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Summary. This paper is devoted to both theoretical and numerical study of
a system involving an eikonal equation of Hamilton-Jacobi type and a linear
conservation law as it comes out of the geometrical optics expansion of the
wave equation or the semiclassical limit for the Schrödinger equation. We
first state an existence and uniqueness result in the framework of viscosity
and duality solutions. Then we study the behavior of some classical numer-
ical schemes on this problem and we give sufficient conditions to ensure
convergence. As an illustration, some practical computations are provided.
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1 Introduction

The aim of this paper is to give both a theoretical and numerical study
of a one-dimensional system of two equations: a nonlinear Hamilton-Jacobi
equation coupledwith a linear transport equation. Such unusual systemsnat-
urally arise in two applications which will illustrate our results: geometrical
optics for the wave equation, and semiclassical limit for the Schrödinger
equation. Both theories involve a small parameter, and we are interested
in computing approximations of the highly oscillating solutions emanating
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in the limit when this parameter goes to zero. One of the motivations for
introducing such asymptotics is of numerical order: we replace the brute
computation of highly oscillating functions by the study of a system of
equations which takes their shape into account.

In the Schr̈odinger case, the small parameter is already present in the
equations: it is thePlanck constant. The semiclassical limit consists in study-
ing the solution generated by initial data tuned to the wavelength equal to
the Planck constant. Concerning thewave equation, we artificially introduce
a small wavelength in the inital datum. In both cases, one seeks a solutionu
by means of an ansatz of the formu(t, x) = A(t, x) exp(ikϕ(t, x)), where
ϕ is the phase of the wave,A ≥ 0 its amplitude, andk its (high) frequency.
We then perform an expansion in powers ofk and, by considering the first
two terms, we formally find that
– the phaseϕ is a solution to the so-called eikonal equation, which is usually
a nonlinear Hamilton-Jacobi equation;
– the amplitude satisfies a linear transport equation, the coefficient of which
is related to∇xϕ.
Notice that the main drawback of this method appears already at this level:
we replace linear equations by nonlinear ones, loosing therefore the super-
position principle.

The first, and crucial, problem to address is the notion of solution for both
equations. A natural1 framework concerning the Hamilton-Jacobi equation
is the one of viscosity solutions, introduced independently by Kružkov [23,
24], and Crandall-Lions [11]. In this class, existence and uniqueness hold
for the Cauchy problem, essentially in the class of Lipschitz continuous
functions. The gradient ofϕ may therefore develop singularities in a finite
time, and this causes the whole ansatz to break down since the energy of the
wave (given by the square of its amplitude) concentrates on the shock lines.
A natural alternative would be to seek for multivalued phases corresponding
to crossing waves. Recently, several attempts have been made, see e.g. [3,
13–15,21,35,41], but this leads to difficult problems from both viewpoints
of theory and numerics. Notice that, apart from [15,21], these approaches
share the common feature to solve the eikonal equation using numerical
tools which have been developed in the context of viscosity solutions. In
particular, the multivalued algorithm proposed in [3,4] roughly consists in
splitting the computational domain in possibly overlapping zones called “big
rays”, in which the coupled system is to be solved.

We propose here a complete study of the corresponding system when
the eikonal equation is solved in the viscosity sense.We prove existence and
uniqueness results, as well as convergence theorems for relevant numerical
methods. The context may seem limited, but the characterization of the

1 at least from the point of view of stability!
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solutions and the behaviour of the discretization are of full interest. Indeed,
on the one hand, as wementioned before, lots of numerical implementations
are based on this framework. On the other hand, this viscosity solution
corresponds to the phase of the first arriving wave, and is therefore useful
in several applications (e.g.seismology [41]). Finally, even in this context,
severe mathematical difficulties arise, essentially because the amplitude has
tobesought in theclassofmeasures.Asweshall see inmoredetail below, the
present state of the art concerning measure-valued solutions enforces us to
stick to one-dimensional problems, which is of course a severe restriction.
Two difficult questions remain open at this stage: first, how to deal with
multi-valued solutions to the Hamilton-Jacobi equation; next, generalize to
more realistic multi-dimensional situations. However, we shall show that
the example of the two-dimensional Helmholtz equation may be rewritten
in order to fall into this context.

Consequently, we plan to give precise mathematical results about exact
solutions and numerical approximations of the following model problem:

∂tϕ+ H(t, x, ∂xϕ) = 0,(1)

∂tµ+ ∂x(aµ) = 0,(2)

where the HamiltonianH(t, x, p) is a smooth function, strictly convex in
p, anda depends usually on the partial derivatives in space and time ofϕ.
Therefore, bothH andamay take different forms, and we shall give several
explicit examples in Sect. 2: our results do not pretend to whole generality.
Once we have chosen to solve (1) in the class of viscosity solutions, its
x derivative is likely to blow up in finite time (for instance when caustics
occur in geometrical optics) and the coefficienta may become discontinu-
ous. In this case,µ is a measure in space; the precise meaning of a solution
to (2), and in particular of the productaµ, has to be explicited. There are
very few attempts to consider this kind of problems. The approach used by
Poupaud and Rascle [33] seems attractive here because it gives an existence
result in the multidimensional case. The main drawback is that, so far, there
are no stability results available, which is of course essential in proving
convergence of numerical approximations. In this respect, a more appropri-
ate notion, calledduality solutions, was introduced in the one-dimensional
case by Bouchut and James [5] (see also Petrova and Popov [32] for some
extensions in the same context and [19]).

The key assumption to construct duality solutions is a one-sided Lips-
chitz condition (OSLC) ona, which ensures that the flow is somehow com-
pressive. Under this restriction, existence, uniqueness of measure-valued
solutions can be proved, as well as stability results with respect to pertur-
bations of the coefficients. In the same context, the discretization of these
solutions has been studied by the authors in [16], and involves a discrete
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analogue of the OSLC condition. Therefore, the first step in both theoretical
and numerical studies of (1), (2) will be to obtain additional estimates on
the viscosity solutionϕ.

The paper is organized as follows. In a first section, we present some
examples where the system (1)-(2) naturally arises. Then, in the second
one, we recall the definitions and some stability properties of viscosity and
duality solutions, and state existence and uniqueness results for the coupled
systems of the examples. Next, we study numerical approximations and
give a convergence result towards the previously defined solutions. Both
results mainly rely upon semiconcavity properties ensured by the eikonal
equation, and by Lax-Friedrichs type schemes for its discretization. Finally,
we illustrate the results with several numerical computations inspired by
[20] for the Schr̈odinger equation, and [15,37] for the Helmholtz equation.

2 Presentation of the examples

2.1 The 1D Schr̈odinger equation

In one space dimension, the Schrödinger equation reads

i�∂tΨ +
�

2

2
∂xxΨ = V (x)Ψ,(3)

whereV is the corresponding potential. A nonlinear version of this equation
is obtained by replacingV (x) byU ′(|Ψ |2), whereU is a real-valued smooth
function. The parameter� is analogous to the Planck constant, and the
semiclassical limit consists in considering initial data of the form

Ψ(0, x) = A0(x) exp
(
i

�
ϕ0(x)

)
, � → 0 ,

where the amplitudeA0 ≥ 0, and the real-valued phaseϕ0 are smooth
functions independant of�. Inserting the ansatz

Ψ(t, x) = A(t, x) exp
(
i

�
ϕ(t, x)

)
(4)

in (3) yields after some easy formal computations an eikonal equation forϕ,
and a transport equation forA. More precisely, considering the coefficients
of terms of order 0 in�, we obtain

∂tϕ+
1
2
(∂xϕ)

2 + V = 0,(5)
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which can be rewritten as a Burgers equation with a source term by differ-
entiating inx and settingv = ∂xϕ:

∂tv + ∂x

(
v2

2

)
+ ∂xV = 0.(6)

Next, the order one terms lead to the following equation:

∂tA+ v∂xA+
1
2
A∂xv = 0.

Multiplying this equation by2A and settingµ = A2 leads to a linear con-
servation law for the energy:

∂tµ+ ∂x(aµ) = 0, where a(t, x) = v(t, x) = ∂xϕ(t, x).(7)

Therefore, considering the system constituted by the eikonal equation (5)
and the conservation equation (7), we are exactly in the afore described
context, withH(t, x, p) = p2/2 anda = ∂xϕ. Since∂xϕ is a solution to the
Burgers equation, we know that discontinuities can develop in finite time,
even starting from smooth initial data.

Notice that we can rewrite these equations in a different way, by intro-
ducing new variablesρ = A2, andq = A2v = ρv. This yields after a few
straightforward computations

∂tρ+ ∂xq = 0, ∂tq + ∂x(v q) + ρ∂xV = 0.(8)

In particular, for∂xV = 0, i.e.for the free Schr̈odinger equation, we recover
the pressureless gases system, which has been widely studied (see [7] for
duality solutions, and the numerous references quoted there). These equa-
tions are usually interpreted as the macroscopic behaviour of the so-called
sticky particles: when two particles collide, they stick together, forming a
new particle. This interpretation fails obviously in the Schrödinger case,
since the paths must cross each other here. When this occurs, the method
breaks down, and actually, the unknownρ becomes a measure in space.

2.2 The wave equation

The wave equation in an inhomogeneous medium endowed with a variable
refraction indexη(x) > 0, x ∈ R

d, is

∂ttu− 1
η(x)2

∆u = 0.(9)

The light speed in the medium isc(x) = 1/η(x) provided the velocity
in the vacuum is normalized to 1. We are interested in highly oscillating
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solutions, with frquency1/ε, so we insert in (9) the same ansatz as for the
Schr̈odinger equation:u(t, x) = A(t, x) exp(iϕ(t, x)/ε). Once again, we
perform an expansion in powers ofε. Annihilating theε−2 term gives rise to
the eikonal equation, while theε−1 term leads to a linear transport equation
forA. Notice that, if one wishes to compute higher order terms, the function
A itself should be written as a power series inε.

The eikonal equation reads here

(∂tϕ)2 − 1
η(x)2

|∇ϕ|2 = 0,(10)

so that the Hamiltonian isH(t, x, p) = ±p/η(x). In its whole generality,
the transport equation is given by (∂j stands here for∂∂xj

)

∂tϕ∂tA− 1
η(x)2

d∑
j=1

∂jϕ∂jA+
1
2

(
∂ttϕ− 1

η(x)2
∆ϕ

)
A = 0.(11)

We shall be interested in two simple cases, namelyd = 1 and radial solu-
tions, whereη, u,A andϕ depend only onr = |x|.

In the one-dimensional case, the eikonal equation reduces to the pair of
linear equations∂tϕ± 1

η(x)∂xϕ = 0. This readily gives the expression of the
time derivative ofϕ in terms of the space derivative. Plugging these results
into the transport equation (11) leads to

∂tA± 1
η
∂xA− A

2
∂x

(
1
η

)
= 0.(12)

For both choices of the sign, this equation can be rewritten in a conservative
form. Namely, for the minus sign, we multiply by2A to obtain the conser-
vation of the energyA2, and for the plus sign, we get the conservation of
1/A2 by multiplying by−2/A3. Once again, we recover a system in the
form (1)-(2), with

• H(t, x, p) = p/η(x), a(t, x) = 1/η(x) andµ = 1/A2 for the plus sign;
• H(t, x, p) = − p/η(x), a(t, x) = −1/η(x) andµ = A2 for the minus
sign.

In this particular case, providedη is a smooth function, the conserva-
tion equation we obtain has a smooth coefficient, so that no singularities
appear. The notion of duality solutions allows to consider nonsmoothη’s.
For instance, consideringH(t, x, p) = −p/η(x), µ = A2, anda(t, x) =
−1/η(x), if η is only assumed to be bounded and one- sided Lipschitz
continuous, the results in [6,16] apply, so that

• there exists a unique pair of duality solutions(ϕ, µ) of the differential
Cauchy problem;
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• a broad class of conservative numerical schemes converge to these weak
solutions under some explicit CFL restrictions.

Ford > 1, and radial behaviour, the computations are almost identical,
and make use of the equality∆xu(|x|) = ∂rru − d−1

r ∂ru. The eikonal
equationboils down to thepair∂tϕ± 1

η(r)∂rϕ = 0, and the transport equation
is here

∂tA± ∂rA+
1
2

(
−∂r 1
η

± 1
η

d− 1
r

)
= 0.

Once again, we can obtain two conservation laws from this equation. For
the plus sign, we multiply by−2/(rd−1a3) to get

∂t

(
1

rd−1a2

)
+ ∂r

(
1

ηrd−1a2

)
= 0,

and for the minus sign, multiplying by2rd−1a leads to

∂t

(
rd−1a2

)
− ∂r

(
1
η
rd−1a2

)
= 0.

In the case where the refraction indexη(x) is smooth, no measure-valued
solutions occur as ford = 1. However, there is a geometrical singularity,
which is clearly evidenced even for a constantη. Indeed in this case, the
transport equation shows that the quantityrd−1a2 is conserved inside ray
tubes, and therefore the energyA2 diverges like1/rd−1 at the origin.

2.3 The 2D Helmholtz equation

If one looks for planar wave solutions̃u(t,x) = u(x) exp(ikt) to the wave
equation (9), one is led to find a steady functionu satisfying the scalar
Helmholtz equation:

∆u+ k2 η2 u = 0,(13)

We shall consider here the two-dimensional equation, and setx = (x1, x2).
Searching for solutions oscillating with frequencyk, it is natural to use
the same kind of ansatz as previously, namelyu(x1, x2) = A(x1, x2)
exp(ikϕ(x1, x2)). Cancelling the first two terms in the power expansion
in k leads to the following stationary system:

|∇ϕ| = η, 2∇A · ∇ϕ+A∆ϕ = 0.(14)

We refer the reader to e.g. [1,22,29,34,45] for details on this derivation.
The stationary transport equation forA leads to a linear conservation law
for the energyA2:

∇ · (A2∇ϕ) = 0.(15)
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We aim at rewriting this system in such a way that it matches the previously
defined context, in order to apply the aforementioned theoretical results we
are about to prove. An important obstruction to treat (14) as it stands is
indeed the handling of a boundary-value problemwithin a class of measure-
valued solutions. One alternative is then to select a privileged direction of
propagation in (14), sayx2, and to consider it as a “time– like” direction.
This paraxial-type assumption compels us to assume∂x2ϕ > 0 in the do-
main of interest, but this is of common use in several applications including
seismology (cf e.g. [41]) or computations of lenses. Therefore, we rewrite
the eikonal equation the following way:

∂x2ϕ−
√
η2 − (∂x1ϕ)2 = 0

Then, it is meaningful to introduce a quantityµ = A2.∂x2ϕ and the conser-
vation equation (15) rewrites:

∂x2µ+ ∂x1

(
µ
∂x1ϕ

∂x2ϕ

)
= 0.

Weare once again in the general context if we set as a “time” variablet = x2
and as a “space” onex = x1: this leads toH(t, x, p) = −√η2(t, x) − p2
anda(t, x) = ∂xϕ(t,x)

∂tϕ(t,x) . Notice that, in contrast with the wave equation, the
Hamiltonian depends on the “time” variable.

3 Weak solutions to the differential problem

3.1 An appropriate notion of solutions

The resolution of the Cauchy problem (1)-(2) we have in mind involves two
different notions of solutions: viscosity solutions for the inhomogeneous
eikonal equation and duality solutions for the linear conservation equation.

For the reader’s convenience, we recall here both definitions, as well as
basic results which are to be used in the sequel. We begin with viscosity
solutions, which were introduced under that name by Crandall and Lions,
[11], see also Krǔzkov’s papers [23,24].

Definition 1 LetH ∈ C([0, T ] × R × R). A functionϕ ∈ C(]0, T ] × R) is
a viscosity solutionof (1) if for everyχ ∈ C∞(]0, T ] × R), there holds:

– if (ϕ− χ) has a local maximum point at(t0, x0) ∈]0, T [×R, then:

∂tχ(t0, x0) + H(t0, x0, ∂xχ(t0, x0)) ≤ 0;

– if (ϕ− χ) has a local minimum point at(t0, x0) ∈]0, T [×R, then

∂tχ(t0, x0) + H(t0, x0, ∂xχ(t0, x0)) ≥ 0.
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If moreover,ϕ ∈ C([0, T ] × R) andϕ(0, x) = ϕ0(x), an initial datum
prescribed forx ∈ R, thenϕ is a viscosity solution on[0, T ] × R.

We summarize here several existence and regularity results for viscosity
solutions. Proofs, more detailed and precise results are to be found in [2,10,
11,39,40].

Theorem 1 Assume that the HamiltonianH in (1) satisfies:

(i) H is uniformly continuous on[0, T ] × R × [−R,R] for all R > 0;
(ii) sup[0,T ]×R |H(t, x, 0)| ≡M < +∞;
(iii) There exists a constantC > 0 such that, for allt ∈ [0, T ], x, y, p ∈ R,

|H(t, x, p) − H(t, y, p)| ≤ C (1 + |p|) |x− y|
Considerϕ(0, .) = ϕ0 ∈ Lip ∩ BUC(R): there exists a unique viscosity
solutionϕ ∈ BUC([0, T ] × R), which belongs to Lip([0, T ] × R).

Remark 1.Actually, we have for any0 ≤ t ≤ T

Lip(ϕ(t, .)) ≤ Lip(ϕ0) + Ct
(
1 + sup

0≤τ≤T
Lip(ϕ(τ, .))

)
.(16)

We now turn to the notion of duality solutions, which were introduced
by Bouchut and James in [5,6] to solve in the context of measures the
linear conservation equation (2) when the discontinuous coefficienta isL∞
bounded and satisfies the one-sided Lipschitz condition (OSLC)

∂xa ≤ α, with α ∈ L1(]0, T [).(17)

Recall that duality solutions are defined as weak solutions, the test functions
being Lipschitz solutions to the backward linear transport equation

∂tp+ a(t, x)∂xp = 0, p(T, .) = pT ∈ Lip(R).(18)

A formal computation shows that∂t(pµ) + ∂x[a(t, x)pµ] = 0, and thus

d

dt

(∫
R

p(t, x)µ(t, dx)
)

= 0,(19)

which defines the duality solutions for suitablep’s. It is quite classical that
(17) ensures existence for (18), but not uniqueness, which is of great impor-
tance here to obtain stability results. However, existence of solutions to (18)
was already used in the context of nonlinear conservation laws, to obtain
uniqueness of solutions (see Oleinik [31]), or error estimates (see Tadmor
[44]).

Therefore, the corner stone in the construction of duality solutions is
the introduction of the notion ofreversiblesolutions to (18). A complete
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statement of the definitions and properties of reversible solutions would be
too long in the present context, so that merely a few hints are given. LetL
denote the set of Lipschitz continuous solutions to (18), and define the set
of exceptional solutions:

E =
{
p ∈ L such thatpT ≡ 0

}
.

The possible loss of uniqueness corresponds to the case whereE is not
reduced to zero.

Definition 2 Wesay thatp ∈ L is areversible solutionto (18) ifp is locally
constant on the set

Ve =
{
(t, x) ∈ [0, T ] × R; ∃ pe ∈ E , pe(t, x) �= 0

}
.

Consider the examplea(x) = − sgn(x). Then we haveVe = {(t, x) ∈
[0, T ] × R; |x| < T − t}, the solution is defined by the characteristics
outsideVe, and we choose to prescribep(t, x) = pT(0) insideVe.

This definition leads quite directly to the uniqueness results of [5,6]. It
turnsout that theclassof reversible solutions isalsostablebyperturbationsof
the coefficienta, in a sense precisely stated in Theorem 2 below. The proof
of this result makes use of more handable characterizations of reversible
solutions, involving especially monotonicity, but we shall not need here
these precise statements.

Theorem 2 (Bouchut, James [5,6])
1) LetpT ∈ Liploc(R). Then there exists a uniquep ∈ L reversible solution
to (18) such thatp(T, .) = pT.
2) Let (an) be a bounded sequence inL∞([0, T ] × R), with an ⇀ a in
L∞([0, T ] × R) − w). Assume∂xan ≤ αn(t), where(αn) is bounded in
L1(]0, T [), ∂xa ≤ α ∈ L1(]0, T [). Let (pTn ) be a bounded sequence in
Liploc(R), pTn → pT, and denote bypn the reversible solution to

∂tpn + an∂xpn = 0 in ]0, T [×R, pn(T, .) = pTn .

Thenpn → p inC([0, T ]×[−R,R]) for anyR > 0, wherep is the reversible
solution to

∂tp+ a∂xp = 0 in ]0, T [×R, p(T, .) = pT.

We now restrict ourselves to thosep’s in (19): more precisely, we state the
following definition.
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Definition 3 We say thatµ ∈ SM ≡ C([0, T ];Mloc(R)−σ(Mloc, Cc)) is
a duality solution to (2) if for any0 < τ ≤ T , and anyreversiblesolution
p to (18) with compact support inx, the functiont �→

∫
R

p(t, x)µ(t, dx) is

constant on[0, τ ].

We shall need the following facts concerning duality solutions.

Theorem 3 (Bouchut, James [5,6])
1) Givenµ◦ ∈ Mloc(R), under the assumptions (17), there exists a unique
µ ∈ SM, duality solution to (2), such thatµ(0, .) = µ◦.
2) There exists a bounded Borel functionâ, calleduniversal representative
of a, such that̂a = a almost everywhere, and for any duality solutionµ,

∂tµ+ ∂x(âµ) = 0 in the distributional sense.

3) Let (an) be a bounded sequence inL∞(]0, T [×R), such thatan ⇀ a
in L∞(]0, T [×R) − w). Assume∂xan ≤ αn(t), where(αn) is bounded in
L1(]0, T [), ∂xa ≤ α ∈ L1(]0, T [). Consider a sequence(µn) ∈ SM of
duality solutions to

∂tµn + ∂x(anµn) = 0 in ]0, T [×R,

such thatµn(0, .) is bounded inMloc(R), andµn(0, .)⇀ µ◦ ∈ Mloc(R).
Thenµn → µ in SM, whereµ ∈ SM is the duality solution to

∂tµ+ ∂x(aµ) = 0 in ]0, T [×R, µ(0, .) = µ◦.

Moreover,̂anµn ⇀ âµ weakly inMloc(]0, T [×R).

The set of duality solutions is clearly a vector space, but it has to be noted
that a duality solution is nota priori defined as a solution in the sense of
distributions. The product̂aµ is defineda posteriori, by the equation itself
(see assertion 2 in the above theorem).

3.2 Existence and uniqueness results

In this paragraph, we turn to the Cauchy problem associated to (1)-(2):
take any pair of initial data(µ0, ϕ0) ∈ M(R) × W 1,∞(R), such that a
semiconcavity estimate holds for someγ ∈ R

+,

max(0, ∂xxϕ0) ≤ γ < +∞,(20)

and consider{
∂tϕ+ H(t, x, ∂xϕ) = 0
∂tµ+ ∂x(a(t, x)µ) = 0 in ]0, T [×R,

{
ϕ(0, .) = ϕ0

µ(0, .) = µ0 .(21)
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We wish to give additional conditions on the parameters in order to ensure
the existence and uniqueness of a pair of viscosity/duality solutions to (21)
in the context of the examples presented in the previous section. The proof
consists essentially in three steps:

– to establish existence and uniqueness for the viscosity solution of the
Hamilton-Jacobi equation;

– to ensure that a semiconcavity estimate of the form (20) holds true for
anyt > 0;

– to prove that this semiconcavity implies theOSLC condition ona, which
gives existence and uniqueness of the duality solution to the conservation
equation.

The key point here is of course the second one, and it is worth giving
here a general lemma.

Lemma 1 Consider a HamiltonianH satisfying the assumptions of The-
orem 1, and an initial datumϕ0 ∈ W 1,∞(R) such that (20) holds true.
Assume in additionH of classC2, with

∂ppH ≥ ζ0 > 0,(22)

and, for allR > 0,

inf
(t,x,p)∈[0,T ]×R×[−R,R]

∂xpH(t, x, p) > −∞,
inf

(t,x,p)∈[0,T ]×R×[−R,R]
∂xxH(t, x, p) > −∞.(23)

Then the viscosity solutionϕ satisfies the following semiconcavity estimate:

∀t ∈ [0, T ], max(0, ∂xxϕ(t, .)) ≤ max(Γ, γ) < +∞,(24)

whereΓ is a constant depending onH, andγ is defined by (20).

Remark 2.Such kind of semiconcavity estimates already exist in the lit-
erature, for Hamiltonians convex in thep variable, see e.g. Kružkov [23],
or Lions [28]. We deal here with Hamiltonians depending also upon the
time and space variables. This was indicated by Lin and Tadmor [27], even
for multidimensional Hamiltonians, but with a convexity assumption inx,
which we drop here.

Proof of Lemma 1.It is known that existence and uniqueness hold for
smooth viscosity solutions to the regularized equation∂tϕε+H(t, x, ∂xϕε)
= ε∂xxϕε, and thatϕε converges towards the viscosity solutionϕ to (1)
whenε goes to zero (see e.g. [39]). Therefore we need to prove the above
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estimate uniformly inε for ϕε. Differentiating twice the viscous equation
with respect tox and settingz = ∂xxϕε leads to:

∂tz + ∂ppH(t, x, ∂xϕε)z2 + 2∂xpH(t, x, ∂xϕε)z+
∂xxH(t, x, ∂xϕε) + ∂pH(t, x, ∂xϕε)∂xz = ε∂xxz.

From (16), we deduce that, for some constantM depending only upon the
initial datumϕ0 andT , there holds‖∂xϕε‖∞ ≤M . By (23), the quantities

ζ1 = min
(
0, inf

(t,x)∈[0,T ]×R;|p|≤M
∂xpH(t, x, p)

)
,

ζ2 = min
(
0, inf

(t,x)∈[0,T ]×R;|p|≤M
∂xxH(t, x, p)

)
,

(25)

are well-defined and nonpositive. Hence,z+ = max(0, ∂xxϕε) satisfies:

∂tz
+ + ζ0(z+)2 + 2ζ1z+ + ζ2 + ∂pH(t, x, ∂xϕε)∂xz+ ≤ ε∂xxz+,

and z̄+(t) def= supx∈R z
+(t, x) is a subsolution to the following Ricatti

differential equation:

d

dt
z̄+ + ζ0(z̄+)2 + 2ζ1z̄+ + ζ2 = 0.

Sinceζ0 > 0 andζ1, ζ2 ≤ 0, the roots ofζ0X2 + ζ1X + ζ2 are real, and
we denote byΓ the largest one. Therefore we get immediatelyz̄+(t) ≤
max(z̄+(0), Γ ), and we are done. ��
Remark 3.As a consequence of this proof, following again [27], one can
obtain a convergence rate ofϕε towardsϕ, provided the initial data are in
L1(R). More precisely, we have:‖ϕε(t, .) − ϕ(t, .)‖L1(R) = C(T )ε for all
0 ≤ t ≤ T .

Notice that this lemma does not apply to the Hamiltonian of the wave
equation, since then∂ppH ≡ 0. But in this last case, the eikonal equation
is therefore a linear transport equation, so that the semiconcavity of the
solution is the same as the one of the initial data. We turn now to specific
results for our examples.

Theorem 4 (The Schr̈odinger case) Under the semiconcavity requirement
(20) onϕ0 ∈ W 1,∞(R), there exists a unique couple of viscosity/duality
solutions to the Cauchy problem (21).

Proof. HereH(t, x, p) = p2/2 satisfies all the requirements of Theorem
1 and Lemma 1. Hence there exists a unique viscosity solution to (1), and
the semiconcavity propagates. Sincea = ∂xϕ, this means exactly that we
have theOSLCproperty, so that existence and uniqueness hold in the duality
sense for (2). ��
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The analogous result for the Helmholtz equation is slightly more diffi-
cult, since the HamiltonianH(t, x, p) = −√η2(t, x) − p2 is not uniformly
continuous. The final result is:

Theorem 5 (The Helmholtz equation)
Considerη ∈ C2 ∩W 2,∞([0, T ] × R), with 0 < η0 ≤ η and ∂tη ≥ 0.
Assumeϕ0 ∈W 1,∞(R) satisfies (20) and, for allx ∈ R,(

η(0, x)
)2 −

(
∂xϕ

0(x± 0)
)2 ≥ β2 > 0.(26)

Then there exists a unique couple of viscosity/duality solutions of theCauchy
problem (21).

We begin by a lemma ensuring existence and uniqueness of the viscosity
solution. The corner stone is actually to prove that (26) propagates for all
t > 0, so thatH remains uniformly continuous on the domain of values of
the solution.

Lemma 2 Consider0 ≤ η ∈ C2 ∩ W 2,∞([0, T ] × R), with ∂tη ≥ 0,
and letϕ0 ∈ W 1,∞(R) satisfy (26) for allx ∈ R. Then there exists a
unique viscosity solutionϕ ∈ W 1,∞([0, T ] × R) to the Cauchy problem
corresponding to (1) with initial dataϕ0.

Proof. The key point is to get sufficient conditions to ensure that there exists
a solutionϕ to (1) such thatη2 − (∂xϕ)2 is always positive. Once this is
done, we know by Theorem 1 that it is the viscosity solution, because the
Hamiltonian is uniformly continuous on the domainη2 − p2 ≥ β2 > 0. We
proceed by approximation, and consider the equation

∂tϕε + Hε(t, x, ∂xϕε) = ε∂xxϕε,(27)

where the approximate HamiltonianHε(t, x, p) is defined in the following
way. We pick up a convex functionΨε which satisfies forε > 0:

Ψε ∈ C∞(R), Ψε(0) = ε/2, Ψε(x) = |x| for |x| ≥ ε.
Convexity implies that|(Ψε)′| ≤ 1. Then we defineHε(t, x, p) =
−√Ψε(η2(t, x) − p2). The classical theory of parabolic equations ensures
that there exists a unique solution to (27), and that it is the viscosity solution
(see e.g. [39]). Indeed,Hε is uniformly continuous on[0, T ] × R × R and
sup(t,x)∈[0,T ]×R |Hε(t, x, 0)| = ‖η‖∞, so that the first two requirements of
Theorem 1 are satisfied. Using Taylor expansions, we see that in the last
requirement, we can chooseC = ‖η‖∞ · ‖∂xη‖∞/

√
ε. Therefore we have

to ensure that under appropriate restrictions on the initial data and the refrac-

tion index, we always havēw(t) def= supx∈R

[
(∂xϕε)2(t, x) − η2(t, x)

]
≤
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−ε0 < 0 for all t ∈ [0, T ]. So, denotingv = ∂xϕε, w = 1
2(v

2 − η2), we
differentiate (27) with respect tox. We get a viscous conservation law:

∂tv − ∂x
(√
Ψε(η2(t, x) − v2)

)
= ε∂xxv.

Sincev is smooth enough, we can apply the chain rule:

∂tv − (η · ∂xη − v · ∂xv)Ψ ′
ε(η

2 − v2)√
Ψε(η2 − v2) = ε∂xxv.

We notice that∂tw = v · ∂tv − η · ∂tη, ∂xw = v · ∂xv − η · ∂xη, and
∂xxw = (∂xv)2 + v · ∂xxv − (∂xη)2 − η · ∂xxη. So, multiplying byv and
inserting these values leads to:

∂tw + ∂tη · η − v · ∂xw · Ψ
′
ε(η

2 − v2)√
Ψε(η2 − v2)

= ε
{
∂xxw − (∂xv)2 + (∂xη)2 + η · ∂xxη

}
The quantityw̄(t) therefore evolves according to:

d

dt
w̄ − ε inf

x∈R

(
(∂xη)2 + η · ∂xxη

)
≤ − inf

x∈R

(η · ∂tη).(28)

Taking into account both theW 2,∞ norm of η and the sign of∂tη gives
us the required uniform inε bound on thex-derivative ofϕε. This bound
passes to the limitε→ 0, so we are done. ��
Remark 4.The sign assumption on∂tη ensures that̄w is a nonincreasing
function of time (see (28) in the above proof). It is therefore possible to
weaken it whenT is small enough and the initial datum induces a large
enoughβ2.

Proof of Theorem 5.From Lemma 2, we have existence and uniqueness of
the viscosity solution to (1). In order to prove the existence of the duality
solution to (2), weonly have to check that the coefficienta = ∂xϕ/∂tϕ satis-
fies theL∞ andOSLCbounds.We havea = ∂xϕ√

η2−(∂xϕ)2
∈ L∞([0, T ]×R)

as a simple consequence of Lemma 2. Next, we observe that

∂xa =
η2 · ∂xxϕ

(η2 − (∂xϕ)2)
3
2
,

so thata satisfies (17) as soonasϕ is semiconcave.We just need to check that
H satisfies the assumptions of Lemma 1. But∂ppH(t, x, p) = η2

(η2−p2)
3
2

≥
η2
0

(2‖η‖∞)
3
2

≡ ζ0 > 0, and the quantitiesζ1, ζ2 defined in (23) arewell-defined
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by the assumptions onη. Therefore,ϕ(t, .) is semiconcave for allt > 0,
which allows us to conclude. ��
Remark5.Theassumptionη ∈ C2∩W 2,∞([0, T ]×R)mayseemrestrictive,
but it is actually required to defineϕ as a local minimum in the Fermat
principle according to e.g. [3].

4 Convergence of numerical approximations

Starting from here, we introduce a uniform grid defined by the two positive
parameters∆x and∆t denoting respectively the mesh-size and the time-
step.Weshall denote, for(j, n) ∈ Z×N,xj = j∆x,xj+1/2 = (j+1/2)∆x,
tn = n∆t, and

Tnj =
[
tn, tn+1

[
×
[
xj− 1

2
, xj+ 1

2

[
.

As usual, the parameterλ will refer to∆t/∆x, and we shall write for short
∆→ 0 when∆t,∆x→ 0 with a fixedλ.

4.1 Lax-Friedrichs type schemes for the eikonal equation

In this section, we want to derive a first set of properties satisfied by the
numerical approximations generated by three-point Lax-Friedrichs type
schemes on the problem (1). This class of (simple) schemes has been studied
in the context of Hamilton-Jacobi equations in e.g. [12,40]. We essentially
refer to [40] for all the precise convergence results and error estimates.

In this work, we consider a slight variant of the Lax-Friedrichs scheme
proposed in [12] by defining our numerical Hamiltonian as follows:

HLF (t, x, p−, p+) =
1
2

[
H(t, x, p−)+H(t, x, p+)− θ

λ
(p+ − p−)

]
;(29)

with 0 < θ ≤ 1. This class of numerical schemes reads

ϕn+1
j = ϕnj −∆tHLF

(
tn, xj ,

ϕnj − ϕnj−1

∆x
,
ϕnj+1 − ϕnj
∆x

)
,(30)

and we introduce the piecewise constant functionϕ∆ defined by

ϕ∆(t, x) = ϕnj for (t, x) ∈ Tnj .
We assume also that the discretization of the initial data has been properly
chosen, in order that

ϕ∆(0, .) → ϕ0 as∆x→ 0,
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strongly inL∞(R). This can be achieved by defining eachϕ0
j as the point-

wise valueϕ0(xj) or the local average ofϕ0 on [xj− 1
2
, xj+ 1

2
[.

The coefficientθ introduces some artificial viscosity in the scheme. For
θ = 0, we get the centered scheme, which is unstable, forθ = 1 the stan-
dard viscosity of the classical Lax-Friedrichs scheme. Forθ > 1, spurious
oscillations develop.

The so-called consistency property,i.e.HLF (t, x, p, p) = H(t, x, p), is
obviously satisfied. Next, introducing the same notations as in [12], we set

ϕnj = G(tn, xj , ϕnj−1, ϕ
n
j , ϕ

n
j+1),

whereG(t, x, ϕ−1, ϕ0, ϕ+1) = ϕ0−∆tHLF
(
t, x,
ϕ0 − ϕ−1

∆x
,
ϕ+1 − ϕ0

∆x

)
.

We denotep = (p−, p+) ∈ R
2. According to [40], the following regu-

larity properties on the numerical Hamiltonian are needed:

– HLF is uniformly continuous on[0, T ] × R × [−R,R]2, for allR > 0;
– sup(t,x)∈[0,T ]×R |HLF (t, x, 0, 0)| ≤ K for someK > 0;
– there existsC > 0 such that, for alls, t ∈ [0, T ], x, y ∈ R, p ∈ R

2,
|HLF (t, x,p) − HLF (s, y,p)| ≤ C(1 + |p|)(|t− s| + |x− y|);

– there existsM > 0 such that, for allt ∈ [0, T ], x ∈ R, p1,p2 ∈ (R2)2

with |p1|, |p2| ≤ R, |HLF (t, x,p1)−HLF (t, x,p2)| ≤M |p1−p2|.
ProvidedH is C1 in all the variables, most of these properties are obvi-
ously satisfied. Actually, exactly as in the continuous case, we shall have
no problem with the Schrödinger equation, and need some technicalities for
the Helmholtz equation.

The same way, the last important property, namely monotonicity, will
be easy to check by differentiation as soon as we have enough regular-
ity on H, since we wantG to be nondecreasing in each of the variables
ϕ−1, ϕ0, ϕ+1. Simple computations lead to the following statement (see
[12,40]): the scheme (29)- (30) is monotone forp ∈ [−R,R] under the CFL
condition

λ sup
(t,x)∈R×[0,T ]

|p|≤R

|∂pH(t, x, p)| ≤ θ ≤ 1
2
.(31)

Concerning the 1-d Schrödinger equation, the following result can be
directly derivedbyestimatingR in (31), since in this case,wehaveH(t, x, p)
= p2/2.

Theorem 6 (numerical convergence for the Schrödinger equation) The
functionϕ∆ generated by the Lax-Friedrichs type scheme (29)-(30) con-
verges inL∞([0, T ] × R) towards the viscosity solution of (1) under the
CFL condition:λ

(
Lip(ϕ0) + T · Lip(η)

)
≤ θ ≤ 1

2 .
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Concerning the Helmholtz equation, we have the same kind of technical
restriction on the refraction index as in the continuous case. Therefore we
state the following theorem.

Theorem 7 Under the assumptions of Theorem 5, the sequence of numer-
ical approximationsϕ∆ generated by the scheme (29)-(30) converges in
L∞([0, T ] × R) towards the viscosity solution of (1) as∆ → 0 under the
CFL condition

λ
‖η‖∞
|β̃| ≤ θ ≤ 1

2
,

and the additional stability assumption:∀(j, n) ∈ Z × N,

min
x∈[xj−1,xj+1]

η(tn+1, x) ≥ max
x∈[xj−1,xj+1]

η(tn, x)

×
(
1 + ∆t

β̃
max

x∈[xj−1,xj+1]
|∂xη(tn, .)|

)
,

(32)

whereβ̃ > 0 is the smallest number such that

(33)

inf
j∈Z

[
min

x∈[xj−1,xj+1]
η(0, x) − max

(∣∣∣∣∣ϕ0
j − ϕ0

j−1

∆x

∣∣∣∣∣ ,
∣∣∣∣∣ϕ0

j+1 − ϕ0
j

∆x

∣∣∣∣∣
)]

≥ β̃.

Remark 6.The assumptions of Theorem 5 ensure that the CFL condition is
meaningful. Notice that (33) is actually a discrete analogue of the inequality
(26) in the continuous case.

Proof of Theorem 7.The first step is to establish that, under the restrictions
(31) and (32), the inequality (33) holds true for alln ∈ N. It is therefore con-
venient to denote byv∆(t, x) = vnj for (t, x) ∈ Tnj the following “discrete
x-derivative” ofϕ∆ defined by

vnj =
ϕnj − ϕnj−1

∆x
.(34)

We prove by induction onn that the following holds:

inf
j∈Z

[
min

x∈[xj−1,xj+1]
η(tn, x) − max

(|vnj |, |vnj+1|
)] ≥ β̃ > 0.(35)

It is clear thatvnj is given by the following scheme:

(36)

vn+1
j = vnj − λ

[
HLF (tn, xj , vnj , v

n
j+1) − HLF (tn, xj−1, v

n
j−1, v

n
j )
]
.
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Because of the smoothness of(x, p) �→ H(t, x, p)we get by themean-value
theorem that, for somēxj ∈ [xj−1, xj ],

vn+1
j = vnj − λ

2

[(
H(tn, xj , vnj+1) − H(tn, xj , vnj )

)
+
(
H(tn, xj−1, v

n
j ) − H(tn, xj−1, v

n
j−1)

)]
+
θ

2
(vnj+1 − 2vnj + vnj−1) +∆t∂xH(tn, x̄j , vnj ).

We first notice that the afore equality is meaningful, because

∂xH(tn, x̄j , vnj ) = − η(t
n, x̄j)∂xη(tn, x̄j)√
η2(tn, x̄j) − (vnj )2

(37)

is well-defined under condition (33).
We introduce the classical incremental coefficients of Harten [18]:

mn
j+ 1

2
=
θ

λ
− H(tn, xj , vnj+1) − H(tn, xj , vnj )

vnj+1 − vnj
,

pn
j− 1

2
=
θ

λ
+

H(tn, xj−1, v
n
j ) − H(tn, xj−1, v

n
j−1)

vnj − vnj−1
.

The scheme on(vnj )(j,n)∈Z×N rewrites after rearrangement:

v
n+1
j =

[
1 − λ

2
(mn

j+ 1
2

+ p
n

j− 1
2
)
]

v
n
j +

λ

2
m

n

j+ 1
2

v
n
j+1

+
λ

2
p

n

j− 1
2

v
n
j−1 + ∆t∂xH(tn

, x̄j , v
n
j ).

Restriction (31) ensures that the coefficients of the termsvnj−1, v
n
j andv

n
j+1

are nonnegative, so that, multiplying the last expression by sgn(vn+1
j ), we

obtain (see also the proof of Lemma 1 in [17]):

|vn+1
j | ≤

[
1 − λ

2
(mn

j+ 1
2
+ pn

j− 1
2
)
]

|vnj | + λ
2
mn

j+ 1
2
|vnj+1|

+
λ

2
pn
j− 1

2
|vnj−1| +∆t|∂xH(tn, x̄j , vnj )|.

Now, lety ∈ [xj−1, xj+1]; we have

|vn+1
j | − η(tn+1, y) ≤

[
1 − λ

2
(mn

j+ 1
2
+ pn

j− 1
2
)
](

|vnj | − η(tn, xj)
)

+
λ

2
mn

j+ 1
2

(
|vnj+1| − η(tn, xj)

)
+
λ

2
pn
j− 1

2

(
|vnj−1| − η(tn, xj)

)
+∆t|∂xH(tn, x̄j , vnj )| +

(
η(tn, xj) − η(tn+1, y)

)
.
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Here we have used the positivity of the incremental coefficients to rewrite
η(tn, xj) as some convex combination. Now we can apply (35) and (37)
together with the inequality0 ≤ |a| − |b| ≤ √

a2 − b2 in order to obtain

|vn+1
j | − η(tn+1, y) ≤ − β̃ +∆t η(tn, x̄j)

|∂xη(tn, x̄j)|
β̃

+
(
η(tn, xj) − η(tn+1, y)

)
.

Under condition (32), the sum of the last three terms in this inequality
is clearly nonpositive, so that we have, for ally ∈ [xj−1, xj+1], |vn+1

j |−
η(tn+1, y) ≤ − β̃. The first step of this proof is completed by considering
the scheme forvn+1

j+1 .
The secondand last step of the proofmerely consists in observing that, on

the domainp < ‖η‖∞, which is stable by both the equation and its discrete
version, theHamiltonian isC2 in all the variables. Therefore, all the previous
requirements are fulfilled with, e.g.,C = ‖η‖∞(‖∂tη‖∞ + ‖∂xη‖∞)/|β̃|
andM = (‖η‖∞/|β̃| + θ/λ). The CFL restriction is a straightforward
consequence of (31). ��

4.2 The discrete semiconcavity of LxF type approximations

We want now to mimic at the numerical level the semiconcavity estimate
shown in Lemma 1 for the continuous viscosity solution. This is the main
reason why we restricted ourselves to simple schemes such as the Lax-
Friedrichs type ones, since, up to our knowledge, this property is still un-
proven for general monotone schemes even in an homogeneous context (see
for instance [8,42,25]). For somemore results concerningother schemes,we
refer to [30]. Concerning the multi-dimensional case, we refer again to Lin
and Tadmor [27]: their results hold true under strong convexity assumptions
onH, which are not necessarily satisfied in our context.

Lemma 3 Assume that, in addition to the hypotheses of Lemma 1, the fol-
lowing stronger CFL restriction holds:

(38)

λ

 sup
(t,x)∈[0,T ]×R

|p|≤R

∣∣∣∂pH(t, x, p)
∣∣∣+∆x sup

(t,x)∈[0,T ]×R

|p|≤R

∣∣∣∂xpH(t, x, p)
∣∣∣
 ≤ θ ≤ 1

2
.

Then thesequence(ϕnj )(j,n)∈Z×N generatedby thescheme(29), (30) satisfies
the discrete semiconcavity estimate

sup
(j,n)∈Z×N

[
max (0, ϕnj+1 − 2ϕnj + ϕnj−1)

]
≤ K̄∆x2(39)
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for a constantK̄ ∈ R
+ depending only onR andϕ0.

Remark 7. The forthcoming proof extends to generalC2 Hamiltonians
(t, x, p) �→ H(t, x, p) strictly convex in thep variable. The difficulty is once
again to handle the explicit dependance ofH in x without assuming a strict
convexity in bothxandp variables.Under this last stronger (andunrealistic!)
assumption, one would recover the classicalt−1 decay for homogeneous
problems (see e.g. [23,27,28]).

Proof of Lemma 3.We are actually going to work with thevnj quantities
(34). Inequality (39) becomes therefore aweak discrete OSLC propertyin
the sense of Brenier and Osher [8] (see also the early proof by Smoller in
[38], and [42]). We proceed by induction, dropping the variabletn in H for
the sake of clarity. Settingznj = (vnj+1 − vnj )/∆x, we obtain from (36):

zn+1
j =

θ

2
znj+1 + (1 − θ)znj +

θ

2
znj−1

− λ

2∆x

[(
H(xj , vnj+1) − H(xj−1, v

n
j )
)

+
(
H(xj , vnj ) − H(xj−1, v

n
j−1)

)
−
(
H(xj−1, v

n
j ) − H(xj−2, v

n
j−1)

)
−
(
H(xj−1, v

n
j−1) − H(xj−2, v

n
j−2)

)]
.

We use Taylor expansions up to second derivatives to treat each difference
inside the parentheses. The trick is to do that in such a way that the∂xH
terms can be recombined (the variablesξnj , x̄j− 1

2
, x̃j− 1

2
in the following are

intermediate points introduced by second order Taylor expansions):

H(xj , vnj+1) − H(xj−1, v
n
j ) = ∆x∂xH(xj−1, v

n
j+1)

+
∆x2

2
∂xxH(x̄j− 1

2
, vnj+1)

+∆xznj+1∂pH(xj−1, v
n
j )

+
∆x2

2
(znj+1)

2∂ppH(xj−1, ξ
n
j+1),

H(xj , vnj ) − H(xj−1, v
n
j−1) = ∆x∂xH(xj−1, v

n
j )

+
∆x2

2
∂xxH(x̃j− 1

2
, vnj )

+∆xznj ∂pH(xj−1, v
n
j−1)

+
∆x2

2
(znj )

2∂ppH(xj−1, ξ
n
j ),
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H(xj−1, v
n
j ) − H(xj−2, v

n
j−1) = ∆x∂xH(xj−1, v

n
j−1)

+
∆x2

2
∂xxH(x̄j− 3

2
, vnj−1)

+∆xznj ∂pH(xj−1, v
n
j )

+
∆x2

2
(znj )

2∂ppH(xj−1, ξ̃
n
j ),

H(xj−1, v
n
j−1) − H(xj−2, v

n
j−2) = ∆x∂xH(xj−1, v

n
j−2)

+
∆x2

2
∂xxH(x̃j− 3

2
, vnj−2)

+∆xzn
j− 1

2
∂pH(xj−1, v

n
j−1)

+
∆x2

2
(zn

j− 1
2
)2∂ppH(xj−1, ξ̃

n
j−1).

Now to get rid of the terms involving∂xH, we use the mean-value theorem
with a ζj+ 1

2
∈]xj , xj+1[:

∂xH(xj−1, v
n
j+1) − ∂xH(xj−1, v

n
j−1)

= ∆xznj+1∂xpH(xj−1, ζ
n
j+ 1

2
) +∆xznj ∂xpH(xj−1, ζ

n
j− 1

2
).

Using a similar expansion for the difference betweenvnj andvnj−2 leads to

a new expression forzn+1
j :

zn+1
j =

1
2
znj+1

(
θ − λ

[
∂pH(xj−1, v

n
j ) +∆x∂xpH(xj−1, ζ

n
j+ 1

2
)
])

+znj
(
1 − θ − λ

2

[
∂pH(xj−1, v

n
j−1) − ∂pH(xj−1, v

n
j )

+∆x∂xpH(xj−1, ζ
n
j− 1

2
) +∆x∂xpH(xj−1, ζ̄

n
j− 1

2
)
])

+
1
2
znj−1

(
θ + λ

[
∂pH(xj−1, v

n
j−1) −∆x∂xpH(xj−1, ζ̄

n
j− 3

2
)
])

−∆t
4

[
∂ppH(xj−1, ξ

n
j+1)(z

n
j+1)

2 +
(
∂ppH(xj−1, ξ

n
j )

+∂ppH(xj−1, ξ̃
n
j )
)
(znj )

2 + ∂ppH(xj−1, ξ̃
n
j−1)(z

n
j−1)

2
]

−∆t
4

[
∂xxH(x̄j− 1

2
, vnj+1) + ∂xxH(x̃j− 1

2
, vnj )

+∂xxH(x̄j− 3
2
, vnj−1) + ∂xxH(x̃j− 3

2
, vnj−2)

]
.

We introduce now the quantity we are interested in, namelyynj =
max(0, znj ). We notice thatynj ≥ znj and(ynj )2 ≤ (znj )

2. The coefficients of
the square terms are negative because of (22), and, under the stronger CFL
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condition (38), the coefficients of the linear terms are nonnegative, so that
we can replaceznj−1 , z

n
j z

n
j+1 respectively byy

n
j−1 , y

n
j y

n
j+1 and obtain an

upper bound forzn+1
j . Next, we replaceynj by

ỹnj = max(ynj−1, y
n
j , y

n
j+1),

and the same kind of argument gives once again an upper bound. In doing
so, the∂pH terms cancel, and we are left only with second derivatives ofH,
for which we have bounds (see the definitions (22)-(25) of the coefficients
ζ0, ζ1, ζ2). We end up with

zn+1
j ≤ ỹnj − ζ0∆t(ỹnj )2 − 2ζ1∆tỹnj − ζ2∆t.

In order to use monotonicity, we need to perform a slight adjustment to take
into account thea priori bounds onynj . Indeed, we have

znj ≤ |znj | ≤ 2 supj |vnj |
∆x

≤ 2M
∆x

≤ 2M
A∆t

,

where

A = sup
(t,x)∈[0,T ]×R;|p|≤M

|∂pH(t, x, p)|

+∆x sup
(t,x)∈[0,T ]×R;|p|≤M

|∂xpH(t, x, p)|,

and the last inequality follows from the CFL condition. The same inequality
holds forynj . Nowwe introduce the adjusted coefficientζ̃0 = min (ζ0, A

2M ),
so that0 < ζ̃0 ≤ ζ0, andwedefineF (y) = y−ζ̃0∆ty2−2ζ1∆ty−ζ2∆t.We
still havezn+1

j ≤ F (ỹnj ). The functionF is nondecreasing fory ≤ 1−2ζ1∆t

2ζ̃0∆t
,

which contains the range ofynj . Therefore, sincẽy
n
j ≥ 0, we haveF (ỹnj ) ≥

F (0) = −ζ2∆t ≥ 0 (sinceζ2 ≤ 0), and this impliesyn+1
j ≤ F (ỹnj ). Setting

Mn = supj∈Z ỹ
n
j , we have by monotonicityF (ỹnj ) ≤ F (Mn), and, taking

the supremum overj ∈ Z,Mn+1 ≤ F (Mn).
We conclude exactly in the same way as in the continuous case (Lemma

1), by just noticing thatF has two real rootsX− ≤ 0 ≤ X+, and the result
easily follows if we setK̄ = max(M0, X+). ��
Remark 8. From the discrete semiconcavity estimate, we can obtain, in
the same spirit as in the continuous case, a convergence estimate for the
numerical solution. Indeed, the decay of theL1 norm of the difference is
of order∆x (see [27]). This has been numerically evidenced in [17] (see
Fig. 4.1) on aBurgers equation, with amodified Lax-Friedrichs type scheme
as used in Sect. 5 (θ = 1/2). This leads to the same rate of convergence for
the Schr̈odinger equation withV = 0.
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The extension of such a proof towards generalmonotoneHamiltonians
does not seem to be straightforward. In fact, one of its crucial ingredients
is the use of a constant artificial viscosity coefficientθ, that allows to work
extensively withH for which we have all the desired properties. The case
of similar schemes with variable valuesθn

j+ 1
2
remains misty, as Godunov

type schemes which lead moreover to more intricate formulæ. The result
is likely to be true; however, we have no rigorous proof to state at this
time. Finally, upwind-type schemes (see e.g. [36]) cannot be treated within
the same approach because of the lack of smoothness of their numerical
Hamiltonians involving some discontinuous min/max functions.

To summarize, we just say now that, under the reinforced CFL con-
dition (38) (which obviously implies the standard one (31)), for both the
Schr̈odinger equation and the Helmholtz equation, we have

– the numerical solutions computed by the Lax-Friedrichs scheme con-
verge to the viscosity solution;

– they satisfy moreover a discrete semiconcavity estimate.

Lemma3directly applies for theHamiltonian deduced from theSchrödinger
equation.

4.3 Upwind schemes for the linear conservation equation

To investigate the behaviour of the numerical schemes for the linear conser-
vation equation, we will mainly rely on a previous work [16] in which very
general schemeshavebeenstudied. Thegeneral formof a linear conservative
(2K + 1)-points scheme can be written

(40)

µn+1
j = µnj − ∆t

∆x

(
< An

j+ 1
2
,µn

j+ 1
2
>R2K − < An

j− 1
2
,µn

j− 1
2
>R2K

)
µn
j+ 1

2
=
(
µnj−K+1, ..., µ

n
j+K

)
∈ R

2K

An
j+ 1

2
=
(
an
j+ 1

2 ,−K+1
, ..., an

j+ 1
2 ,K

)
∈ R

2K

In this formula,< ·, · >R2K stands for the standard scalar product inR
2K .

The scheme is completely determined as soon as the coefficientsAn
j+ 1

2
are

specified. Our convergence results, [16], are valid for anyK; however, for
practical computations, we used three- points schemes, that isK = 1. In
[16], several examples ofAn

j+ 1
2
corresponding to classical schemes have

been investigated. After comparisons between several of them, it turned
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out that the best performances were obtained with upwind discretizations.
Therefore we shall limit ourselves to such schemes in the following.

The sequenceµnj naturally gives rise to a family of piecewise constant
functionsµ∆ by setting

µ∆(t, x) = µnj for (t, x) ∈ Tnj .
When∆→ 0, this sequence eventually converges to a measure in the space
variable. Therefore, we assume thatµ∆(0, .)⇀ µ0 as∆x→ 0 in the weak
topology of measures. This is achieved for instance by definingµ0

j as the
local average ofµ0 on [xj− 1

2
, xj+ 1

2
[.

We recall that the convergence of the numerical solution generated by
such a scheme relies on the following properties (see [16] for details). First,
one has to ensure that, according to the notations of (40), the set of coeffi-
cients 

Bn
j,−1 = Cn

j,−1 = λan
j+ 1

2 ,0

Bn
j,0 = 1 + λ

(
an
j− 1

2 ,1
− an

j+ 1
2 ,0

)
Cn
j,0 = 1 + λ

(
an
j+ 1

2 ,1
− an

j+ 1
2 ,0

)
Bn
j,1 = Cn

j,1 = −λan
j− 1

2 ,1

(41)

are nonnegative. Next, the so-calledweak consistencyof the scheme has to
be established. For this, we need the piecewise constant functions: for(t, x)
∈ Tnj ,

a∆(t, x) = an
j+ 1

2 ,0
+ an

j+ 1
2 ,1
,

b∆(t, x) =
1
∆x

[
(an

j− 1
2 ,0

− an
j− 3

2 ,0
) + (an

j+ 1
2 ,1

− an
j− 1

2 ,1
)
]
.

The scheme is said to be weakly consistent ifa∆ ⇀ a in L∞(]0, T [×R)
weak) as∆→ 0, and ifb∆ ≤ α∆ for someα∆ ∈ L1(]0, T [).

The key point for all examples is of course the choice of the discretization
of ∂xϕ. According to Lemma 3, it is clearly convenient to considerconvex
combinationsof theadjacent quantities(ϕnj+1−ϕnj )/∆x. Therefore, in order
to take advantage of the discrete semiconcavity property (39), we define:

Dϕn
j+ 1

2
=

I0∑
i=−I0

?i
ϕnj+i+1 − ϕnj+i

∆x
, with ?i ≥ 0,

I0∑
i=−I0

?i = 1.(42)

This general definition permits to recover for instance the particular value
of Dϕn

j+ 1
2
proposed in [14]:I0 = 1, ?±1 = 1/4, ?0 = 1/2. But it does not

allow to recover the rough “Engquist-Osher type” upwind scheme tested in
[16]. This is not a genuine drawback since this discretizationwould generate
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spurious spikes in the neighborood of the local minimumpoints of the phase
ϕ (see Fig. 5 in [15]).

In the case of the Schrödinger equation, we propose the upwind scheme
simply defined by:

An
j+ 1

2
=
(
max (0, Dϕn

j+ 1
2
),min (0, Dϕn

j+ 1
2
)
)
.(43)

Theorem 8 (numerical convergence for the Schrödinger equation) Under
the assumptions of Theorems 4 and 6, the sequence(ϕ∆, µ∆) converges as
∆ → 0 towards the unique couple(ϕ, µ) of viscosity/duality solutions to
(21).

Proof. We have shown that the sequenceϕ∆ converges to the viscosity
solution. This implies thata∆ converges strongly inL1

loc(]0, T [×R) to a =
∂xϕ (see Theorems 1.1 and 2.2 in [9]). Next, the strong CFL condition (38)
is trivially satisfied by the Hamiltonianp2/2, so a discrete semiconcavity
estimate holds. Therefore, the second assertion in the weak consistency
definition is saitisfied withα∆ = 4K̄. Finally, the nonnegativity of the
coefficientsBn

j , C
n
j is enforced by the CFL conditions. ��

Now, concerning the Helmholtz equation, we propose

An
j+ 1

2
=

max
(
0, Dϕn

j+ 1
2

)
(ϕn+1

j − ϕnj )/∆t
,

min
(
0, Dϕn

j+ 1
2

)
(ϕn+1

j+1 − ϕnj+1)/∆t

 ,(44)

together with the preceding choice forDϕn
j+ 1

2
. This is obviously not the

unique possibility.
Wehave to ensure that theapproximationof∂tϕ remains strictly positive.

This was easy at the level of the continuous equation. Here we have to take
care of the numerical viscosity. This is the purpose of the following lemma.

Lemma 4 Under the assumptions of Theorem 5, the hypotheses (32), (33),
the stronger CFL condition (38), the coefficientsAn

j+ 1
2
are well-defined and

bounded for alln ∈ N, j ∈ Z, provided the following restriction holds:
there existsκ > η0 − β̃ ≥ 0 such that

∀j ∈ Z, HLF

(
0, xj ,

ϕ0
j − ϕ0

j−1

∆x
,
ϕ0
j+1 − ϕ0

j

∆x

)
≤ −κ.(45)

Remark 9.Conditions (33) and (45) are somehow two discrete versions of
(26). Condition (45) is a slight refinement taking into account the numerical
viscosity involved in the numerical HamiltonianHLF .

The constantsκ andβ̃ depend on the initial data and the refraction index.
For instance, provided the initial datum for the phase isW 2,∞, then (45)
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is a consequence of (26), withκ = β̃ + ‖∂xxϕ0‖∞. If the initial phase is
constant, which is the case in the computations presented in Sect. 5, (45)
holds withκ = β̃ = infx∈R η(0, x) = η0.

Proof of Lemma 4. We introduce two notations. First we set

Hn
k =

(
H(tn, xk, vnk ) + H(tn, xk+1, v

n
k+1)

)
/2,

so that, from the assumptionη ≥ η0 and (33), (35) we have for allk, n,
−η0 ≤ Hn

k ≤ β̃. Next, we shall use

Hn
j = −HLF (tn, xj , vnj , v

n
j+1) = (ϕn+1

j − ϕnj )/∆t.
We have to prove thatHn

j ≥ α > 0 for all j, n ∈ Z × N. We proceed by
induction onn, and first notice that, if (45) holds, then we have:

H0
j + inf

k∈Z

H0
k ≥ κ− η0.(46)

We claim that this inequality propagates for alln ∈ N. Indeed, we have for
anyj, k ∈ Z

2

Hn+1
j + Hn+1

k = Hn
j + Hn

k +
θ

2
Hn

j+1 − θHn
j +
θ

2
Hn

j−1

=
θ

2

(
Hn

j+1 + Hn
k

)
+ (1 − θ)

(
Hn

j + Hn
k

)
+
θ

2

(
Hn

j−1 + Hn
k

)
.

Consequently, if the inequality (46) holds true for anyn, then we get the
expected result at the next stepn + 1. Therefore, we have that, for allk,
Hn

j ≥ κ− η0 − Hn
k ≥ κ− η0 + β̃ ≡ α > 0. ��

Now we state a convergence theorem for the Helmholtz equation.

Theorem 9 (numerical convergence for the Helmholtz equation)
Under the assumptions of Theorem 5, the sequence of numerical approxi-
mations(ϕ∆, µ∆) generated by the class of schemes (29), (30), (40), (42),
(44) converges as∆→ 0 to the unique couple of viscosity/duality solutions
of the system (21), providedη andϕ∆(0, .) satisfy the requirements (32),
(33), (45), and the following CFL conditions hold:

λ
‖η‖∞
|β̃|

(
1 +∆x

‖η‖∞ · Lip(η)
β̃2

)
≤ θ ≤ 1

2
,

λ
‖η‖∞
|κ| ≤ 1

2
.(47)
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Proof. The proof is a direct consequence of Theorem 7 and Lemmas 3, 4.
First, it is straightforward to see that the CFL condition (47) ensures both
the semiconcavity requirement (38) and the nonnegativity of the coefficients
Bn
j , C

n
j (41). Next, as for the case of the Schrödinger equation, the conver-

gence ofϕ∆ ensures the weak convergence ofa∆, and, finally, using the
inequalityab − c

d ≤ 1
b (a− c)+ |c|( 1

|b| +
1
|d|), we find a constant upper bound

for b∆, namelyC = 4
|κ|(K̄ + ‖η‖∞). ��

5 Numerical results

In this section, we display standard test-cases for this kind of problems.
They all have been already studied for instance in [13–15,20,37]. We refer
the reader to these papers for any comparison with our results. All our
computations have been carried out on the same domain, namely the square
x ∈ [−1, 1], t ∈ [0, 2]. The parameters are∆x = 0.04 and∆t = 0.02.
We chosed the upper boundθ = 1

2 in (29) corresponding to Tadmor’s
modification [43] of the classical Lax-Friedrichs scheme. Finally, we took
I0 = 0, ?0 = 1 in (42).

5.1 The Schr̈odinger equation

We give two examples selected from [20]. One of them leads to smooth
solutions, while the other one is focusing, and generates three phases after
a finite time. We compute in this last case a Dirac mass.

We consider the case of the free Schrödinger equation, that isV (x) ≡
0. The data are the following: the amplitude is the same in both cases,
namelyA(0, x) = exp(−x2). The initial phases are chosenϕ(0, x) =
± ln(cosh(x)), the plus sign corresponds to the expansive case. The results
are displayed in Figs. 1 and 2.

Fig. 1. Numerical phases and amplitudes: Schrödinger equation (expansive case)
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Fig. 2. Numerical phases and amplitudes: Schrödinger equation (compressive case)

5.2 The Helmholtz equation

For all the computations in this case, the initial data are

∀x ∈ R, ϕ(0, x) ≡ 0, A(0, x) ≡ 1.

The various analytical expressions forη are taken from [15,37].

A concave lens.We simulate a concave lens by choosing the refraction
indexη the following way:

η(t, x) =


4

3 − cos (π(t− 1)/E)
if D < 1,

1 in the other cases,
(48)

where D =
(
t− 1
0.3

)2

−
( x
0.8

)2
, E = 0.3

√
1 +
( x
0.8

)2
.

Since theviscosity solution turnsout tobedifferentiable in thewhole compu-
tational domain, we end upwith a global smooth solution which is actually a
correct approximation of the infinite frequency expansion of the Helmholtz
solution [45] (see Fig. 3). The boundary conditions for the phase need a
specific treatment: we followed the method proposed in [14].

A smooth wedge.We simulate a smooth wedge by selecting the following
value for the refraction indexη:

η(t, x) = 1.5 +
1
π

arctan
(
10

√
2(t− 0.2 − |x|)

)
(49)

In this case, the growth restriction onη (32) is fulfilled for∆t small enough.
We observe on Fig. 4 a shock on the phaseϕ after a short timet0 = 0.2 and
therefore a blow-up on the amplitudes because of the highly compressive
nature of∂xϕ. In this case, the exact solution of (13) develops strong caustics
and two phases are necessary to describe it (see [37] p.79 for a ray-traced
solution).
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Fig. 3. Numerical values for the phase and the amplitude: the concave lens (48)

Fig. 4. Numerical values for the phase and the amplitude: smooth wedge (49)

A convex lens.We compute a convex lens with the following values for
the refraction indexη:

(50)

η(t, x) =


4

3 − cos(πD)
if D < 1

1 in the other cases
with D =

(
t− 1
0.3

)2

+
( x
0.8

)2
.

In this case, we observe on Fig. 5 the classical blow-up for the amplitude
of the ansatz on the shock curve of the phase. The exact infinite frequency
asymptotics for (13) develop up to five phases around the focal point(x =
0, t = 1.5) and settles with three phases behind this region (see [37] and
also [13,14]).

6 Conclusion

We presented in this paper several convergence results for a nonhomoge-
neous system one gets out of the geometric optics expansion for several
significant examples. The problem has been studied from both theoretical
and numerical viewpoints in the context of viscosity and duality solutions. It
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Fig. 5. Numerical values for the phase and the amplitude: the convex lens (50)

turns out that it is possible to give existence and uniqueness results for very
general initial data in this class of weak solutions and to establish compact-
ness for sequences of approximations generated by rather natural numerical
schemes. Some computational runs demonstrate that this approach is real-
izable and efficient in several practical situations.
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