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Consider a piecewise smooth function for which the (pseudo-)spectral coef-
ficients are given. It is well known that while spectral partial sums yield
exponentially convergent approximations for smooth functions, the results for
piecewise smooth functions are poor, with spurious oscillations developing near
the discontinuities and a much reduced overall convergence rate. This behavior,
known as the Gibbs phenomenon, is considered as one of the major drawbacks
in the application of spectral methods. Various types of reconstruction methods
developed for the recovery of piecewise smooth functions have met with varying
degrees of success. The Gegenbauer reconstruction method, originally proposed
by Gottlieb et al. has the particularly impressive ability to reconstruct piecewise
analytic functions with exponential convergence up to the points of discontinuity.
However, it has been sharply criticized for its high cost and susceptibility to
round-off error. In this paper, a new approach to Gegenbauer reconstruction is
considered, resulting in a reconstruction method that is less computationally
intensive and costly, yet still enjoys superior convergence. The idea is to create a
procedure that combines the well known exponential filtering method in smooth
regions away from the discontinuities with the Gegenbauer reconstruction method
in regions close to the discontinuities. This hybrid approach benefits from both
the simplicity of exponential filtering and the high resolution properties of the
Gegenbauer reconstruction method. Additionally, a new way of computing the
Gegenbauer coefficients from Jacobian polynomial expansions is introduced
that is both more cost effective and less prone to round-off errors.

KEY WORDS: Fourier expansion; Gibbs phenomenon; piecewise smoothness;
reconstruction.
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1. INTRODUCTION

Consider a periodic piecewise smooth function f (x) defined in [&1, 1] for
which the (pseudo-)spectral coefficients are given. It is well known that
while spectral partial sums yield exponentially convergent approximations
for smooth functions, the results for piecewise smooth functions are poor,
with spurious oscillations developing near the discontinuities and a much
reduced overall convergence rate of O(1�N). This behavior, known as the
Gibbs phenomenon, is considered as one of the major drawbacks in the
application of spectral methods. There is ample literature devoted to this
problem, for example, consult [1, 4, 6, 7, 13, 15, 16, 22], and references
therein. While a number of methods have shown moderate success, the
Gegenbauer reconstruction method, originally proposed by Gottlieb et al.
in [15], has the particularly impressive ability to reconstruct piecewise
analytic functions with exponential convergence up to the points of discon-
tinuity. Furthermore, the Gegenbauer reconstruction method has been
developed not only for recovering functions when the given information
comes from the Fourier (pseudo-)spectral coefficients, but is also applicable
when the general Jacobi polynomial expansion for the function in each
smooth sub-interval is known [14]. This makes the Gegenbauer recon-
struction method amenable for a large class of physical applications.

Like all other high order reconstruction methods, the Gegenbauer
reconstruction method requires an a priori knowledge of the locations of
the jump discontinuities. Much attention has been devoted to the topic of
edge detection, for instance consult [3, 8, 9, 17, and 19] for spectral data
edge detection techniques. In [8] and [9] an edge detection technique was
developed that successfully identifies the jump locations from either the
Fourier or the general Jacobi polynomial partial sum expansions. After
successfully locating all of the jump discontinuities, application of the
Gegenbauer reconstruction method ensures both the complete removal of
the Gibbs phenomenon and restoration of spectral accuracy in the maximum
norm for piecewise analytic functions.

One of the criticisms of the Gegenbauer reconstruction method is its
susceptibility to round-off error due to the rapid growth of the Gegenbauer
polynomials. Not only is the theoretical exponential convergence unrealizable,
but the round-off error may completely ruin the approximation. The other
main criticism involves the high cost of computing the Gegenbauer coef-
ficients. This is particularly problematic in the Jacobi polynomial expansion
case, and also becomes an issue for all higher dimension approximations.
In this paper, a new approach to Gegenbauer reconstruction is considered,
resulting in a reconstruction method that is less computationally intensive
and costly, yet still enjoys superior convergence. The idea is to create a
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procedure that combines the well known exponential filtering method in
smooth regions away from the discontinuities with the Gegenbauer recon-
struction method in regions close to the discontinuities. This hybrid approach
benefits from both the simplicity of exponential filtering and the high reso-
lution properties of the Gegenbauer reconstruction method. Additionally,
a new way of computing the Gegenbauer coefficients from Jacobian poly-
nomial expansions is introduced that is both more cost effective and less
prone to round-off errors.

This paper is organized as follows: In Section 2 the edge detection
techniques from [8] and [9] are reviewed for both the Fourier and Legendre
expansion cases, as well as for the extension to two dimensions. In Section 3,
we discuss the recovery of piecewise smooth functions using both exponential
filtering and the Gegenbauer reconstruction method. The hybrid Gegenbauer
reconstruction method is then introduced. Numerical applications are
presented in Section 4.

2. EDGE DETECTION OF PIECEWISE SMOOTH FUNCTIONS
FROM SPECTRAL DATA

As mentioned above, critical to all high resolution reconstruction
methods is the a priori knowledge of the locations of the jump discon-
tinuities. Much research has been devoted to the topic of edge detection.
Here we utilize the method developed in [8] and [9] for Fourier and
Legendre spectral data. This two step method first detects the neighbor-
hoods of the jump discontinuities and then ``pinpoints'' the exact locations
by a nonlinear enhancement procedure. Details can be found in [8] and [9].

2.1. The Fourier Expansion Case

Consider a piecewise smooth function f (x) defined in [&1, 1], that has
a finite number of jump discontinuities of the first kind with well defined
one-sided limits, f (x\)=limx � x\ f (x). Let [ f ](x) := f (x+)& f (x&)
denote the local jump function. Recall the Fourier partial sum expansion

SN[ f ](x)= :
N

k=&N

f� keik?x (2.1)

based on the continuous Fourier coefficients,

f� k= 1
2 |

1

&1
f (x) e&ik?x dx
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We wish to detect the jump discontinuities of f (x) from its Fourier
partial sum expansion (2.1). To this end, we refer to the concentration
method derived in [8] based on the odd kernel K _

N (t). The kernel is
designed so that the support of K _

N V f tends to the singular support of f,
specifically yielding the concentration property

K _
N V f (x) � [ f ](x), as N � � (2.2)

This ``concentration'' kernel is written as

K _
N (t)=& :

N

k=1

_ \ k
N+ sin kt

where _(k�N ) are the concentration factors satisfying

_(!)
!

# C2[0, 1]

It was shown that if the concentration factors _(!) are normalized so that

|
1

0

_(!)
!

d!=1

then the concentration property (2.2) holds with the estimate

|K _
N V SN( f )&[ f ](x)|�Const }

log N
N

The concentration method for detecting edges is implemented as

S _
N[ f ](x) :=i? :

N

k=&N

sgn(k) _ \ |k|
N + f� k eik?x (2.3)

Several examples of admissible concentration factors can be found in [9].
Due to its rapid convergence away from the discontinuities, the exponential
concentration factor,

_exp=_(!)=Const } !e1�(:!(!&1)), Const=| exp \ &1
:'('&1)+ d' (2.4a)

with _(0)=_(1)=0, is particularly effective.
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As an example, consider the function

Example 2.1.

f (x)={
cos

?
2

x, &1�x<&
1
2

(2.4b)x3&sin
3?
2

x+1, &
1
2

x2+4x3&5x,
1
2

�x�1

As seen in Fig. 2.1, Example 2.1 has two jump discontinuities and

0.875, if x=&1
2

[ f ](x)={&2.17, if x= 1
2 (2.5)

0, otherwise

Application of the concentration method (2.3) is seen in Fig. 2.2. While it
is clear that the neighborhoods of the discontinuities are located around

Fig. 2.1. Plot of Example 2.1.
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Fig. 2.2. Application of the concentration method (2.3) for Example 2.1 using 80 collocated
Fourier coefficients.

x=&1
2 and x= 1

2 , a follow up step is necessary to ``pinpoint'' the exact
jump locations. This is accomplished by applying the nonlinear enhance-
ment procedure [9], which amplifies the separation of scales resulting from
(2.3). More specifically, let [xj*]M

j=1 denote the locations of the jump dis-
continuities of f (x). Then (2.3) is amplified by

(S _
N[ f ](x))q={

([ f ](xj*))q,

O \ 1
N+

q

,

if x=xj*

if x{xj*

A more pronounced separation of scales is easily accomplished by defining

T :=Nq�2(S _
N[ f ](x))q � {N q�2([ f ](xj*))q,

O(N&q�2),
if x=xj*
if x{xj*

The enhanced edge detection method is then

TN(S _
N[ f ](x))={S _

N[ f ](x),
0,

if |T |>Jcrit

if |T |<Jcrit

(2.6)
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Fig. 2.3. Application of the enhanced edge detection method for Example 2.1 using 80
collocated Fourier coefficients.

where Jcrit is an O(1) global threshold parameter signifying the minimal
amplitude for the jump discontinuity not to be negligible. Since (2.3)
actually locates the neighborhoods of the discontinuities, the exact jump
locations are determined as the corresponding locations to the largest
amplitudes |T |>Jcrit in each neighborhood of admissible jumps (i.e., where
|T |>Jcrit). Note that Jcrit should be chosen to be consistent with the varia-
tion and scaling of the function, and experiments show that q=2 is ade-
quate for enhancement. The results of the enhancement procedure (2.6) are
shown in Fig. 2.3, where it is clear that the jump locations have been
correctly identified.

2.2. The Legendre Expansion Case

Now suppose the Legendre expansion coefficients of a piecewise
smooth function f (x) are known. The continuous Legendre polynomial
partial sum expansion is given by

SN( f )(x)= :
N

k=0

f� k Pk(x)
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where

f� k=
2k+1

2 |
1

&1
f (x) Pk(x) dx

To derive the concentration property for the Legendre case, we first recall
an example of an admissible concentration factor given for the Fourier
case, _(!)=! [8]. The resulting concentration sum (2.3) is then

S _
N[ f ](x)=i? :

N

k=&N

sgn(k)
|k|
N

f� keik?x

=
1
N

:
N

k=&N

ik?f� k eik?x

=
1
N

d
dx

SN( f )(x)

Thus essentially we are looking at the derivative of the spectral projection
of f (x) to determine the locations of the jump discontinuities. In [9] this
idea instigated the development of an edge detection method for general
Jacobi expansions, which amounts to computing

? - 1&x2

N
d

dx
SN( f )(x)=

? - 1&x2

N
:
N

k=0

f� k
d

dx
Pk(x) � [ f ](x) (2.7)

for which the estimate holds:

}? - 1&x2

N
d

dx
SN( f )(x)&[ f ](x) }

�K }
log N

N(1&x2)1�4 , &1+K }
1

N2<x<1&K }
1

N2

Examples for the Chebyshev and Legendre cases can be found in [9]. The
nonlinear enhancement (2.6) is performed as in the Fourier case.

2.3. Edge Detection in Two Dimensions

It is possible to employ the edge detection and enhancement proce-
dures in two dimensions by fixing the variable in one direction and deter-
mining the edges in the other direction as a function of the fixed variable.
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In the Fourier case, the jump discontinuities of f (x, y) for each fixed x� and
y� are determined by utilizing (2.3) as

S _
N[ f ](x( y� ))= ?i :

N

l=&N

:
N

k=&N

sgn(k) _ \ |k|
N + f� k, leik?x( y� )+il?y�

� [ f ](xi*( y� )), i=1,...Mx( y� )

S _
N[ f ]( y(x� ))= ?i :

N

l=&N

:
N

k=&N

sgn(l ) _ \ |l |
N+ f� k, leik?x� +il?y(x� )

� [ f ]( yj*(x� )), j=1,...My(x� ) (2.8)

where f� k, l are the Fourier coefficients

f� k, l := 1
4 |

1

&1
|

1

&1
f (x, y) e&i?(kx+ly) dy dx

and

xi*( y� ), i=1,...Mx( y� ), yj*(x� ), j=1,...My(x� )

represent the finite jump discontinuities in each fixed direction. As an
example, consider the function

Example 2.2.

f (x, y)={3x+2y2+3,
0,

if x2+ y2<(0.5)2

otherwise
(2.9)

shown in Fig. 2.4. The concentration method (2.8) is applied with _=_exp

(2.4a) in each direction on the fixed values x� j=&1+2( j�N ), y� k=&1+
2(k�N ), j, k=1,..., N. Figure 2.5 shows the convergence to the jump discon-
tinuities of [ f ](x, y) occurring at x2+ y2=(0.5)2 for Example 2.2. While
the neighborhoods of the discontinuities are indeed detected, the process
must be further enhanced by performing (2.6) in each direction, and hence
one computes

Tx :=Nq�2(S _
N[ f ](x( y� )))q

� {Nq�2([ f ](xi*( y� )))q,
O(N &q�2),

if x=xi*( y� ), i=1,..., Mx( y� )
if x{xi*( y� ), i=1,..., Mx( y� ) (2.10)

Ty :=N q�2(S _
N[ f ]( y(x� )))q

� {Nq�2([ f ]( yj*(x� )))q,
O(N &q�2),

if y= yj*(x� ), j=1,..., My(x� )
if y{ yj*(x� ), j=1,..., My(x� )

301A Hybrid Approach to Spectral Reconstruction



File: 854J 705910 . By:XX . Date:18:01:01 . Time:12:54 LOP8M. V8.B. Page 01:01
Codes: 646 Signs: 173 . Length: 44 pic 2 pts, 186 mm

Fig. 2.4. Plot of Example 2.2.

Fig. 2.5. Application of the concentration method (2.3) for Example 2.2 using N=80
collocated Fourier coefficients in each fixed direction.
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Fig. 2.6. Application of the enhanced edge detection method (2.10) and (2.11) for Example 2.2
using N=80 collocated Fourier coefficients in each fixed direction.

yielding

TN(S _
N[ f ](x( y� )))={S _

N[ f ](x( y� )),
0,

if |Tx |>Jcrit

if |Tx |<Jcrit
(2.11)

TN(S _
N[ f ]( y(x� )))={S _

N[ f ]( y(x� )),
0,

if |Ty |>Jcrit

if |Ty |<Jcrit

which pinpoints the jump locations for fixed values of x� and y� . The results
are displayed in Fig. 2.6.

The limitations of the ``Cartesian'' detection done dimension by dimen-
sion are clear. Resolution is lost when the edges are not orthogonal to the
Cartesian grid. This will have minor implications on high resolution
reconstruction methods, as seen in Figs. 3.5 and 4.4, since the edges are
determined only within a grid cell of the fixed variables.

3. RECONSTRUCTION OF PIECEWISE SMOOTH FUNCTIONS
FROM SPECTRAL DATA

Various types of reconstruction methods for piecewise smooth functions
from spectral data have been developed (consult, for example, [4, 6, 13, 16,
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and 22]) with varying degrees of success. Higher resolution methods, critical
for many scientific applications, can be used only when the jump locations
of the function are pre-determined. Once the locations of the jump discon-
tinuities are secured, computational costs, simplicity of algorithms, and
robustness are the remaining critical components in choosing the optimal
high resolution reconstruction method. In this section a procedure is
developed that combines the simplicity of exponential filtering in smooth
regions away from discontinuities and the highly resolved Gegenbauer
reconstruction method in regions close to the discontinuities. This hybrid
approach is less computationally intensive and costly, but still provides
exponential accuracy in the maximum norm. We begin by reviewing the
features of exponential filtering and the Gegenbauer reconstruction method
for piecewise smooth functions.

3.1. Exponential Filtering

One might view the Gibbs phenomenon as a result of the slow decay
rate of the expansion coefficients. Exponential filtering is a way to increase
the decay rate by attenuating the high order coefficients. The filtered
Fourier partial sum is computed as

f _
N (x)= :

N

k=&N

_k f� k eik?x (3.1)

The filter _(')=_(k�N ) is defined as

_(')=e&: |'| p
(3.2)

where p represents the order of the filter and : measures the strength of the
filter, generally chosen so that _(1)r0 with machine accuracy. In all of the
following examples, :=32 was chosen. Exponential filtering is a popular
tool in many scientific problems because of its robustness and simplicity.
Other spectral expansions have similarly designed filters.

While filtering greatly improves the accuracy away from the discon-
tinuities, the loss of information from the high order coefficients causes
smearing over the discontinuities and resolution is severely compromised.
On the other hand, high order filtering will retain the critical high resolu-
tion near the jump discontinuities but does not satisfactorily remove the
Gibbs oscillations. These behaviors are demonstrated in Fig. 3.1. Figure 3.2
shows the convergence rate for increased number of coefficients and the
errors of exponential filters of different orders. Clearly filtering is not
suitable for applications requiring high resolution solutions that are free
from Gibbs oscillations.
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Fig. 3.1. The filtered Fourier partial sum with (a) p=4 and (b) p=10 applied to Example 2.1
using 80 Fourier collocated coefficients.

3.2. The Gegenbauer Reconstruction Method

The Gegenbauer reconstruction method was developed in [15] and
extended in a litany of articles (consult [13] for references). It is a powerful
tool that recovers spectral accuracy up to the discontinuity points in each
smooth sub-interval of a piecewise analytic function by first converting the
given spectral coefficients to Gegenbauer coefficients and then computing
the Gegenbauer spectral projections in each smooth subinterval. The
approximations in each sub-interval are subsequently ``glued'' together to
form a spectrally accurate representation over the entire domain of the

Fig. 3.2. Logarithmic pointwise errors for the filtered Fourier partial sum applied to
Example 2.1 for (a) a fourth order filter using 40, 80, and 160 collocation points and (b) filters
of orders p=2, 4, 8 with 80 Fourier collocated coefficients.
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original piecewise smooth function. A detailed analysis of the Gegenbauer
reconstruction method summarized below can be found in [13].

We begin by recalling the Gegenbauer partial sum expansion which
converges exponentially for a smooth function f (x), defined in [&1, 1],

fm(x)= :
m

l=0

f� *
l C *

l (x) (3.3)

where f� *
l are the Gegenbauer coefficients defined by

f� *
l =

1
h*

l
|

1

&1
(1&x2)*&1�2 C *

l (x) f (x) dx (3.4)

The Gegenbauer polynomials, C *
l (x), are orthogonal under the weight

function (1&x2)*&1�2 with

|
1

&1
(1&x2)*&1�2 C *

k(x) C *
n(x) dx=$k, nh*

n , h*
n=?1�2C *

n(1)
1 (*+1�2)
1 (*)(n+*)

Now let f (x) be a piecewise smooth L1 function defined in [&1, 1]
that is analytic in the sub-interval [a, b]. The interval of smoothness can
be effectively determined by the edge detection and enhancement proce-
dures described in Section 2. By defining a local variable ! such that x(!)
==!+$, where ==(b&a)�2 and $=(b+a)�2, the Gegenbauer partial sum
expansion of f (x) in [a, b] can be written as

fm(x(!))= :
m

l=0

f� *
l, =C *

l (!), &1�!�1 (3.5)

where the Gegenbauer coefficients f� *
l, = are defined by

f� *
l, ==

1
h*

l
|

1

&1
(1&!2)*&1�2 C *

l (!) f (=!+$) d! (3.6)

As shown in [13], an exponentially accurate approximation to f� *
l, = can be

constructed as

ĝ*
l, ==

1
h*

l
|

1

&1
(1&!2)*&1�2 C *

l (!) fN(=!+$) d! (3.7)

306 Gelb



File: 854J 705915 . By:XX . Date:18:01:01 . Time:12:55 LOP8M. V8.B. Page 01:01
Codes: 1910 Signs: 1067 . Length: 44 pic 2 pts, 186 mm

based on the spectral partial sum expansion, fN(=!+$). This approxima-
tion can then be used to replace f� *

l, = in the computation of the Gegenbauer
partial sum. Specifically,

g*
m(x(!))= :

m

l=0

ĝ*
l, = C *

l (!) (3.8)

forms an exponentially convergent approximation to f (x) in [a, b] in the
maximum norm provided that the Gegenbauer parameters are suitably
chosen with m, *t=N.

Figure 3.3 demonstrates the effectiveness of the Gegenbauer reconstruc-
tion method using the pseudospectral Fourier partial sum approximation

fN(=!+$)= :
N

k=&N

f� k eik?(=!+$), f� k=
1

2N
:

2N&1

j=0

f (zj ) e&ik?zj (3.9)

where zj=&1+( j�N ), j=0,..., 2N&1. Use of other (pseudo-)spectral par-
tial sum expansions also yield the exponentially convergent approximations
(3.7) and (3.8). For example, one may use the Legendre partial sum
approximation

fN(=!+$)= :
N

k=0

f� k Pk(=!+$) (3.10)

Fig. 3.3. Gegenbauer reconstruction method applied to Example 2.1, with m=*=0.4=N
using (a) 2N=80 Fourier collocated coefficients. (b) Logarithmic pointwise errors for 40, 80,
and 160 collocation points.
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where the pseudo-spectral coefficients are computed as

f� k=
1
#k

:
N

j=0

f (zj ) Pk(zj ) wj (3.11)

based on the Gauss quadrature nodes zj , j=0,..., N, the appropriate nor-
malization factor #k , and weight function wj .

The two dimensional Gegenbauer approximation is a direct extension
of the one dimensional case and is written as

g*1 , *2
m1 , m2

(x(!x), y(!y))= :
m1

l1=0

:
m2

l2=0

ĝ*1 , *2
l1 , l2

C *1
l1

(!x) C *2
l2

(!y) (3.12)

with

ĝ*1 , *2
l1 , l2

=
1

h*1
l1

1
h*2

l2
|

1

&1
|

1

&1
(1&!2

x)*1&1�2(1&!2
y)*2&1�2 C *1

l1
(!x)

_C *2
l2

(!y) fN(=x!x+$x , =y !y+$y) d!x d!y

Figure 3.4 shows the two dimensional Gegenbauer approximation of
Example 2.2 using the pseudo-spectral Fourier coefficients. Figure 3.5 shows
the one dimensional cross sections of the two dimensional Gegenbauer
reconstruction. In this example, the edge detection (2.8) and enhancement
(2.11) techniques were used to obtain the regions of smoothness before util-
izing the Gegenbauer reconstruction method. The effects of the ``Cartesian''
edge detection procedure are evident in Fig. 3.5 where the reconstruction is
exponentially accurate up to the grid cell of the jump discontinuity.

3.3. Computational Considerations for the Gegenbauer Reconstruction
Method

It is clear that the Gegenbauer reconstruction method yields remarkably
highly resolved approximations without the negative effects of the Gibbs
phenomenon. Still, computational costs and robustness must be considered
carefully if the method is to have broad scientific impact. We first consider
the issue of cost.

In the case where the Fourier (pseudo-)spectral approximation (3.9) is
utilized in the construction of the Gegenbauer coefficients,

ĝ*
l, ==

1
h*

l
|

1

&1
(1&!2)*&1�2 C *

l (!) :
N

k=&N

f� ke ik?(=!+$) d!
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Fig. 3.4. Contour plot of Example 2.2 using the two dimensional Gegenbauer reconstruction
method (3.12) based on 2N=80 pseudo-spectral Fourier coefficients in each direction. Here
m1=m2=6, and *1=*2=8.

Fig. 3.5. Cross sections of the two dimensional Gegenbauer approximation (dots) in the (a)
x and (b) y directions.
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the explicit expression [2]

1
h*

l
|

1

&1
(1&!2)*&1�2 C *

l (!) eik?(=!+$) d!=1 (*) \ 2
?k+

*

i l (l+*) J l+*(?k)

is exploited to obtain

ĝ*
l, ==$0, l f� 0+1 (*) i l (l+*) :

0<|k| �N

Jl+*(?k=) \ 2
?k=+

*

f� k eik?$ (3.13)

This allows use of the efficient FFT algorithm and avoids the more expen-
sive quadrature formulation. Some additional cost is incurred in the two
dimensional case.

Unfortunately other spectral expansions, e.g., the Legendre expansion,
do not lend themselves to such clean formulations as in (3.13), and we are
forced to address the computational costs of integrating ĝ*

l, = . Consider, as
an example, the application of the Chebyshev Gauss�Lobatto quadrature
formula for (3.7), which yields the approximation

ĝ*
l, ==

1
h*

l

?
N�

:
N�

j=0

1
cj

fN(=! j+$)(1&!2
j )* C *

l (!j )

cj={1,
2,

if j=1,..., N� &1
if j=0 or j=N�

where fN(=! j+$) is computed by (3.10) on the points ! j=cos( j?�N ),
j=0,..., N� , and N� �N+2*+m. This leads to the Gegenbauer approximation

gm(x(!))= :
m

l=0

1
h*

l

?
N�

:
N�

j=0

1
cj

fN(=!j+$)(1&!2
j )* C *

l (!j ) C *
l (!)

Our goal is to reduce the computational effort in computing the Gegenbauer
approximation. We start by reformulating the Gegenbauer approximation as

gm(x(!))=
?
N�

:
N�

j=0

1
cj

fN(=!j+$)(1&!2
j )* :

m

l=0

C *
l (!j ) C *

l (!)
h*

l

Recall the Christoffel�Darboux formula for Gegenbauer polynomials,

:
m

l=0

C*
l (!j ) C *

l (!)
h*

l

=
km

km+1h*
m

C *
m+1(!j ) C *

m(!)&C *
m(!j ) C *

m+1(!)
!j&!
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where

km=
2m1 (*+m)

m! 1 (*)

The Christoffel�Darboux formula allows the elimination of one sum from
the computation to obtain

gm(x(!))=
?
N�

km

km+1h*
m

:
N�

j=0

1
cj

fN(=! j+$)(1&!2
j )*

_
C *

m+1(!j ) C *
m(!)&C *

m(!j ) C *
m+1(!)

! j&!
(3.14)

If !=!j , then applying the equality 2*C *+1
m&1(!)=dC *

m(!)�d! gives

gm(x(! j ))=
?
N�

km

km+1h*
m

:
N�

j=0

1
cj

fN(=! j+$)(1&!2
j )*

_2*(C *+1
m (!j ) C *

m(!j )&C *
m+1(!j ) C *+1

m&1(!j ))

While manipulating the Christoffel�Darboux formula reduces the com-
putational expense, there is still the issue of the Gegenbauer reconstruction
method's susceptibility to round-off error. The Gegenbauer polynomials
grow very rapidly, for instance C *

m(1)=1 (m+2*)�m! 1 (2*). Hence not
only is the theoretical exponential convergence obtained for m, *t=N
unrealizable, but the round-off error may completely ruin the approxima-
tion. Additionally, improving the computational cost (3.14) further exacer-
bates the situation since the Gegenbauer polynomials are multiplied
together in the Christoffel�Darboux formula.

To temper this effect we introduce two modifications of the Gegenbauer
polynomials:

C *
S, m(!) =SC *

m(!)
(3.15)

C *
N� , m(!)=

1
N�

C *
m(! j )

where we have defined

S :=S(m, *)=
?km

km+1h*
m

=
1 (m)

1 (m+2*&1)
4*&1(1 (*))2 (3.16)
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Note that S and N� are fixed once the parameters m and * have been chosen
and do not change in the computation of (3.15). Clearly S and 1�N� are
small and decreasing values with respect to m, *, and N. This is extremely
helpful in preventing numerical round-off error when computing the
Gegenbauer polynomials. The approximation (3.14) now reads

gm(x(!))= :
N�

j=0

fN(=!j+$)(1&!2
j )*

cj

__C *
N� , m+1(!j ) C *

S, m(!)&C *
N� , m(!j ) C *

S, m+1(!)
!j&! & (3.17)

Figure 3.6 demonstrates the effectiveness of the modified Gegenbauer
approximation (3.17) using the Legendre pseudo-spectral partial sum
approximation. The Gegenbauer reconstruction method is now much more
robust and cost effective, making it more applicable to problems of greater
variation.

3.4. The Hybrid Approach

As indicated in Figs. 3.3 and 3.6, both formulations (3.13) and (3.17)
provide robust computational reconstruction procedures for piecewise
analytic functions. Although the cost is significantly diminished, the recon-
struction is still considerably expensive for problems in higher dimensions.
To treat this issue, we introduce a new hybrid approach that combines the
simplicity of exponential filtering in smooth regions away from discon-
tinuities and the highly resolved Gegenbauer reconstruction method in

Fig. 3.6. Gegenbauer reconstruction method applied to Example 2.1, with m=0.2=N,
*=0.4=N. (a) Approximation using N=80 Legendre Gauss quadrature points. (b) Loga-
rithmic pointwise errors for 40, 80, and 160 collocation points.
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regions close to the discontinuities. Specifically, if f (x) is smooth inside the
interval [a, b] then

g_, *
m (x)={ g*

m(x),
f _

N (x),
if a�x�a+\ or b&\�x�b
if a+\<x<b&\

(3.18)

where 0�\�(b&a)�2 is a neighborhood parameter determined for each
particular application. Clearly, higher accuracy is obtained for larger values
of \ since the Gegenbauer reconstruction method would be used in a larger
part of the sub-interval. In this case, a higher order filter for reconstruction
in the region a+\<x<b&\ should be chosen since the Gibbs oscillations
seen in Fig. 3.1 will be removed by the application of the Gegenbauer recon-
struction method in the regions close to the jump discontinuities. On the
other hand, choosing smaller \ would significantly lessen the computational
expense. For the many computational problems having very refined grids,
one is forced to use small \ because of the high cost of the Gegenbauer
reconstruction method. It is also reasonable to choose \=\(x), since it
is likely that some sub-interval reconstructions demand higher resolution
reconstruction than others. For instance, in MRI images, it is sometimes
desirable to resolve the image near the skull bone, but some of the finer
features on the interior can be smoothed over. This particular example will
be discussed in Section 4.

4. NUMERICAL APPLICATIONS

To demonstrate the efficacy of the hybrid Gegenbauer reconstruction
method, we return to Example 2.1. It is clear from Figs. 4.1 and 4.2 that the

Fig. 4.1. The hybrid Gegenbauer reconstruction method applied to Example 2.1, with
\=0.2 and m=*=0.4=N using (a) the Fourier partial sum expansion with 80 collocation
points. (b) Logarithmic pointwise errors for 40, 80, and 160 collocation points.
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Fig. 4.2. Hybrid Gegenbauer reconstruction method applied to Example 2.1, with m=0.2=N
and *=0.4=N using (a) the Legendre partial sum expansion with N=80 points (b) loga-
rithmic pointwise errors for 40, 80, and 160 points.

hybrid method recovers piecewise smooth functions with high accuracy up
to the points of discontinuity. In both cases, the hybrid neighborhood
parameter \=0.2 and filter parameters p=6 and :=32 were used.
Although some loss of accuracy is seen away from the discontinuities, the
overall convergence rate is still very high.

The hybrid Gegenbauer reconstruction method is well suited for the
two dimensional case. The procedure can be applied with the Fourier or
Legendre partial sum expansion in either or both directions. Figures 4.3
and 4.4 compare the hybrid method applied to Example 2.2 using the

Fig. 4.3. Contour plot of Example 2.2 approximated by the two dimensional hybrid Gegen-
bauer reconstruction method using (a) the Fourier partial sum expansion in both directions
and (b) the Legendre partial sum expansion in the x direction and the Fourier partial sum
expansion in the y direction with 80 collocation points in each direction and parameters
m1=m2=6, and *1=*2=8.
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Fig. 4.4. Cross section of the hybrid Gegenbauer approximation of Example 2.2 in the x
direction using (a) the Fourier partial sum expansion in both directions and (b) the Legendre
partial sum expansion in the x direction and the Fourier partial sum expansion in the y direc-
tion with 80 collocation points in each direction and parameters m1=m2=6, and *1=*2=8.

Fourier partial sum expansion in both directions with the hybrid method
using the Legendre partial sum in the x direction and the Fourier partial
sum in the y direction. In both cases the hybrid neighborhood parameter
\=0.2 and filter parameters p=6 and :=32 were used.

One important application of reconstruction methods is in post-pro-
cessing numerical solutions of partial differential equations. For example,
in the case of hyperbolic conservation laws, the solution develops shock
discontinuities which lead to the undesirable Gibbs phenomenon. Much
research has been devoted to creating numerical spectral methods that
reduce the effects of the Gibbs phenomenon. For example, the spectral
viscosity (SV) method, which originated in [21] and developed further to
include non-periodic problems in [18], recovers spectrally accurate approxi-
mations to the projections of the entropy solutions. However, due to the
shocks in the solution, even the exact projection of the entropy solution
would suffer from the Gibbs phenomenon, and hence a post-processing
reconstruction procedure is required.

The Gegenbauer reconstruction method has been shown to effectively
post-process the SV solution [10], [20]. To demonstrate the efficacy of the
hybrid Gegenbauer reconstruction method as a post-processor for piecewise
smooth solutions, we consider the dam break problem.

Example 4.1 (One-dimensional dam break problem). Consider the
hyperbolic conservation law,

�
�t

q+
�

�x
f(q)=0 (4.1)
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with vector of variables and the flux vector given by

q=\uh
h + , f=\u2h+1�2gh2

uh +
Here h=h(x, t) is the height of the free upper surface, u=u(x, t) is the
(depth-averaged) fluid velocity and g is the acceleration due to gravity. The
fluid is initially at rest both sides of a dam located at x=0. At time t=0
a dam break is simulated by suddenly removing the dam wall. Initial con-
ditions are given as

h(x, 0)={h0 ,
h1 ,

x<0
x>0

u(x, 0)=0

for specified h0 and h1 .

The analytical solution consists of a shock front (or ``bore'') propagat-
ing to the right and a rarefaction wave propagating to the left. One par-
ticular solution is shown in Fig. 4.5.

Since the solution also contains discontinuities in the derivative, high
resolution post-processing reconstruction requires the locations of the
discontinuities in the derivatives as well (consult [10]). Results from
employing the hybrid Gegenbauer reconstruction method directly to the
exact solution are shown in Fig. 4.6, where the Legendre partial sum
expansion was used to build the Gegenbauer coefficients.

Fig. 4.5. The exact (a) velocity and (b) height solutions for the dam break problem with
initial conditions h0=1 and h1=0.8 at time T=0.15.
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Fig. 4.6. The hybrid Gegenbauer reconstruction method applied to the exact solution of the
dam break problem with N=128 Gauss quadrature points and m=*=0.2=N. the hybrid
neighborhood parameter \=0.2 and filter parameters p=6 and :=32 were used. Shown is
(a) the velocity profile and (b) the height profile.

As evident in Fig. 4.7, the SV solution of a hyperbolic conservation
law is riddled with noisy oscillations due to the Gibbs phenomenon.
Nevertheless, the hybrid Gegenbauer reconstruction method recovers a
highly accurate approximation from the SV solution without oscillations or
the undesirable smearing seen in other post-processing reconstruction
methods. The results are shown in Fig. 4.8.

Computer tomography serves as an excellent example for the applica-
tion of the hybrid Gegenbauer method. A tomography image is reconstructed
from its X-ray projections, which are constructed by the Radon transform
of the image function. The close relationship between the Radon and

Fig. 4.7. The SV solution of the dam break problem with N=128 Gauss quadrature points.
Shown is (a) the velocity profile and (b) the height profile.

317A Hybrid Approach to Spectral Reconstruction



File: 854J 705926 . By:XX . Date:28:03:01 . Time:12:20 LOP8M. V8.B. Page 01:01
Codes: 1676 Signs: 1183 . Length: 44 pic 2 pts, 186 mm

Fig. 4.8. The hybrid Gegenbauer reconstruction method applied to the SV solution of the
dam break problem with N=128 Gauss quadrature points and \=0.2 and m=*=0.2=N. the
hybrid neighborhood parameter \=0.2 and filter parameters p=6 and :=32 were used.
Shown is (a) the velocity profile and (b) the height profile.

Fourier transform dictates the suitability of Fourier spectral methods to
computer tomography problems.

Figure 4.9 shows the image of the piecewise constant Shepp�Logan
phantom brain on a [256_256] grid domain and its corresponding filtered
Fourier spectral representation. Here the Fourier coefficients are computed
directly from the phantom image. Numerical algorithms for the conversion
of the Radon to Fourier coefficients can be found in [11].

A high resolution reconstruction method is ideal for the Shepp�Logan
phantom image since the filtered Fourier approximation, shown in Fig. 4.9,
neither satisfactorily removes the Gibbs phenomenon nor resolves the
region near the skull bone. As previously discussed, the edges of the image

Fig. 4.9. (a) The phantom image using a 256_256 size mesh. (b) The pseudo-spectral
filtered approximation of the phantom image.
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Fig. 4.10. (a) The concentration method (2.8) and (b) the enhanced edge detection proce-
dure (2.11) applied to the Shepp�Logan phantom image.

must be determined before applying a high resolution reconstruction
method. Figure 4.10 demonstrates the use of the concentration method
(2.8) and enhancement technique (2.11) to determine the edges of the
Shepp�Logan phantom brain. In this case, one can choose the critical
threshold in (2.11) to either include the edges of the interior structures or
to dismiss them, depending on desired resolution. For simplicity we choose
to ignore the edges of the interior structures.

The fine grid resolution makes the Gegenbauer reconstruction method
unreasonably expensive to apply everywhere. Fortunately, the cost effective
hybrid Gegenbauer reconstruction method can be applied to accurately
recover the original Shepp�Logan phantom image. The results are dis-
played in Fig. 4.11. Since the interior of the phantom does not demand
high resolution reconstruction, exponential filtering is used for the inside
structures. The Gegenbauer method is applied to recover the phantom
image near the skull bone, where high resolution is more critical. Note that
for some additional cost, the procedure can be easily tuned to also obtain
high resolution recovery on the interior structures.

5. CONCLUDING REMARKS

The hybrid Gegenbauer reconstruction method is an exceptionally
accurate reconstruction procedure that combines the simplicity of exponen-
tial filtering away from the jump discontinuities with the highly resolved
Gegenbauer reconstruction method in regions close to the discontinuities.
The main reason for creating a hybrid method is to reduce the high cost
incurred by the Gegenbauer reconstruction method.

319A Hybrid Approach to Spectral Reconstruction



File: 854J 705928 . By:XX . Date:18:01:01 . Time:12:57 LOP8M. V8.B. Page 01:01
Codes: 1853 Signs: 1417 . Length: 44 pic 2 pts, 186 mm

Fig. 4.11. The hybrid Gegenbauer reconstruction method applied to approximate the image
of the Shepp�Logan phantom. Here *1=*2=4, m1=m2=3, the hybrid neighborhood
parameter \=0.01, and the filter parameters p=4 and :=32 were chosen.

By exploiting the relationship between the Gegenbauer coefficients
computed from the Fourier partial sum expansion and the explicit formula
involving the Bessel's function (3.13), the cost of the Gegenbauer recon-
struction method is reduced for Fourier spectral methods. In this paper we
introduced another way to decrease the cost of Gegenbauer reconstruction
by taking advantage of the Christoffel�Darboux formula (3.14). This makes
the Gegenbauer reconstruction method more feasible for other partial sum
expansions (e.g., Legendre, Chebyshev) as well. A way to curtail round-off
error was also addressed in (3.15).

The hybrid algorithm (3.18) is extremely useful for two dimensional
problems with very refined grids where cost effectiveness becomes a critical
issue. Numerical applications, such as the reconstruction of MRI images,
serve as prime examples. Reconstructed images are highly resolved without
using expensive and time consuming techniques. Future investigations
include

v Optimization of parameters for the hybrid Gegenbauer reconstruc-
tion method. The regions of exponential filtering and Gegenbauer
reconstruction are inherently problem dependent. However, the
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order of the exponential filter is linked to the proximity of the jump
discontinuity and could be determined independently. No optimiza-
tion for the Gegenbauer parameters m and * has yet been attempted.

v Round-off error. Some round-off error is still apparent as the grid
becomes more refined. For instance, we used m=0.4=N for examples
with N<80 grid points, but accuracy is negatively impacted when N
increases for corresponding values of m. Higher computer precision is
the best course of action, but work can be done to improve the com-
putational accuracy of the rapidly growing Gegenbauer polynomials.

v Edge detection in two dimensions. Current investigation is under
way to develop a two-dimensional edge detection technique that is
not subject to the limitations of ``Cartesian'' detection.

v Application of the hybrid Gegenbauer reconstruction method to real
physical data. We are currently testing the hybrid Gegenbauer
reconstruction method on real physical and simulated data, specifi-
cally on MRI and PET data which contain significant amounts of
noise.
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