods of Mishra
et al. (2016); see also Abgrall and Congedo (2013) and Barth (2013). These
methods are also restricted to a low number of uncertain inputs.

Monte Carlo methods are also heavily used in the context of computation
of random entropy solutions; see Bijl et al. (2014). It is well known that
Monte Carlo methods converge at a slow rate of M−1/2, with M being the
number of Monte Carlo samples. Hence, more efficient variants of Monte
Carlo (MC) methods have been designed. The most popular alternative in
the context of computation of random entropy solutions is that of multi-level
Monte Carlo (MLMC) methods, first proposed by Giles (2008) but adapted
to the case of conservation laws by Mishra and Schwab (2012) and Mishra,
Schwab and Šukys (2012a, 2012b, 2013), and references therein. These
methods have the advantage of being non-intrusive, simple to implement
and parallelize, and are able to handle inputs with a very large number of
uncertain inputs.

10.3. Issues with random entropy solutions

Although random entropy solutions are the most popular paradigm in the
context of UQ for conservation laws, there are some drawbacks to this solu-
tion concept.

• Modelling input uncertainty in terms of random fields leads to ambigu-
ity in how initial statistical information is parametrized. As mentioned
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in Section 9, one can choose different probability spaces on which the
initial random field is defined, and obtain very different parametriz-
ations of the same statistical information. Thus, lack of uniqueness
appears to be generic to such descriptions.

• The most serious drawback of modelling with random fields lies in
the fact that there are no existence and uniqueness results for random
entropy solutions for systems of conservation laws. This is not surpris-
ing, as random entropy solutions are a pathwise concept, and there
are no existence and uniqueness results for the entropy solutions of the
underlying deterministic PDE, as explained in Section 2.

Furthermore, the extensive numerical evidence presented in Sec-
tions 7 and 8 strongly suggests that the measure-valued solutions of
(2.1) may be non-atomic, even if the initial data are atomic. Hence,
a data-to-solution map (such as St in Theorem 2.4) which has been
basis of construction of random entropy solutions (see, e.g., Mishra
and Schwab 2012), may not be available for multi-dimensional sys-
tems. Thus, a pathwise concept such as random entropy solutions is
incompatible with these models.

• All the rigorous convergence results for numerical methods for approx-
imating random fields have been obtained in the scalar case (see Mishra
and Schwab 2012 for convergence of MC and MLMC methods). No rig-
orous convergence results are available for systems of conservation laws.
In particular, it has been postulated in some articles, such as Mishra,
Schwab and Šukys (2012a), that MC and MLMC methods converge
once one assumes convergence in L1 for numerical approximations of
the underlying deterministic problem. However, as demonstrated in
this article, there appears to be no empirical convergence in L1 for
standard numerical approximations of multi-dimensional systems of
conservation laws. Hence, the postulated convergence in Mishra et al.
(2012a) may not be true. This casts serious doubt on the validity of the
random entropy solutions, computed with various existing methods.

Given the above considerations, there is plenty of scope for the development
of new paradigms for uncertainty quantification of systems of conservation
laws (and incompressible Euler equations) that replace random fields (and
random entropy solutions) as the solution framework.

10.4. UQ with measure-valued and statistical solutions

Measure-valued solutions, as defined in Section 3.2, can serve as a framework
for uncertainty quantification for systems of conservation laws (2.1). To be
more specific, we consider the case of uncertain initial data modelled by an
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initial (non-atomic) Young measure σx. This measure encodes all informa-
tion about one-point statistics of the uncertain initial data. In particular,
the one-point PDF of the data (if it exists) can specify this initial measure.
Once the measure-valued solution νx,t is available, one can obtain moments
such as the mean and variance as well as one-point PDFs (or cumulative dis-
tribution functions, CDFs) of the uncertain solution. The measure-valued
solution can be approximated by using the Monte Carlo Algorithm 4.4. The
convergence of this algorithm is guaranteed by Theorem 4.5. Thus, the ex-
istence of measure-valued solutions, as well as convergence of the Monte
Carlo algorithms for computing them, has already been rigorously estab-
lished. This should be seen in contrast to the random fields paradigm of
UQ, where such results are lacking.

However, as described in the Section 9, the main drawback of using
measure-valued solutions as a UQ framework lies in the fact that measure-
valued solutions are non-unique, even in the scalar case, as soon as the
initial data are non-atomic. As UQ requires non-atomic initial data, this
non-uniqueness is generic when measure-valued solutions are used. Further-
more, measure-valued solutions provide no information on spatial correla-
tions of the uncertain solutions. Both these defects may be remedied when
one uses statistical solutions.

As described in Section 9, statistical solutions are time-parametrized
probability measures on the underlying function space. They encode in-
formation about all possible spatial correlations of the underlying uncertain
solution. Furthermore, statistical solutions do not contain any ambiguity in
their parametrizations. If appropriate entropy conditions are found to en-
force uniqueness of statistical solutions, then any parametrization (random
field) corresponding to this unique statistical solution will lead to the same
statistical solution. Given that statistical solutions can be computed using
the Monte Carlo Algorithm 9.6, they offer a viable and robust framework
for UQ for complex fluid flows.

11. Other algorithms for computing measure-valued
solutions

In Sections 7 and 8 we demonstrated that the Monte Carlo-based ensemble-
averaging Algorithms 4.1, 4.3 and 4.4 provide robust approximation to
measure-valued solutions of the equations of inviscid fluid dynamics. How-
ever, as stated in Section 10, Monte Carlo algorithms have a slow rate
of convergence of M−1/2 (Fjordholm et al. 2016a, Appendix B). This slow
convergence can impede the computational efficiency of these algorithms.
Hence, there is a need for more efficient alternative algorithms for computing
measure-valued solutions. We review some of them below.
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11.1. A direct method

For simplicity, we consider systems of conservation laws (2.1) in one space
dimension with initial data u0. We seek to compute measure-valued solu-
tions of (2.1) with atomic initial data σx = δu0(x), and accomplish this
by computing approximate solutions on a sequence of increasingly refined
meshes. Let u∆x be corresponding approximate solutions, generated by the
semi-discrete finite difference scheme (5.1a). We construct the following
Young measure:

ν∆x,M
x,t :=

1

M

M∑
m=1

δu∆xm (x,t). (11.1)

Here, ∆xm indexes a sequence of mesh sizes and the u∆xm are numerical ap-
proximations generated by the finite difference scheme (5.1a). For instance,
we can fix a ∆x > 0 and set ∆xm = 2−m∆x.

One can readily adapt the proof of Theorem 5.1 to prove that the measure
defined in (11.1) is a Young measure and (up to a subsequence) converges
weak* to a measure-valued solution of (2.1), provided that the numerical
scheme (5.1a) satisfies the conditions of Theorem 5.1. Thus, (11.1) provides
a direct method for computing measure-valued solutions for atomic initial
data. A similar method can be designed for several space dimensions. This
algorithm has been considered by Laumer (2014) and Mishra and Risebro
(2016). Variants of this algorithm have also been considered by Glimm et al.
(1999) and Lim et al. (2008).

11.1.1. A numerical example

We illustrate the direct method with a numerical example reproduced from
Laumer (2014). He considers possibly the simplest situation where a non-
atomic measure-valued solution can arise, even if the initial data are atomic.
This is the so-called vanishing dispersion or KdV limit of the Burgers equa-
tion,

∂tu
ε + ∂xf(uε) = ε2∂xxxu

ε,

uε(0, x) = uε0(x).
(11.2)

Here, uε is a scalar function and the flux function f is convex (concave) and
of the form f(u) = cu2 for some constant c. The characterization of the
limit of uε as ε → 0 has been extensively studied, for instance in the pi-
oneering works of Lax and Levermore (1983a, 1983b, 1983c) and references
therein. It was shown by DiPerna (1985) that this limit, corresponding to
the Lax–Levermore construction, is a measure-valued solution of the under-
lying scalar conservation law. DiPerna provided a further characterization
of the limit measure in terms of k-jets, corresponding to invariants of the
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KdV equation (DiPerna 1985). In particular, the results of Lax and Lever-
more (1983a), interpreted in the sense of DiPerna, reveal that the limit
Young measure may be non-atomic even for atomic initial data. In fact,
Lax and Levermore (1983b) provide explicit solution formulas for the mean
and the variance of the limit Young measure. These explicit formulas were
the basis of a numerical method, designed by McLaughlin and Strain (1994),
to compute the vanishing dispersion limit.

Laumer (2014) used the aforementioned direct method to compute an
approximate Young measure. More specifically, he discretized (11.2) with
central finite difference spatial approximations and either implicit Euler or
Crank–Nicolson time-stepping. Furthermore, he set ε = C∆x as the (mesh-
dependent) dispersion parameter. Both sets of schemes were proved to
converge to a measure-valued solution of the scalar conservation law when
∆x → 0. Furthermore, the direct method (11.1) and Algorithm 4.4, based
on these schemes, were investigated in Laumer (2014). Here we reproduce
some representative results of Laumer (2014). To this end, we consider a
scalar conservation law with flux function f(u) = −3u2 and fix the initial
data

u0(x) =

−exp

(
1

2
− 1

(2x+ 2)2
− 1

(2x− 2)2

)
if |x| ≤ 1,

0 otherwise.

We present results with the implicit finite difference discretization of Laumer
(2014) and the direct method for computing the measure-valued solution.
The mean and the variance of (11.1) are plotted at time t = 0.15 in Fig-
ure 11.1, with M = 100 and two different time discretizations: the implicit
Euler scheme and the Crank–Nicolson scheme. The results are compared
with the mean and the variance of the measure-valued solution of the Bur-
gers equation that corresponds to the vanishing dispersion limit, with the
method of McLaughlin and Strain (1994). This figure clearly shows that the
results for the implicit Euler and Crank–Nicolson time-stepping schemes are
nearly identical. Further, we make the following remarks.

• The measure-valued solution of the Burgers equation corresponding to
the vanishing dispersion limit is non-atomic. The variance is clearly
non-zero.

• The direct method (11.1) provides a fairly good approximation of the
mean, even though some dispersive oscillations are observed.

• The approximation of the variance is much less accurate. There are
large errors in the computation of the variance with (11.1) (with M =
100) if the McLaughlin–Strain solution is used as a reference solution.
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Figure 11.1. Direct method for the vanishing dispersion limit. The mean and
the variance, at time t = 0.15, of the approximate measure-valued solution for
the vanishing dispersion limit of the generalized Burgers equation (11.2), are com-
puted with the direct method (11.1), based on the finite difference discretization
of Laumer (2014), and compared with the mean and the variance computed with
the method of McLaughlin and Strain (1994). (a) Implicit Euler time-stepping,
(b) Crank–Nicolson time-stepping. Both schemes use M = 100 in (11.1).
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In Figure 11.2 we present results for exactly the same set-up but with
the perturbation-based Algorithm 4.3. To be more specific, we apply Al-
gorithm 4.3 to the (generalized) Burgers equation with f(u) = −3u2 and
with underlying implicit Euler and Crank–Nicolson centred finite difference
discretization of (11.2), with ε = ∆x. The results, for 100 Monte Carlo
samples, show the following.

• The mean of the computed measure-valued solution is resolved very
accurately. In particular, the Crank–Nicolson scheme (second-order
time-stepping) resolves the mean in a non-oscillatory manner, whereas
the mean, computed with the implicit Euler method, has some dispers-
ive oscillations.

• The variance of the underlying Young measure is computed very ac-
curately with both schemes. There is a slightly better resolution of
the variance with the Crank–Nicolson scheme than with the implicit
scheme.

Comparing Figures 11.1 and 11.2, we clearly see that the perturbation-based
Algorithm 4.3 is more accurate than the direct method (11.1) at comput-
ing the underlying measure-valued solution. In particular, Laumer (2014)
observed that the computation of variance with Algorithm 4.3 was consid-
erably more accurate than the direct method for the same computational
cost.

Furthermore, using the direct method necessitates the use of very fine
grids, as M in (11.1) must be high in order to provide accurate computation
of statistics of the measure-valued solution. For instance, the results in
Figure 11.1 were computed on a sequence of 100 grids ranging from 400 to
8000 mesh points. Even then, the numerical approximation of variance was
not accurate enough, and even finer grid resolutions are necessary. Such
fine grids are not feasible in two, let alone three, space dimensions. Thus,
the direct method appears to be restricted to one-dimensional problems.

Mishra and Risebro (2016) consider the direct method applied to three-
phase flow in a one-dimensional porous medium.

11.2. Multi-level Monte Carlo method

As mentioned earlier, the multi-level Monte Carlo (MLMC) method was
introduced by Giles (2008) in order to speed up the slow convergence of the
Monte Carlo algorithm. In the context of non-linear hyperbolic PDEs, it
was adapted by Mishra and Schwab (2012) to approximate random entropy
solutions of conservation laws. Further developments of the MLMC method
in the context of hyperbolic problems are described in Mishra, Schwab and
Šukys (2012a, 2012b, 2013, 2016) and references therein. Considering its
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Figure 11.2. Perturbation method for the vanishing dispersion limit. The mean
and the variance, at time t = 0.15, of the approximate measure-valued solution for
the vanishing dispersion limit of the generalized Burgers equation (11.2), are com-
puted with Algorithm 4.3, based on the finite difference discretization of Laumer
(2014), and compared with the mean and the variance computed with the method
of McLaughlin and Strain (1994). (a) Implicit Euler time-stepping, (b) comparison
of implicit Euler and Crank–Nicolson time-stepping. Both schemes use 100 Monte
Carlo samples.
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success in computing entropy solutions of conservation laws, can the multi-
level Monte Carlo method be used to compute measure-valued solutions?
This question is investigated by Lye and Mishra (2016), who adapt a suitable
variant of the MLMC method to compute entropy measure-valued solutions
of systems of conservation laws (2.1). We present a brief summary of the
method and results of Lye and Mishra (2016) in the following.

We consider the system (2.1) with initial (possibly non-atomic) measure-
valued data σ, and propose the following MLMC algorithm to compute
underlying entropy measure-valued solutions.

Algorithm 11.1. Let ∆ = (∆x1, . . . ,∆xd) denote a grid size parameter
and let L ∈ N. Let σ∆ ∈ Y(Rd,RN ) be the initial Young measure.

For l = 1, . . . , L:

Step 1: For some probability space (Ω,X,P), draw Ml independent and
identically distributed random fields ul0,1, . . . , u

l
0,Ml

: Ω×Rd → RN , all

with the same law σ∆.

Step 2: For every k and fixed ω ∈ Ω, use the finite difference scheme
(5.1a) to numerically approximate the conservation law (2.1) with ini-
tial data ul0,k(ω) by setting

ulk(ω; ·, t) = S∆l
t ul0,k(ω),

ũl−1
k (ω; ·, t) = S

∆l−1

t ul0,k(ω),

where ∆l = 2L−l∆.

Step 3: Define the approximate measure-valued solution

ν∆
L :=

1

M0

M0∑
k=1

δu0
k

+
L∑
l=1

1

Ml

Ml∑
k=1

(
δulk
− δũl−1

k

)
. (11.3)

Thus, the measure-valued solution is approximated on a nested sequence
of grids, by drawing (possibly different numbers of) samples on each grids
and using a ‘telescopic’ sum involving differences between successive grid
resolutions.

Lye and Mishra (2016) prove that the approximate measure-valued so-
lutions generated by the MLMC Algorithm 11.1 converge to an entropy
measure-valued solution of (2.1). The assumptions on the underlying nu-
merical approximation are similar to those in Theorem 4.5. However, the key
question of the MLMC algorithm is not whether it converges to a measure-
valued solution but whether it is more efficient (faster) than the Monte Carlo
Algorithm 4.4. To this end, the following error estimate was shown in Lye
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and Mishra (2016):

‖〈ψ, 〈ν∆ − ν∆
L , g〉〉‖L2(Ω) ≤

C1

M
1/2
0

+
L∑
l=1

C2

M
1/2
l

Var
(
〈ψ, g(ul)− g(ul−1)〉

)
,

for every ψ ∈ L1(D,RN ) and g ∈ C0(RN ). Here, ν∆ is the approxim-
ate Young measure generated by Algorithm 4.1 and Var(X) refers to the
variance of any random field X.

One observes from the above error estimate that the error with respect
to the MLMC algorithm relies heavily on the variance between successive
levels. In particular, if the variance decays as the grid resolution is increased,
then one can choose fewer samples Ml on fine mesh resolutions and obtain a
lower error. Choosing a low number of samples for fine mesh resolutions will
considerably speed up the performance of the MLMC algorithm, as observed
and proved for scalar conservation laws in Mishra and Schwab (2012) and
for linear hyperbolic systems in Mishra, Schwab and Šukys (2016).

We check whether this variance between levels decays as the mesh is
refined by a numerical example. We consider the same set-up as the Kelvin–
Helmholtz problem considered in Section 7.2, and show the variance between
successive levels in Figure 11.3(a). As shown in the figure, the variance be-
tween levels remains approximately constant as the mesh is refined. Hence,
one has to choose (approximately) the same number of samples at every
mesh resolution. Therefore, the MLMC algorithm cannot be expected to
converge faster than the Monte Carlo Algorithm 4.4. This fact is verified in
Figure 11.3(b), where we show the error for the mean (in L1) of the measure-
valued solution of the Kelvin–Helmholtz problem for the compressible Euler
equations, computed with the MLMC Algorithm 11.1, based on the TeCNO2
scheme. The figure compares the error (computed with respect to an MC
reference solution) for Algorithm 4.4 on a 10242 mesh with the error for
the MLMC Algorithm 11.1, with a 10242 resolution grid serving as the
finest level of refinement. We vary the number of samples at the finest
level of the MLMC grid (and the only level for the MC grid) by two orders
of magnitude, and observe from Figure 11.3(b) that the error is more or
less identical for the two approaches. This implies that an MLMC method
has the same accuracy as the MC method only when the same number
of samples are used at the finest grid resolution of the MLMC method
as in the MC method. Thus, the computational complexity of MLMC is
no better (in fact, slightly worse) than the MC algorithm. Results for the
variance (omitted here) are analogous. This lack of speed-up for the MLMC
algorithm should be contrasted with the significant gain in complexity with
the MLMC method for either scalar conservation laws (Mishra and Schwab
2012), one-dimensional systems (Mishra et al. 2012a) or multi-dimensional
linear hyperbolic systems (Mishra et al. 2016).



662 U. S. Fjordholm, S. Mishra and E. Tadmor

va
ria

nc
e

‖Var(ρl−ρl−1)‖
L1(D)

resolution

10–1

10–2

(a) variance levels

E
(M

L
)

samples on finest level, ML

MLMC, 1024 × 1024
MC, 1024 × 1024

10–1

10–2

101 102 103

(b) MC versus MLMC

Figure 11.3. Multi-level Monte Carlo Algorithm 11.1, used to compute the measure-
valued solution for the Kelvin–Helmholtz problem for the compressible Euler
equations, described in Section 7.2. (a) Variance of the difference in success-
ive levels of mesh resolution (y-axis) versus mesh resolution (x-axis). (b) Er-
ror in the mean (in L1 with respect to a reference solution computed with a
Monte Carlo simulation on a 20482 grid with 2048 samples) (y-axis) versus num-
ber of MLMC samples at the finest grid resolution of 10242 (x-axis). Specifically,
E(ML) = ‖MLMC(u,ML, 1024)−MC(u, 2048, 2048)‖L1(D).



On the computation of measure-valued solutions 663

va
ria

nc
e

‖Var(ρl−ρl−1)‖
L1(D)

resolution

10–1

10–2

(a) variance levels

E
(M

L
)

samples on finest level, ML

MLMC, 1024 × 1024
MC, 1024 × 1024

10–1

10–2

101 102 103

(b) MC versus MLMC

Figure 11.4. Stabilized version of the multi-level Monte Carlo Algorithm 11.1, used
to compute the measure-valued solution for the Kelvin–Helmholtz problem for the
compressible Euler equations, described in Section 7.2. (a) Variance of the differ-
ence in successive levels of mesh resolution (y-axis) versus mesh resolution (x-axis).
(b) Error in the mean (in L1 with respect to a reference solution computed with a
Monte Carlo simulation on a 20482 grid with 2048 samples) (y-axis) versus num-
ber of MLMC samples at the finest grid resolution of 10242 (x-axis). Specifically,
E(ML) = ‖MLMC(u,ML, 1024)−MC(u, 2048, 2048)‖L1(D).
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One possible remedy for the slow convergence of the MLMC algorithm was
considered in Lye and Mishra (2016), amounting to introducing a relaxation
time. We fix T0 ≈ 0.05, and then we reset the coarse samples with the fine
samples for every t = nT0. In other words, we run the simulation between
t = (n− 1)T0 and t = nT0, and then we reset the coarse samples by

ũl−1
k (ω;x, nT0) = ulk(ω;x, nT0).

Since we observe short-time sample convergence (for instance in the case of
the Kelvin–Helmholtz problem), this guarantees that

Var
(
〈ψ, g(ul)− g(ul−1)〉

)
≤ C∆s,

as illustrated in Figure 11.4(a). However, by resetting the coarse samples,
we introduce an error term of the form

L−1∑
l=0

|〈ψ, 〈ν∆xl − ν∆xl−1

, g〉〉| = O(∆s
0).

The error term is independent of the number of samples on each level, and
scales as the coarsest spatial grid resolution. This can be clearly seen in
Figure 11.4(b). Hence, even with this relaxation time approach, the MLMC
Algorithm 11.1 is outperformed by the Monte Carlo Algorithm 4.4.

12. Young measures and their computation in other contexts

Young measures (and measure-valued solutions) arise in a variety of con-
texts other than fluid dynamics, particularly in elasticity and materials sci-
ence. In particular, Young measures arise when one considers minimizers of
non-convex variational problems. Indeed, recall that this was the original
motivation behind the studies of L. C. Young (1969). Such problems take
the following generic form:

Find u := arg min
u∈A

∫
D
Q(x, u,∇u) dx. (12.1)

Here, u : D ⊂ Rd 7→ Rn and A denotes a class of sufficiently smooth
functions that incorporates the boundary conditions. In the context of
elasticity, u often denotes the deformation of the elastic material and Q the
stored elastic energy. As long as Q is convex (quasi-convex in the vectorial
case) in the last argument ∇u (deformation gradient), one can use the direct
method of calculus of variations (Dacarogna 1989) to calculate the minimizer
that corresponds to the equilibrium state of the elastic material.

However, there are many models where Q need not be convex (resp.
quasi-convex). These include optimal material design (Goodman, Kohn
and Reyna 1986 and references therein) and micromagnetics (De Simone
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1993 and references therein). The prototypical example of a non-convex
variational problem is the modelling of the structure of crystalline materials
(see Luskin 1996 and references therein). It is well known that crystals have
two phases: a high-temperature homogeneous phase called austenite and a
low-temperature, highly heterogeneous, phase called martensite. Martens-
itic materials contain many equilibrium phases, and crystal structure can
alternate between these multiple phases. Hence, the popular models of the
stored energy Q in (12.1), such as the Eriksson–James model (Luskin 1996
and references therein), have a multiple well structure for Q.

Once the stored energy Q has a multiple well structure, the resulting
variational problem is not convex (resp. quasi-convex). Hence, the direct
method of calculus of variations is not applicable. Consequently, minimizing
sequences may not converge under the strong topology of A. Moreover,
minimizing sequences consist of functions that oscillate between the multiple
wells. Such functions contain oscillations at ever finer scales, suggesting the
use of Young measures to describe the limit of such minimizing sequences. In
fact, Young measures were originally introduced in this context: see Tartar
(1979) and Ball (1989). Consequently, the variational problem (12.1) can
be relaxed to:

Find (u, ν) := arg min
u∈A,ν∈Y

∫
D
〈νx, Q(x, u, ·)〉 dx,

∇u(x) = 〈νx, ξ〉, for a.e x ∈ D.
(12.2)

Here, u : D 7→ Rn ∈ A is the deformation, with A denoting the admissible
class of functions and Y = Y(D, Rn×n), the Young measure defined in
Section 3.1. We do not specify A here as it depends on the modelling
context and the boundary conditions. Note that the second equation in
(12.2) specifies that ν is a gradient Young measure. In addition to the
second equation in (12.2), ν has to satisfy some additional conditions for
gradient Young measures (Kinderlehrer and Pedregal 1991).

The variational problem (12.2) has a solution, and this solution models
observed crystalline structures such as laminates and microstructures, which
involve high-frequency oscillations in material properties and sharp phase
transitions between the austenite and martensite phases, as well as within
various martensitic phases. The numerical approximation of (12.2) has been
considered in many papers. We mention a very brief list of references here,
and refer the reader to review papers such as Luskin (1996) and Carstensen
(2001) for further details.

There are two main approaches to computing solutions of the non-convex
variational problem (12.2), as follows.

• Direct approximation of the Young measure. This approach was pro-
posed by Nicolaides and Walkington (1993); see also Roub́ıček (1997)
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and references therein. It consists of approximating the gradient Young
measure in (12.2) as a convex combination of Dirac masses. Such an
approximation is motivated by the fact that crystalline phase trans-
ition, modelled by (12.2), oscillates between a finite number of phases.
The locations of Dirac masses are uniformly distributed on a grid in
phase space. Similarly, the admissible class A in (12.2) is approximated
by a suitable piecewise polynomial finite element space. The resulting
discrete variational problem comes with a large number of (non-linear)
constraints that reflect that the fact that a gradient Young measure
is approximated. This constrained finite-dimensional variational prob-
lem is solved using adapted optimization algorithms. This strategy
appears to be robust at least for simple model problems in both one
and two space dimensions (Nicolaides and Walkington 1993).

• A (quasi)-convexification approach. Another popular paradigm for
solving (12.1) consists of (quasi)-convexifying the stored energy in
(12.1), that is, replacing it with:

Find u := arg min
u∈A

∫
D
CQ(x, u,∇u) dx. (12.3)

Here, CQ refers to the convex (resp. quasi-convex in the vectorial case)
envelope of the stored energy Q. Then, one restricts the admissible
class to a finite element space and computes discrete minimizers. This
approach has been considered by Collins and Luskin (1989), Luskin
(1996) and Pedregal (1996). Luskin (1996) presents a comprehensive
review of error estimates for the approximate solutions with respect to
the solution of the relaxed problem (12.3). Furthermore, a simple post-
processing step, such as one described in Carstensen (2001), recovers
information about the Young measure in (12.2) from the minimizer of
the discrete version of (12.3).

However, the main problem with the quasi-convexification approach
is the lack of explicit formulas for the quasi-convex envelopes for most
stored energies that appear in practice; see Carstensen (2001) and ref-
erences therein.

Both approaches to calculating the Young measure-valued solution of the
non-convex variational problem (12.1) utilize deterministic approaches. It
would be interesting to see whether the ensemble-based Monte Carlo al-
gorithms, such as Algorithm 4.4, can be adapted to provide robust approx-
imations of the non-convex variational problem (12.1).

Another context in which measure-valued solutions make an appearance is
elastodynamics; see Demoulini et al. (2012) and references therein. Here, the
governing equations can be written as systems of conservation laws (2.1). It
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has been hypothesized that the measure-valued solutions in elastodynamics
are non-atomic, even for atomic initial data. The algorithms presented here,
such as Algorithm 4.4, can be directly applied to numerical approximation
of these models.

13. Conclusion

We have presented examples of PDEs where (admissible) weak solutions
(integrable functions) may not be the appropriate solution framework, as
revealed by state-of-the-art numerical approximations of these equations.

• The (approximate) solutions contain structures (oscillations) at ever
finer spatial scales.

• These (approximate) solutions are not stable with respect to initial
perturbations or changes in the numerical method.

The lack of global existence and uniqueness results for these PDEs may be
attributed to these fine-scale oscillations and instabilities. They are also
responsible for the lack of convergence (under mesh refinement) of standard
numerical approximations for these equations. We have provided numerical
experiments for the compressible, as well as incompressible, Euler equations
to illustrate the aforementioned phenomena.

Given these considerations, we postulate that (admissible) measure-valued
solutions, as first proposed by DiPerna (1985), are better suited to de-
scribing the unstable and highly oscillatory structure of the (approximate)
solutions for these PDEs. Measure-valued solutions are Young measures,
that is, space-time parametrized probability measures. We have provided
a self-contained introduction to Young measures as well as to generalized
Young measures. We have defined entropy (admissible) measure-valued
solutions for systems of conservation laws (incompressible Euler equations)
and presented some associated theoretical results.

The main focus of the current article has been to review an ensemble-
averaging algorithm, proposed by Fjordholm et al. (2016a), for approxim-
ating a measure-valued solution. A generic form of this Monte Carlo-based
algorithm has been presented, along with suitable modifications for atomic
initial data. Specific details of the algorithm were provided for both systems
of conservation laws and the incompressible Euler equations. In particular,
we have shown that discretizations based on high-resolution finite volume
and discontinuous Galerkin schemes for systems of conservation laws, and
spectral as well as finite difference approximations for the incompressible
Euler equations, converge to an admissible measure-valued solution.

We have presented a large number of numerical experiments that demon-
strate the following.
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• Approximate solutions generated by Algorithm 4.4 converge as the
mesh is refined. This is in sharp contrast to the observed non-con-
vergence of individual realizations (single samples) under mesh refine-
ment.

• Statistical quantities of interest, such as mean, variance and one-point
PDFs (CDFs), are computed robustly with Algorithm 4.4.

• The computed measure-valued solutions appear to be stable with re-
spect to different numerical methods and different types of initial per-
turbations. Again, this should be compared with the instabilities of
single samples.

• The computed measure-valued solution may be non-atomic, even when
the underlying initial data form an atomic Young measure.

Given these observations, one can conclude that that measure-valued solu-
tions offer a far more promising paradigm as solutions of the compress-
ible/incompressible Euler equations than do entropy/admissible weak solu-
tions. The Monte Carlo Algorithm 4.4, based on numerical discretizations
that satisfy certain verifiable properties, provides an attractive framework
for the robust computation of approximations to these PDEs.

However, the concept of measure-valued solutions (and their approxima-
tion) has its deficiencies. The main drawback of measure-valued solutions
lies in the fact that measure-valued solutions are not necessarily unique, even
for simple models such as scalar conservation laws, as shown in Example 9.1.
We suggest that the concept of statistical solutions might overcome this de-
fect of measure-valued solutions. As described in Section 9, statistical solu-
tions are time-parametrized probability measures on a (problem-dependent)
function space. These probability measures encode information about all
possible spatial correlations and can be determined from their moments.
Consequently, the moments of the probability measure must be evolved in
time in a manner consistent with the original time-dependent PDE.

Young measures, and in particular measure-valued solutions, are the one-
point correlation marginals of statistical solutions. Thus, statistical solu-
tions contain a considerably greater amount of information than do measure-
valued solutions. Suitable entropy conditions, such as those suggested by
Fjordholm et al. (2016b) for the case of scalar conservation laws, can ensure
uniqueness of statistical solutions, even when the initial probability measure
is non-atomic. Moreover, the ensemble-averaging Algorithm 9.6 can be em-
ployed to robustly compute statistical solutions. Hence, we postulate that
statistical solutions are the appropriate solution paradigm for a large class
of non-linear PDEs, such as systems of conservation laws (and incompress-
ible Euler equations). Furthermore, statistical solutions serve as a proper
framework for uncertainty quantification (UQ) for these models.
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The key unresolved issue in the context of statistical solutions is the
design of appropriate admissibility conditions that can ensure uniqueness
and stability of statistical solutions for systems of conservation laws and
incompressible Euler equations.

The Monte Carlo-based algorithms suggested here converge at a rate
that scales as a reciprocal of the square root of the number of samples.
This rather slow convergence can impede the efficiency of these algorithms,
particularly for problems in three space dimensions. However, alternat-
ive algorithms such as the direct method, presented in Section 11, are
not feasible for two- or three-dimensional computations. Surprisingly, the
multi-level Monte Carlo (MLMC) method, successfully used to compute
random entropy solutions of scalar conservation laws and linear hyper-
bolic systems in Mishra and Schwab (2012) and Mishra, Schwab and Šukys
(2012a, 2012b, 2013, 2016), fails to be efficient for approximating measure-
valued solutions. Consequently, MC algorithms are still the most suitable
algorithms for computing measure-valued and statistical solutions. It would
be interesting to see whether other UQ algorithms, such as the quasi-Monte
Carlo method, stochastic Galerkin schemes or stochastic finite volume meth-
ods, can be successfully adapted to the computation of measure-valued and
statistical solutions. The design of such algorithms is a topic of ongoing
investigation.

In addition to the above issues, there are many possible directions in
which the results of this article can be extended.

• The sufficient conditions for a scheme to guarantee convergence to
measure-valued solutions, namely the weak BV bound (5.14) and the
discrete entropy inequality (5.15), should be thought of as key guiding
principles in the design of numerical methods for systems of conser-
vation laws. They can serve a purpose similar to those served by the
criteria of conservation, consistency and monotonicity for the design
of convergent schemes for scalar conservation laws (Godlewski and
Raviart 1991). We have presented examples of schemes that satisfy
these criteria in Section 5. It would be interesting to examine whether
other standard schemes, such as those based on WENO reconstruc-
tions or the spectral viscosity method (and suitable variants thereof),
satisfy these criteria.

• In Section 12 we presented a concise discussion of different determin-
istic approaches for computing approximate measure-valued solutions
that arise as solutions of non-convex variational problems in elasticity
and materials science. It is an open question whether the Monte Carlo
algorithms presented here in the context of computational fluid dynam-
ics can be adapted to computation of the underlying Young measure
for non-convex variational problems.
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• DiPerna and Majda (1987a) surmised that Young measures and MV
solutions could serve as an appropriate solution framework for a large
class of non-linear PDEs that are characterized by lack of compactness.
These include the Vlasov–Poisson, Vlasov–Maxwell and Yang–Mills
equations. Little work has been done on this score, particularly in
the context of numerical approximations. These equations provide a
possible avenue for the application of the algorithms presented here.

Appendix: Proof of Theorem 3.12

Proof. The proof follows that of Alibert and Bouchitté (1997, Theorem 2.5)
fairly closely. We may assume that L(D) < ∞; a diagonal argument will
prove the result for general D. Furthermore, we will assume that p = 1, as
the generalization to p > 1 is straightforward.

We define Ln ∈M+(D × B̄) by

〈Ln, ψ〉 =

∫
D

∫
RN

ψ̂(x, ξ) dνnx (ξ) dx, ψ ∈ C0(D × B̄).

Then {Ln}n is bounded:

|〈Ln, ψ〉| =
∣∣∣∣∫
D

∫
RN

ψ

(
x,

ξ

1 + |ξ|

)
(1 + |ξ|) dνnx (ξ) dx

∣∣∣∣
≤ ‖ψ‖∞

(
L(D) +

∫
D
〈νnx , |ξ|〉dx

)
≤ C‖ψ‖∞.

Thus, there is a subsequence, still denoted Ln, and an L ∈M+(D× B̄) such

that Ln
∗
⇀ L, that is,∫

D

∫
RN

ψ̂(x, ξ) dνnx (ξ) dx→
∫
D×B̄

ψ(x, z) dL(x, z) (A.1)

for all ψ ∈ C0(D × B̄). In particular, setting ψ(x, z) = ϕ(x)f̃(x, z), we get∫
D

∫
RN

ϕ(x)f(x, ξ) dνnx (ξ) dx→
∫
D×B̄

ϕ(x)f̃(x, z) dL(x, z) (A.2)

for all ϕ ∈ C0(D), f ∈ C1.
By the disintegration theorem (Ambrosio, Gigli and Savaré 2005, The-

orem 5.3.1), there is a measure λ̃ ∈M+(D) and a Young measure ν̃ : D →
P(RN ), such that∫

D×B̄
ψ(x, z) dL(x, z) =

∫
D

∫
B̄
ψ(x, z) dν̃x(z) dλ̃(x) (A.3)

for all ψ ∈ C0(D × B̄). Let λ̃ = hL + λs be the Lebesgue decomposition of

λ̃ with respect to Lebesgue measure L, so that h ∈ L1(D) and λs ∈M+(D)
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is singular with respect to L. For any ϕ ∈ C0(D), let ψ ∈ C0(D × B̄) be

defined by ψ̂(x, ξ) := ϕ(x), or equivalently, ψ(x, z) = ϕ(x)(1 − |z|). Then
by (A.1) and (A.3),∫

D
ϕ(x) dx ≡

∫
D

∫
B̄
ψ(x, z) dν̃x(z) dλ̃(x)

=

∫
D
ϕ(x)

∫
B̄

(1− |z|) dν̃x(z) dλ̃(x)

=

∫
D
ϕ(x)

∫
B̄

(1− |z|) dν̃x(z)h(x) dx

+

∫
D
ϕ(x)

∫
B̄

(1− |z|) dν̃x(z) dλs(x).

Since this holds for all ϕ ∈ C0(D), and since L and λs are mutually singular,
we can conclude the following.

• For λs-a.e. x ∈ D, ∫
B̄

(1− |z|) dν̃x(z) = 0.

Since 1− |z| ≥ 0 in B̄ and 1− |z| = 0 if and only if z ∈ SN−1, we find
that ν̃x is supported on SN−1 for λs-a.e. x ∈ D.

• For L-a.e. x ∈ D,

h(x)

∫
B̄

(1− |z|) dν̃x(z) = 1, (A.4)

so h(x) =
(∫
B̄(1− |z|) dν̃x(z)

)−1
.

Therefore, (A.2) gives∫
D

∫
RN

ϕ(x)f(x, ξ) dνnx (ξ) dx

→
∫
D
ϕ(x)

∫
B̄
f̃(x, z) dν̃x(z)h(x) dx

+

∫
D
ϕ(x)

∫
SN−1

f̃(x, z) dν̃x(z) dλs(x)

=

∫
D
ϕ(x)

∫
B̄
f̃(x, z) dν̃x(z)h(x) dx

+

∫
D
ϕ(x)

∫
SN−1

f∞(x, z) dν̃x(z) dλs(x). (A.5)

Introducing

ν∞x :=
1

ν̃x(SN−1)
ν̃x ∈ P(SN−1), λ := ν̃x(SN−1)hL + λs ∈M+(D)



672 U. S. Fjordholm, S. Mishra and E. Tadmor

and rearranging, we find that∫
D

∫
RN

ϕ(x)f(x, ξ) dνnx (ξ) dx→
∫
D
ϕ(x)

∫
B
f̃(x, z) dν̃x(z)h(x) dx

+

∫
D
ϕ(x)

∫
SN−1

f∞(x, z) dν∞x (z) dλ(x).

Define ν ∈M(D × RN ) by

〈ν, g〉 =

∫
D

∫
B
g̃(x, z) dν̃x(z)h(x) dx, g ∈ C0(D × RN )

Then ν can be disintegrated as

〈ν, g〉 =

∫
D

∫
RN

g(x, ξ) dνx(ξ) dx, g ∈ C0(D × RN )

for a family of measures νx ∈ M+(RN ). If g(x, ξ) := ϕ(x) for ϕ ∈ C0(D),
then g∞ ≡ 0, so (A.5) gives∫
D
ϕ(x)νx(RN ) dx = 〈ν, g〉 =

∫
D
ϕ(x)

∫
B
g̃(x, z) dν̃x(z)h(x) dx

=

∫
D
ϕ(x)

∫
B

(1− |z|) dν̃x(z)h(x) dx

=

∫
D
ϕ(x) dx (by (A.4)).

Hence, νx(RN ) = 1 for a.e. x ∈ D, so ν is a Young measure.
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Y. Brenier, C. De Lellis and L. Székelyhidi Jr (2011), ‘Weak–strong uniqueness for
measure-valued solutions’, Comm. Math. Phys. 305, 351–361.

A. Bressan (2000), Hyperbolic Systems of Conservation Laws: The One-Dimen-
sional Cauchy Problem, Oxford University Press.

A. Bressan, G. Crasta and B. Piccoli (2000), Well-Posedness of the Cauchy Problem
for n×n Systems of Conservation Laws, Vol. 694 of Memoirs of the American
Mathematical Society, AMS.

T. Buckmaster, C. De Lellis, P. Isett and L. Székelyhidi Jr (2015), ‘Anomalous
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J. Málek, J. Nečas, M. Rokyta and M. Ružička (1996), Weak and Measure-Valued
Solutions to Evolutionary PDEs, Chapman & Hall.

C. Marchioro and M. Pulvirenti (1994), Mathematical Theory of Incompressible
Nonviscous Fluids, Vol. 96 of Applied Mathematical Sciences, Springer.

D. W. McLaughlin and J. A. Strain (1994), ‘Computing the weak limit of KdV’,
Comm. Pure Appl. Math. 47, 1319–1364.



678 U. S. Fjordholm, S. Mishra and E. Tadmor

S. Mishra and N. H. Risebro (2016), Computation of measure-valued solutions for
a three phase flow model. In preparation.

S. Mishra and C. Schwab (2012), ‘Sparse tensor multi-level Monte Carlo finite
volume methods for hyperbolic conservation laws with random initial data’,
Math. Comput. 81(180), 1979–2018.

S. Mishra, N. H. Risebro, C. Schwab and S. Tokareva (2016), ‘Numerical solu-
tion of scalar conservation laws with random flux functions’, J. Uncertainty
Quantification, to appear. Research report 2012-35, SAM ETH Zürich.
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