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Summary. This paper is devoted to both theoretical and numerical study of
a system involving an eikonal equation of Hamilton-Jacobi type and a linear
conservation law as it comes out of the geometrical optics expansion of the
wave equation or the semiclassical limit for the SQihinger equation. We

first state an existence and uniqueness result in the framework of viscosity
and duality solutions. Then we study the behavior of some classical numer-
ical schemes on this problem and we give sufficient conditions to ensure
convergence. As an illustration, some practical computations are provided.

Mathematics Subject Classification (199&5M06, 65M12, 35F10

1 Introduction

The aim of this paper is to give both a theoretical and numerical study
of a one-dimensional system of two equations: a nonlinear Hamilton-Jacobi
equation coupled with a linear transport equation. Such unusual systems nat-
urally arise in two applications which will illustrate our results: geometrical
optics for the wave equation, and semiclassical limit for the &tinger
equation. Both theories involve a small parameter, and we are interested
in computing approximations of the highly oscillating solutions emanating
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in the limit when this parameter goes to zero. One of the motivations for
introducing such asymptotics is of numerical order: we replace the brute
computation of highly oscillating functions by the study of a system of

equations which takes their shape into account.

In the Schodinger case, the small parameter is already present in the
equations: itis the Planck constant. The semiclassical limit consists in study-
ing the solution generated by initial data tuned to the wavelength equal to
the Planck constant. Concerning the wave equation, we artificially introduce
a small wavelength in the inital datum. In both cases, one seeks a salution
by means of an ansatz of the foutt, z) = A(t, z) exp(ikp(t, x)), where
@ is the phase of the wavd, > 0 its amplitude, and: its (high) frequency.

We then perform an expansion in powerskadnd, by considering the first

two terms, we formally find that

—the phase is a solution to the so-called eikonal equation, which is usually

a nonlinear Hamilton-Jacobi equation;

—the amplitude satisfies a linear transport equation, the coefficient of which

is related tov ..

Notice that the main drawback of this method appears already at this level:

we replace linear equations by nonlinear ones, loosing therefore the super-
position principle.

The first, and crucial, problem to address is the notion of solution for both
equations. A naturafframework concerning the Hamilton-Jacobi equation
is the one of viscosity solutions, introduced independently byKou [23,

24], and Crandall-Lions [11]. In this class, existence and uniqueness hold
for the Cauchy problem, essentially in the class of Lipschitz continuous
functions. The gradient @b may therefore develop singularities in a finite
time, and this causes the whole ansatz to break down since the energy of the
wave (given by the square of its amplitude) concentrates on the shock lines.
A natural alternative would be to seek for multivalued phases corresponding
to crossing waves. Recently, several attempts have been made, see e.g. [3,
13-15,21,35,41], but this leads to difficult problems from both viewpoints

of theory and numerics. Notice that, apart from [15,21], these approaches
share the common feature to solve the eikonal equation using numerical
tools which have been developed in the context of viscosity solutions. In
particular, the multivalued algorithm proposed in [3,4] roughly consists in
splitting the computational domain in possibly overlapping zones called “big
rays”, in which the coupled system is to be solved.

We propose here a complete study of the corresponding system when
the eikonal equation is solved in the viscosity sense. We prove existence and
unigueness results, as well as convergence theorems for relevant numerical
methods. The context may seem limited, but the characterization of the

! atleast from the point of view of stability!
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solutions and the behaviour of the discretization are of full interest. Indeed,
on the one hand, as we mentioned before, lots of numerical implementations
are based on this framework. On the other hand, this viscosity solution
corresponds to the phase of the first arriving wave, and is therefore useful
in several applicationge(g.seismology [41]). Finally, even in this context,
severe mathematical difficulties arise, essentially because the amplitude has
to be soughtin the class of measures. As we shall see in more detail below, the
present state of the art concerning measure-valued solutions enforces us to
stick to one-dimensional problems, which is of course a severe restriction.
Two difficult questions remain open at this stage: first, how to deal with
multi-valued solutions to the Hamilton-Jacobi equation; next, generalize to
more realistic multi-dimensional situations. However, we shall show that
the example of the two-dimensional Helmholtz equation may be rewritten
in order to fall into this context.

Consequently, we plan to give precise mathematical results about exact
solutions and numerical approximations of the following model problem:

(1) at§0+7‘[(t,l‘,8x§0) = Oa
) Oupt + u(aps) = 0,

where the Hamiltoniar# (¢, z, p) is a smooth function, strictly convex in

p, anda depends usually on the partial derivatives in space and time of
Therefore, botiH anda may take different forms, and we shall give several
explicit examples in Sect. 2: our results do not pretend to whole generality.
Once we have chosen to solve (1) in the class of viscosity solutions, its
x derivative is likely to blow up in finite time (for instance when caustics
occur in geometrical optics) and the coefficiannhay become discontinu-

ous. In this casey is a measure in space; the precise meaning of a solution
to (2), and in particular of the produej:, has to be explicited. There are
very few attempts to consider this kind of problems. The approach used by
Poupaud and Rascle [33] seems attractive here because it gives an existence
result in the multidimensional case. The main drawback is that, so far, there
are no stability results available, which is of course essential in proving
convergence of numerical approximations. In this respect, a more appropri-
ate notion, calledluality solutionswas introduced in the one-dimensional
case by Bouchut and James [5] (see also Petrova and Popov [32] for some
extensions in the same context and [19]).

The key assumption to construct duality solutions is a one-sided Lips-
chitz condition (OSLC) om, which ensures that the flow is somehow com-
pressive. Under this restriction, existence, uniqueness of measure-valued
solutions can be proved, as well as stability results with respect to pertur-
bations of the coefficients. In the same context, the discretization of these
solutions has been studied by the authors in [16], and involves a discrete
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analogue of the OSLC condition. Therefore, the first step in both theoretical
and numerical studies of (1), (2) will be to obtain additional estimates on
the viscosity solutionp.

The paper is organized as follows. In a first section, we present some
examples where the system (1)-(2) naturally arises. Then, in the second
one, we recall the definitions and some stability properties of viscosity and
duality solutions, and state existence and uniqueness results for the coupled
systems of the examples. Next, we study numerical approximations and
give a convergence result towards the previously defined solutions. Both
results mainly rely upon semiconcavity properties ensured by the eikonal
equation, and by Lax-Friedrichs type schemes for its discretization. Finally,
we illustrate the results with several numerical computations inspired by
[20] for the Schédinger equation, and [15, 37] for the Helmholtz equation.

2 Presentation of the examples

2.1 The 1D Scflirdinger equation

In one space dimension, the Sgétimger equation reads

2
3) ihOWw + %amw = V(2)¥,

whereV is the corresponding potential. A nonlinear version of this equation
is obtained by replacing (z) by U’(|¥|?), whereU is a real-valued smooth
function. The parameteft is analogous to the Planck constant, and the
semiclassical limit consists in considering initial data of the form

(0, 2) = A%x) exp (;w%x)) . hoo,

where the amplitudel® > 0, and the real-valued phag® are smooth
functions independant df. Inserting the ansatz

(@) U(tz) = A(t, z) exp (;w(t,x))

in (3) yields after some easy formal computations an eikonal equatign for
and a transport equation far. More precisely, considering the coefficients
of terms of order 0 iriz, we obtain

1
(5) e+ 5(00)* + V =0,
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which can be rewritten as a Burgers equation with a source term by differ-
entiating inx and settingy = 9,.¢:

’1)2

(6) v + 0y <2> + 0,V =0.

Next, the order one terms lead to the following equation:
1
O A +v0, A+ iAamv =0.

Multiplying this equation by2A4 and setting: = A? leads to a linear con-
servation law for the energy:

(7) O+ Ox(ap) =0, where a(t,z) = v(t,x) = Opp(t, x).

Therefore, considering the system constituted by the eikonal equation (5)
and the conservation equation (7), we are exactly in the afore described
context, with#{ (¢, z, p) = p?/2 anda = 9. Sinced, ¢ is a solution to the
Burgers equation, we know that discontinuities can develop in finite time,
even starting from smooth initial data.

Notice that we can rewrite these equations in a different way, by intro-
ducing new variablep = A%, andg = A%v = pv. This yields after a few
straightforward computations

(8) Op+0:0=0, g+ 0:(vq) + pdV =0.

In particular, ford,. V' = 0, i.e.for the free Schisdinger equation, we recover

the pressureless gases system, which has been widely studied (see [7] for
duality solutions, and the numerous references quoted there). These equa-
tions are usually interpreted as the macroscopic behaviour of the so-called
sticky particles: when two particles collide, they stick together, forming a
new particle. This interpretation fails obviously in the Safinger case,
since the paths must cross each other here. When this occurs, the method
breaks down, and actually, the unknowbecomes a measure in space.

2.2 The wave equation

The wave equation in an inhomogeneous medium endowed with a variable
refraction index;(x) > 0,z € R%, is

1
- Au=0.
®) TR

The light speed in the medium igz) = 1/n(z) provided the velocity
in the vacuum is normalized to 1. We are interested in highly oscillating
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solutions, with frquencyt /<, so we insert in (9) the same ansatz as for the
Schibdinger equationu(t, z) = A(t, z) exp(ip(t, z)/c). Once again, we
perform an expansion in powersafAnnihilating thes =2 term gives rise to
the eikonal equation, while the! term leads to a linear transport equation
for A. Notice that, if one wishes to compute higher order terms, the function
A itself should be written as a power seriegin

The eikonal equation reads here

(10) (Orp)? — [Vel? =0

1
n(x)?
so that the Hamiltonian i((¢, z,p) = £p/n(z). In its whole generality,
the transport equation is given by;(stands here fog%)

1

We shall be interested in two simple cases, namdely 1 and radial solu-
tions, where), u, A andy depend only om = |z|.

In the one- dimensional case, the eikonal equation reduces to the pair of
linear equation®;p+ e )89090 = 0. This readily gives the expression of the
time derivative ofp in terms of the space derivative. Plugging these results
into the transport equation (11) leads to

(12) O A+ 1amA — éaw <1> = 0.
n 2 n

For both choices of the sign, this equation can be rewritten in a conservative
form. Namely, for the minus sign, we multiply A to obtain the conser-
vation of the energyd?, and for the plus sign, we get the conservation of
1/A? by multiplying by —2/A3. Once again, we recover a system in the
form (1)-(2), with

o H(t,z,p) = p/n(x), a(t,r) = 1/n(z) andu = 1/A? for the plus sign;
o H(t,z,p) = —p/n(x), a(t,z) = —1/n(x) andu = A? for the minus
sign.

In this particular case, providegis a smooth function, the conserva-
tion equation we obtain has a smooth coefficient, so that no singularities
appear. The notion of duality solutions allows to consider nonsmgsth
For instance, considerin® (¢, z,p) = —p/n(x), p = A%, anda(t,z) =
—1/n(x), if n is only assumed to be bounded and one- sided Lipschitz
continuous, the results in [6,16] apply, so that

e there exists a unique pair of duality solutiofis, 1) of the differential
Cauchy problem;
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e a broad class of conservative numerical schemes converge to these weak
solutions under some explicit CFL restrictions.

Ford > 1, and radial behaviour, the computations are almost identical,
and make use of the equalitf,u(|z|) = Oppu — %&u. The eikonal

equation boils down to the paifp+—+09,¢ = 0, and the transport equation

) n(r) ="
is here

1 1 1d-1
8tAi8rA+<—6ri ):O.
2 n n r
Once again, we can obtain two conservation laws from this equation. For
the plus sign, we multiply by-2/(r%~1a3) to get

1 1
% <d—12> 6 <nd—1z> =0

and for the minus sign, multiplying ®-¢~1a leads to

Oy (rd_1a2) — Oy <?171"d_1a2> =0.

In the case where the refraction indeiz) is smooth, no measure-valued
solutions occur as fafl = 1. However, there is a geometrical singularity,
which is clearly evidenced even for a constgnindeed in this case, the

transport equation shows that the quantity '«? is conserved inside ray

tubes, and therefore the energy diverges likel /~¢~! at the origin.

2.3 The 2D Helmholtz equation

If one looks for planar wave solutiongt, x) = u(x) exp(ikt) to the wave
equation (9), one is led to find a steady functiersatisfying the scalar
Helmholtz equation:

(13) Au+En?u =0,

We shall consider here the two-dimensional equation, and sefz;, x2).
Searching for solutions oscillating with frequenky it is natural to use
the same kind of ansatz as previously, namely1, z2) = A(x1,x2)
exp(ikp(x1,22)). Cancelling the first two terms in the power expansion
in k leads to the following stationary system:

(14) [Vo| =n, 2VA - Vo + AAp = 0.

We refer the reader to e.g. [1,22,29, 34,45] for details on this derivation.
The stationary transport equation fdrleads to a linear conservation law
for the energyA?:

(15) V- (A%Vp) = 0.
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We aim at rewriting this system in such a way that it matches the previously
defined context, in order to apply the aforementioned theoretical results we
are about to prove. An important obstruction to treat (14) as it stands is
indeed the handling of a boundary-value problem within a class of measure-
valued solutions. One alternative is then to select a privileged direction of
propagation in (14), says, and to consider it as a “time— like” direction.
This paraxial-type assumption compels us to asséme > 0 in the do-

main of interest, but this is of common use in several applications including
seismology (cf e.g. [41]) or computations of lenses. Therefore, we rewrite
the eikonal equation the following way:

ac290 \/77 - x190 2=0

Then, it is meaningful to introduce a quantity= A2.9,, ¢ and the conser-
vation equation (15) rewrites:

Oz, .
8I2H+axl (/‘I’ ax2gp> -

We are once again in the general context if we setas a “time” variable,
and as a “space” one = z;: this leads toH (¢, z,p) = — \/n?(t,x) — p?
anda(t,xz) = 6“"7(”)). Notice that, in contrast with the wave equation, the

) = gl . .
Hamiltonian depends on the “time” variable.

3 Weak solutions to the differential problem
3.1 An appropriate notion of solutions

The resolution of the Cauchy problem (1)-(2) we have in mind involves two
different notions of solutions: viscosity solutions for the inhomogeneous
eikonal equation and duality solutions for the linear conservation equation.

For the reader’s convenience, we recall here both definitions, as well as
basic results which are to be used in the sequel. We begin with viscosity
solutions, which were introduced under that name by Crandall and Lions,
[11], see also Krikov's papers [23,24].

Definition 1 LetH € C([0,T] x R x R). Afunctiony € C(]0,T] x R) is
a viscosity solutionof (1) if for everyy € C*°(]0,T] x R), there holds:

— if (¢ — x) has a local maximum point &ty, z¢) €]0, T[xR, then:
Iex(to, zo) + H(to, w0, Oz X (to, 20)) < 0;
— if (¢ — x) has a local minimum point gt, zo) €]0, T[xIR then

O¢x (to, xo) + H(to, xo, Oz X (to, x0)) >
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If moreover,p € C([0,7] x R) and p(0,z) = °(x), an initial datum
prescribed forr € R, theny is a viscosity solution of0, 7] x R.

We summarize here several existence and regularity results for viscosity
solutions. Proofs, more detailed and precise results are to be found in [2, 10,
11,39,40].

Theorem 1 Assume that the Hamiltonig in (1) satisfies:

(i) H is uniformly continuous of0, 7] x R x [—-R, R] forall R > 0;
(”) Sup[O,T}XR ’%(tvxa 0)| =M< —+00;
(ii) There exists a constarit > 0 such that, foralt € [0, 7], z,y,p € R,

|H(t,z,p) — H(t,y,p)| < C (1 +[p|) |z -yl

Considerp(0,.) = ¢ € Lip N BUC(R): there exists a unique viscosity
solutiony € BUC([0,T] x R), which belongs to Lig0, 7] x R).

Remark 1.Actually, we have forang <t <T

(16)  Lip(p(t, ) < Lip(¢") + Ct(1+ sup Lip(p(r,.))).
o<7<T

We now turn to the notion of duality solutions, which were introduced
by Bouchut and James in [5,6] to solve in the context of measures the
linear conservation equation (2) when the discontinuous coeffigiisn >
bounded and satisfies the one-sided Lipschitz condition (OSLC)

(17) Oza < a, with o € L'(j0, 7).

Recall that duality solutions are defined as weak solutions, the test functions
being Lipschitz solutions to the backward linear transport equation

(18) O+ a(t,2)0,p =0, p(T,.)=p" € Lip(R).

A formal computation shows thé& (pu) + 9. [a(t, x)pu] = 0, and thus

(19) - < /R p(t, 2)u(t, das)) —o,

which defines the duality solutions for suitalpfe. It is quite classical that

(17) ensures existence for (18), but not uniqueness, which is of great impor-
tance here to obtain stability results. However, existence of solutions to (18)
was already used in the context of nonlinear conservation laws, to obtain
uniqueness of solutions (see Oleinik [31]), or error estimates (see Tadmor
[44]).

Therefore, the corner stone in the construction of duality solutions is

the introduction of the notion aieversiblesolutions to (18). A complete
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statement of the definitions and properties of reversible solutions would be
too long in the present context, so that merely a few hints are giverc Let
denote the set of Lipschitz continuous solutions to (18), and define the set
of exceptional solutions

E= {p € £ such thap® = 0}.

The possible loss of uniqueness corresponds to the case Wheraot
reduced to zero.

Definition 2 We say thap € L is areversible solutionto (18) ifpis locally
constant on the set

V. = {(t,m) € [0,T] x R; 3p, € &, pelt,x) # o}.

Consider the example(x) = — sgnx). Then we have), = {(t,z) €
[0,T] x R; |x| < T — t}, the solution is defined by the characteristics
outsideV,, and we choose to prescripé, z) = p(0) insideV..

This definition leads quite directly to the uniqueness results of [5, 6]. It
turns outthatthe class of reversible solutions is also stable by perturbations of
the coefficient, in a sense precisely stated in Theorem 2 below. The proof
of this result makes use of more handable characterizations of reversible
solutions, involving especially monotonicity, but we shall not need here
these precise statements.

Theorem 2 (Bouchut, James [5, 6])

1) Letp® € Lip,,.(R). Then there exists a uniqgec L reversible solution
to (18) such thap(T,.) = p?.

2) Let(ay) be a bounded sequence I7°([0, 7] x R), with a,, — a in
L>([0,T] x R) — w*. Assume&,a, < ay(t), where(ay,) is bounded in
L*(]0,T]), 9za < a € LY(J0,T]). Let (pl) be a bounded sequence in
Lip,,.(R), pT — pT, and denote by, the reversible solution to

Opn + anOxpn, =0 In]0, T[xR, pn(T,.) = pg.

Themp,, — pinC([0,T] x [—R, R]) foranyR > 0, wherepis the reversible
solution to

Op + adyp =0 In]0, T[xR, p(T,.)=pt.

We now restrict ourselves to thogis in (19): more precisely, we state the
following definition.
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Definition 3 We say thati € Sy = C([0, T]; Mioe(R) — 0(Myee, Ce)) is
a duality solution to (2) if for any0 < 7 < T', and anyreversible solution
p to (18) with compact support in, the functiort — /p(t,:v)u(t, dzx) is
R
constant orf0, 7].

We shall need the following facts concerning duality solutions.

Theorem 3 (Bouchut, James [5, 6])

1) Givenu® € M;,.(R), under the assumptions (17), there exists a unique
i € S, duality solution to (2), such that(0, .) = u°.

2) There exists a bounded Borel functigrcalleduniversal representative

of a, such thatz = a almost everywhere, and for any duality solutjen

O + Oz (ap) =0 in the distributional sense.

3) Let(a,) be a bounded sequence i5°(]0, T[xR), such thata,, — a

in L>=(]0, T[xR) — wx. Assum&,a,, < ay,(t), where(ay,) is bounded in
LY(]0,T[), 8,a < o € L'(]0,T]). Consider a sequendg,) € Sy of

duality solutions to

Opin, + Oz (anpn) =0 in 0, T[xR,

such thatu,, (0, .) is bounded inM; o (R), and s, (0,.) = p° € Moe(R).
Thenu,, — pin Sy, wherep € Sy is the duality solution to

Ot + Op(ap) =0 in 0, T[xR, 1(0,.) = p.
Moreover,a,, i, — au weakly inM;q.(]0, T[xR).

The set of duality solutions is clearly a vector space, butit has to be noted
that a duality solution is na priori defined as a solution in the sense of
distributions. The produciu is defineda posteriori by the equation itself
(see assertion 2 in the above theorem).

3.2 Existence and unigueness results

In this paragraph, we turn to the Cauchy problem associated to (1)-(2):
take any pair of initial datdu®, ) € M(R) x W1(R), such that a
semiconcavity estimate holds for somes R,

(20) max (0, Dz 0°) < v < 400,

and consider

oo+ H(t,x,0,0) =0 . ©(0,.) = ¢°
(21) {82u+8x(a(t,x)u) _ o N0, 7[R, { S0
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We wish to give additional conditions on the parameters in order to ensure
the existence and uniqueness of a pair of viscosity/duality solutions to (21)
in the context of the examples presented in the previous section. The proof
consists essentially in three steps:

— to establish existence and uniqueness for the viscosity solution of the
Hamilton-Jacobi equation;

— to ensure that a semiconcavity estimate of the form (20) holds true for
anyt > 0;

— to prove that this semiconcavity implies the OSLC conditiom pmhich
gives existence and unigueness of the duality solution to the conservation
equation.

The key point here is of course the second one, and it is worth giving
here a general lemma.

Lemma 1 Consider a Hamiltoniar# satisfying the assumptions of The-
orem 1, and an initial datunp® € W1°(R) such that (20) holds true.
Assume in additioft. of classC?, with

(22) OppH > Go > 0,

and, for allR > 0,

inf OupH(t, x,p) > —00,
(23) (t,x,p)€[0,T]xRx[—R,R]
inf OpaH(t, x,p) > —00.

(t,,p)€[0,T] xRx [~ R,R]
Then the viscosity solutiopnsatisfies the following semiconcavity estimate:
(24)  Vte€[0,T], max(0,dueip(t,.)) < max(I,7) < +oo,
wherel" is a constant depending di, and~ is defined by (20).

Remark 2. Such kind of semiconcavity estimates already exist in the lit-
erature, for Hamiltonians convex in thevariable, see e.g. Kakov [23],

or Lions [28]. We deal here with Hamiltonians depending also upon the
time and space variables. This was indicated by Lin and Tadmor [27], even
for multidimensional Hamiltonians, but with a convexity assumptiom,in
which we drop here.

Proof of Lemma 1It is known that existence and uniqueness hold for
smooth viscosity solutions to the regularized equati@st + H(t, z, 0,¢°)

= e0,,°, and thaty® converges towards the viscosity solutigrio (1)
whene goes to zero (see e.g. [39]). Therefore we need to prove the above
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estimate uniformly ire for ¢°. Differentiating twice the viscous equation
with respect tar and setting: = 9,.,¢° leads to:

Orz + OppH(t, x, 0, 9%) 2% + 200y H(t, @, 00 %) 2+
Opa H(t, z, 0p9%) + OpH(t, x, 029 )0p2 = €0pg2.

From (16), we deduce that, for some const&htlepending only upon the
initial datum¢? andT’, there holdg|9,.¢°||. < M. By (23), the quantities

= min (0, inf O H(t, 2, 7

(25) “ . ( (tvx)e[ov%]XRslp\SM pHlt p))
=min (0 inf O, ¢z 7

(3 = min 7(t,m)€[0,1]><R;|p\§]Vf JH(t, p))

are well-defined and nonpositive. Hene&, = max (0, 9., ¢°) satisfies:
Oz ™+ Co(27)? +2G2" + G+ OH(t 2, 8,9%)0p2 ™ < €027,

andz+(t) & supger 27 (t,x) is a subsolution to the following Ricatti
differential equation:

d

az* + ¢ (N2 + 202" + G =0.

Since(y > 0 and(y, (> < 0, the roots of(o X2 + (1 X + ¢ are real, and
we denote byl the largest one. Therefore we get immediatety(t) <
max(z7(0),I"), and we are done. O

Remark 3. As a consequence of this proof, following again [27], one can
obtain a convergence rate @f towardsy, provided the initial data are in
L'(R). More precisely, we havefis°(t,.) — o(t, Mz w)y = C(T)e for all
0<t<T.

Notice that this lemma does not apply to the Hamiltonian of the wave
equation, since theé,,X = 0. But in this last case, the eikonal equation
is therefore a linear transport equation, so that the semiconcavity of the
solution is the same as the one of the initial data. We turn now to specific
results for our examples.

Theorem 4 (The Schadinger case) Under the semiconcavity requirement
(20) ony® € WH>(R), there exists a unique couple of viscosity/duality
solutions to the Cauchy problem (21).

Proof. Here?#(t,x,p) = p?/2 satisfies all the requirements of Theorem

1 and Lemma 1. Hence there exists a unique viscosity solution to (1), and
the semiconcavity propagates. Since= 0., this means exactly that we
have the OSLC property, so that existence and uniqueness hold in the duality
sense for (2). O
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The analogous result for the Helmholtz equation is slightly more diffi-
cult, since the Hamiltonia®{ (¢, z, p) = —/n?(t, z) — p? is not uniformly
continuous. The final result is:

Theorem 5 (The Helmholtz equation)
Considern € C2 N W?2>2([0,T] x R), with0 < 19 < n anddn > 0.
Assumey’ € W1(R) satisfies (20) and, for alt € R,

(26) (n0.0))" = (2@ £0))" = 8 > 0,

Thenthere exists a unigue couple of viscosity/duality solutions of the Cauchy
problem (21).

We begin by a lemma ensuring existence and uniqueness of the viscosity
solution. The corner stone is actually to prove that (26) propagates for all
t > 0, so thatH remains uniformly continuous on the domain of values of
the solution.

Lemma 2 Consider0 < n € 0?2 N W?2>2([0,7] x R), with ;n > 0,
and let® € WH°(R) satisfy (26) for allz € R. Then there exists a
unique viscosity solutiop € W1°([0,7] x R) to the Cauchy problem
corresponding to (1) with initial data°.

Proof. The key point is to get sufficient conditions to ensure that there exists
a solutiony to (1) such that)? — (0,¢)? is always positive. Once this is
done, we know by Theorem 1 that it is the viscosity solution, because the
Hamiltonian is uniformly continuous on the domajh— p? > 32 > 0. We
proceed by approximation, and consider the equation

(27) Orpe + Ha(t7 z, 89:(;05) = €054Pe,

where the approximate Hamiltonigd. (¢, x, p) is defined in the following
way. We pick up a convex functiof. which satisfies foe > 0:

V. € C*[R), ¥.(0)=¢/2, Y. (zx)=|z|for|z|>e.

Convexity implies that|(¥.)'| < 1. Then we defineH.(t,z,p) =
—/W.(n2(t, z) — p?). The classical theory of parabolic equations ensures
that there exists a unique solution to (27), and that it is the viscosity solution
(see e.g. [39]). Indeed. is uniformly continuous o0, 7] x R x R and

SUP (¢ z)efo,1)xk | He(t, 7,0)| = |1, sO that the first two requirements of
Theorem 1 are satisfied. Using Taylor expansions, we see that in the last
requirement, we can chooéé= |||« - ||027]/s/+/€. Therefore we have

to ensure that under appropriate restrictions on the initial data and the refrac-

tion index, we always have (t) % sup, g | (0ap:)2(t,x) — nQ(t,x)} <
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—eo < O forallt € [0,7]. So, denoting = 9,0, w = 3(v? — n?), we
differentiate (27) with respect to. We get a viscous conservation law:

o — <\/£P (t,x) — v2)) = €00.
Sincev is smooth enough, we can apply the chain rule:

(- e — v - D)WL (n* — v?)
8757) —
WS(UZ - 7)2)

= €0,0.

We naotice thathyw = v - Qv — 1 - On, Opyw = v - Opv — 1 - 1, and
Oz = (0p0)? 4+ v - Qv — (0zn)? — 1 - O SO, multiplying byv and
inserting these values leads to:

v (n? —v®)
P (n? — v?)
— { B0 — (0.0 + (0un)* + 1 Ouur}

The quantityw(t) therefore evolves according to:

yw +0m -1 —v - Gpw -

d _ ) 9 )
— ) — . < — .
(28) prl 8;2& ((@m) +1 3mn) < ;relﬂfg(n om).

Taking into account both th&/2> norm ofn and the sign ob;n gives
us the required uniform ia bound on ther-derivative ofy.. This bound
passes to the limi¢ — 0, so we are done. O

Remark 4The sign assumption ofyn ensures thai is a nonincreasing
function of time (see (28) in the above proof). It is therefore possible to
weaken it whenl" is small enough and the initial datum induces a large

enoughs?.

Proof of Theorem 5From Lemma 2, we have existence and uniqueness of
the viscosity solution to (1). In order to prove the existence of the duality
solution to (2), we only have to check that the coefficiert 0,.¢/0;p satis-

fies theL>* and OSLC bounds. We hawe= \/% € L>(]0,T]1xR)

as a simple consequence of Lemma 2. Next, we observe that

o 772 * Oz
=1 =F
(772 - (am¢)2)§
so that: satisfies (17) as soon @ass semiconcave. We just need to check that

H satisfies the assumptions of Lemma 1. BpyH (¢, z,p) = " ’722)5 >
n“—p=)2
Ul = (p > 0, and the quantitie§, (» defined in (23) are well-defined

NG

(2lnlloo)
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by the assumptions om Thereforep(t,.) is semiconcave for all > 0,
which allows us to conclude. O

Remark 5The assumption € C2NW2°([0, T xR) may seem restrictive,
but it is actually required to defing as a local minimum in the Fermat
principle according to e.qg. [3].

4 Convergence of numerical approximations

Starting from here, we introduce a uniform grid defined by the two positive
parametersAx and At denoting respectively the mesh-size and the time-
step. We shalldenote, fof, n) € ZxN,z; = jAz, 1,10 = (j+1/2)Az,
t" = nAt, and
n __ n gn+1

N e R o
As usual, the parametarwill refer to At/ Az, and we shall write for short
A — 0whenAt, Az — 0 with a fixed\.

4.1 Lax-Friedrichs type schemes for the eikonal equation

In this section, we want to derive a first set of properties satisfied by the
numerical approximations generated by three-point Lax-Friedrichs type
schemes on the problem (1). This class of (simple) schemes has been studied
in the context of Hamilton-Jacobi equations in e.g. [12,40]. We essentially
refer to [40] for all the precise convergence results and error estimates.

In this work, we consider a slight variant of the Lax-Friedrichs scheme
proposed in [12] by defining our numerical Hamiltonian as follows:

(29) HYF (ta,p™,pT) = %[H(t,w,p*) +H(t,z,pt) - g(ﬁ —p’)];

with 0 < 8 < 1. This class of numerical schemes reads

no_ on noo_ N
(30) @l = gl — AtHEF <tn7$j; & Afj‘l, @]HAQ: & > :

and we introduce the piecewise constant functishdefined by
©A(t, x) = oy for (t,z) € T}".

We assume also that the discretization of the initial data has been properly
chosen, in order that

©2(0,.) = ¢ asAz — 0,
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strongly inL>°(R). This can be achieved by defining ea@?\as the point-
wise valuep? () or the local average af” on [z 1,51

The coefficient introduces some artificial viscosity in the scheme. For
6 = 0, we get the centered scheme, which is unstableq fer1 the stan-
dard viscosity of the classical Lax-Friedrichs scheme.&or 1, spurious
oscillations develop.

The so-called consistency propeiitg. H-¥ (¢, 2, p, p) = H(t, z, p), is
obviously satisfied. Next, introducing the same notations as in [12], we set

90.1]1 = G(tn7 Zj, @?—17 90_1]17 90?4»1)7

whereG (t, z, -1, po, p+1) = Po— AtHLF(t T, g00£90 : @HA ‘PO)

We denotep = (p—, pT) € R2. According to [40], the following regu-
larity properties on the numerlcal Hamiltonian are needed:

— HEF is uniformly continuous o0, 7] x R x [~ R, R]?, for all R > 0;

— SUD(t )efo, 1<k [HY (£, 2,0,0)| < K for someK > 0;

— there existaC > 0 such that, for alls,t € [0,7], z,y € R, p € R?,
[HEF (2, 2, p) — H (5,9, p)| < C(L+ [P))(|t = s| + [ — yl);

— there exists\/ > 0 such that, for alt € [0, 7], z € R, p1,p2 € (R?)?
with [p1], [p2| < R, [HM(t,2,p1) —H" (¢, 2, p2)| < M|p1—p2|.

Provided? is C' in all the variables, most of these properties are obvi-
ously satisfied. Actually, exactly as in the continuous case, we shall have
no problem with the Sckidinger equation, and need some technicalities for
the Helmholtz equation.

The same way, the last important property, namely monotonicity, will
be easy to check by differentiation as soon as we have enough regular-
ity on #, since we want; to be nondecreasing in each of the variables
v—1, 0, p+1. Simple computations lead to the following statement (see
[12,40]): the scheme (29)- (30) is monotonegos [— R, R] under the CFL
condition

1
(31) A sup  |OpH(t,z,p)| <0<~
(t,2)ERX[0,T] 2

Ip|<R

Concerning the 1-d Scdinger equation, the following result can be
directly derived by estimating in (31), since in this case, we ha¥gt, z, p)
=p*/2.

Theorem 6 (numerical convergence for the Sékiinger equation) The
function p? generated by the Lax-Friedrichs type scheme (29)-(30) con-
verges inL*>°([0, 7] x R) towards the viscosity solution of (1) under the

CFL condition:)\(Lip(goo) +T- Lip(n)) <6<
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Concerning the Helmholtz equation, we have the same kind of technical
restriction on the refraction index as in the continuous case. Therefore we
state the following theorem.

Theorem 7 Under the assumptions of Theorem 5, the sequence of numer-
ical approximationsy? generated by the scheme (29)-(30) converges in
L*>(]0,T] x R) towards the viscosity solution of (1) a — 0 under the

CFL condition

s Illoo <9< }7
5] 2
and the additional stability assumptiovi(j,n) € Z x N,

min  p(t""h ) > max  p(t",z)

r€[zj—1,2541] r€[zj—1,2j41]

(32)
X <1 + % max _|9yn(t", )’) )

TE€[T;—1,7541]

where3 > 0 is the smallest number such that

(33)
0 0 0 0
. ) ¥~ ¥i-1 Pit1 — Py ~
£ 0,z) — J J | J > 3.
om0 7O max( Az Az =0

Remark 6.The assumptions of Theorem 5 ensure that the CFL condition is
meaningful. Notice that (33) is actually a discrete analogue of the inequality
(26) in the continuous case.

Proof of Theorem 7The first step is to establish that, under the restrictions
(31) and (32), the inequality (33) holds true foralE N. Itis therefore con-
venient to denote by (¢, z) = v} for (t,z) € T} the following “discrete
z-derivative” of o2 defined by

Y — i
4 n=1J TJ--
(34) vj s
We prove by induction om that the following holds:

35) inf min t", x) — max (|[v}], |0} > 3> 0.
@) inf | min (") - max (ol )| >

Itis clear that?! is given by the following scheme:

(36)

n+l _ n LF yn n o,n LF yn n n
v _Uj—)\[H (t" 2y, v, vfy) — HH (¢ ,ﬂﬂj—lavj—hvj)}'
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Because of the smoothnesgofp) — H(t, x, p) we get by the mean-value
theorem that, for some; € [z;_1,z;],

n n A n n n I
Uj+1 :'Uj — §[<H(t ,x]’,’l}j+1) _H<t ,.’L’j,Uj ))

+(H(t",xj_1,v?) - H(t”ﬁj—lv”?—l))}

0
+§(v;7’+1 =207 + i) + At H(t", T4, 07).

We first notice that the afore equality is meaningful, because
n(t", z;)0:n(t", ;)

VP E) — ()2
is well-defined under condition (33).

We introduce the classical incremental coefficients of Harten [18]:
0 ’H(t”,xj,vﬁ_ﬂ *’H(t”,xj,v;?)

(37) D H(t", 7, 00) = —

m. 1 = — — y
J+3 no—
2 A Vil —U;
n 0 H(t”,xj_l, ;L) — H(t”,xj_l,v;”_l)
Pji =~ 7+ :
2 1)] — Uj 1

The scheme Oﬁv”)(j,n)ezm rewrites after rearrangement:

n

A A
n+1 _ n
=13 ma+%+ - 1)]” + oML vin

+

A
2 2

p;.L 1 v 1+At8 H(" &, 05 ™).

Restriction (31) ensures that the coefficients of the terfns, v’ andv?,

are nonnegative, so that, multiplying the last expression byﬂ(jﬁ , we
obtain (see also the proof of Lemma 1 in [17]):

A A
+1
il 1= Sty )| 151+ Sl
A
5P+ AHOH " 30|
Now, lety € [a:j_l,xj+1], we have
A
1 1
=) < L= Sy )] (1 2,)
A
w5 ([l = ", 2;))
)\ n n n
+§pj,%(|vj—1| —n(t 7933‘))
+AUOH ", 35,0} + (n(t", ) = (™, p)).
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Here we have used the positivity of the incremental coefficients to rewrite
n(t",x;) as some convex combination. Now we can apply (35) and (37)
together with the inequality < |a| — |b] < Vva? — b? in order to obtain

~ _ | Oen(t™,
I () < — o At e, zy) 1220

+ (", z5) = (" y)) .

Under condition (32), the sum of the last three terms in this inequality

is clearly nonpositive, so that we have, for@h [z;_1,z;11], \v;?“\ —
("t y) < — (3. The first step of this proof is completed by considering
the scheme for /.

The second and last step of the proof merely consists in observing that, on
the domairp < ||n]|~, Which is stable by both the equation and its discrete
version, the Hamiltonian i62 in all the variables. Therefore, all the preyious
requirements are fulfilled with, .95 = [|9/|cc (|0s1l0c + [|027llo0) /15|
and M = (||nll/|8] + 6/X). The CFL restriction is a straightforward
consequence of (31). a

4.2 The discrete semiconcavity of LxF type approximations

We want now to mimic at the numerical level the semiconcavity estimate
shown in Lemma 1 for the continuous viscosity solution. This is the main
reason why we restricted ourselves to simple schemes such as the Lax-
Friedrichs type ones, since, up to our knowledge, this property is still un-
proven for general monotone schemes even in an homogeneous context (see
forinstance [8,42, 25]). For some more results concerning other schemes, we
refer to [30]. Concerning the multi-dimensional case, we refer again to Lin
and Tadmor [27]: their results hold true under strong convexity assumptions
on#, which are not necessarily satisfied in our context.

Lemma 3 Assume that, in addition to the hypotheses of Lemma 1, the fol-
lowing stronger CFL restriction holds:

(38)
1
A sup 3p’H(t,x,p)‘ + Ax  sup axp’i-[(t,x,p)‘ <6< -
(t,2)€[0,T] xR (t,2)€[0,T] xR 2
IpISR Ip|<R
Thenthe sequeno@e?%mezm generated by the scheme (29), (30) satisfies

the discrete semiconcavity estimate

(39) y s)ug . [max (0,741 — 207 + (P?—l)} < K Az?
J,m)ELX
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for a constantk’ € R* depending only o and °.

Remark 7. The forthcoming proof extends to genet@t Hamiltonians
(t,z,p) — H(t,x,p) strictly convex in the variable. The difficulty is once
again to handle the explicit dependancéin x without assuming a strict
convexity in bothe andp variables. Under this last stronger (and unrealistic!)
assumption, one would recover the classicdl decay for homogeneous
problems (see e.g. [23,27,28]).

Proof of Lemma 3.We are actually going to work with thﬂ; quantities
(34). Inequality (39) becomes thereforgvaak discrete OSLC properiy

the sense of Brenier and Osher [8] (see also the early proof by Smoller in
[38], and [42]). We proceed by induction, dropping the variabla H for

the sake of clarity. Setting} = (v}, — v})/Az, we obtain from (36):

w1 _ 0, Wb
Zj +1 = 5 1 + (1 — Q)Z] + 52’]-_1
)\ n n
— oo | (s v7) = M)
o+ (Hlay, 0f) = Hlgo, 7))
- <H(%‘—17 vf) — H(zj—2, 0?71))
(@m0, v)) = Mo, v)0) ) |.

We use Taylor expansions up to second derivatives to treat each difference
inside the parentheses. The trick is to do that in such a way thdl,tHe
terms can be recombined (the variabj?sﬁcj_l, 55]._1 in the following are

2 2

intermediate points introduced by second order Taylor expansions):

H(a:j, U;L+1) - 7‘[(1’]‘_1, ’U;L) = Az 8;5?'[(17]‘_1, U?’+1)
Az? B n
+Ax 274 OpH(Tj-1,07)

A2 n "
+T(Zj+1>2app7'[<mj—la§j+1)7

H(wj,v)) — H(zj-1,v]1) = Az OH(wj-1,0])

Az? _ n
—l—TamH(xj_%,vj)
+Ax 27 OpH(2j-1,v]—1)

j
Ax?

+T(Z§L)2app7-l(xj—1v gjn)’
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s, 07) = H(wj,0)0) = AvOH (@)1, v)
Az?
+ =5 OuaH(T;_3,07)
+Ax z;?apH(xj_l, v )
2

Az, n
+T(Zj )QappH(xj—hfj ),

H(wj1,0]1) = H(zj2, 0] ) = Az 0, H(‘”ﬂ‘ )

A -~ n
835557-[(x 3, 0f- 9)

—i—A.%' j 1 H(xj 171) 1)

l\.’)

+T( ! )281017%(333 175] 1)

Now to get rid of the terms involving, H, we use the mean-value theorem
with a§j+% E]a:j, l‘j+1[2

-1
2

0, H(IE] 1, ;l+1)—a H(:E] 1, ;L 1)

= Az 2}, 0zpH (21, (7, 1)+ Az OupH (-1, L)

Using a similar expansion for the difference betwegrandv?_, leads to
a new expression for) "'

n 1

J+1 9 J+1(9 )\[6 H(aj-1,v5) + Ax OppH (- LGl )D
+27 (1 —0-3 [apH(%—h“?fl) ~ %=1, vj)

%) —+ ALU 8:1:]3%(37] 1, C],%):|>

P (0 A | H (1, vf) = Az Ma;1,C o))

+ Az OppH(xj-1, Q

2
At

[ ) ) + (O, )
O H(5-1,E1) ) (250 + (1, §0) (251)?
At [

amcH( j 1>U?+1)+833$,H(jj—%71}?)

+ 0 H(T; 9,071 + O (T s, vj_g)} .
We introduce now the quantity we are interested in, namgly=

max(0, 2}'). We notice thay? > =" and(y})* < (z}})*. The coefficients of
the square terms are negative because of (22), and, under the stronger CFL
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condition (38), the coefficients of the linear terms are nonnegative, so that
we can replace] , , z}' z7'; respectively by’ , , y7 v, and obtain an
upper bound foz?“. Next, we replace; by

g;l = max(y?_l, y;nv y?—‘,—l)a

and the same kind of argument gives once again an upper bound. In doing
so, thed, ’H terms cancel, and we are left only with second derivativé$,of

for which we have bounds (see the definitions (22)-(25) of the coefficients
o, (1, ¢2). We end up with

zg‘“ <G — QALF)? — 201 At} — G At.

In order to use monotonicity, we need to perform a slight adjustment to take
into account the priori bounds ony;'. Indeed, we have

2sup; v} - 2M < 2M

<1 < -
Gslls =3 = A S aar
where
A= sup |OpH(t, z,p)|
(t,2)€[0,T]xR;|p|<M
+Ax sup |02pH(t, 2, D),

(t,x)€[0,TTxR;|p| <M

and the last inequality follows from the CFL condition. The same inequality
holds fory;'. Now we introduce the adjusted coefficigpt= min (Co, ﬁ),

sothab < {y < (o, andwe defind(y) = y—C(o Aty?—2( Aty— (o At. We

stillhavez/"*! < F (7). The functionF is nondecreasing for < %gfﬁt,
0

which contains the range of'. Therefore, sincg? > 0, we haver'(37) >
F(0) = —(2At > 0 (sinceg, < 0),and thisimplieg/} ™' < F(j7). Setting
M™ = supjcz y7, we have by monotonicity’(5) < F(M"), and, taking
the supremum over € Z, M < F(M™).

We conclude exactly in the same way as in the continuous case (Lemma
1), by just noticing tha¥#' has two real rootX _ < 0 < X, and the result
easily follows if we setk’ = max(M°, X, ). O

Remark 8. From the discrete semiconcavity estimate, we can obtain, in
the same spirit as in the continuous case, a convergence estimate for the
numerical solution. Indeed, the decay of the norm of the difference is

of order Ax (see [27]). This has been numerically evidenced in [17] (see
Fig. 4.1) on a Burgers equation, with a modified Lax-Friedrichs type scheme
as used in Sect. ¥ (= 1/2). This leads to the same rate of convergence for
the Schodinger equation with = 0.
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The extension of such a proof towards genamahotoneHamiltonians
does not seem to be straightforward. In fact, one of its crucial ingredients
is the use of a constant artificial viscosity coefficiénthat allows to work
extensively with?{ for which we have all the desired properties. The case
of similar schemes with variable valuég 1 remains misty, as Godunov

type schemes which lead moreover to more intricate formulee. The result
is likely to be true; however, we have no rigorous proof to state at this
time. Finally, upwind-type schemes (see e.g. [36]) cannot be treated within
the same approach because of the lack of smoothness of their numerical
Hamiltonians involving some discontinuous min/max functions.

To summarize, we just say now that, under the reinforced CFL con-
dition (38) (which obviously implies the standard one (31)), for both the
Schibdinger equation and the Helmholtz equation, we have

— the numerical solutions computed by the Lax-Friedrichs scheme con-
verge to the viscosity solution;
— they satisfy moreover a discrete semiconcavity estimate.

Lemma 3 directly applies for the Hamiltonian deduced from the &tihger
equation.

4.3 Upwind schemes for the linear conservation equation

To investigate the behaviour of the numerical schemes for the linear conser-
vation equation, we will mainly rely on a previous work [16] in which very
general schemes have been studied. The general form of alinear conservative
(2K + 1)-points scheme can be written

At
n+l _  n n . n n
. ; (< AJ+§’M 1 >p2K <A 1 uj_% >R2K)

— 2K
Wy = (B g ) € R

IN— )€R2K

n n
. a. ey @
j+i < j+i K+ i+l K

In this formula,< -, - >gex stands for the standard scalar produdRi< .
The scheme is completely determined as soon as the coefquéntlsare

specified. Our convergence results, [16], are valid forEn;however for
practical computations, we used three- points schemes, tiiat=s1. In
[16], several examples cA" 1 corresponding to classical schemes have

been investigated. After comparlsons between several of them, it turned



Convergence results for high frequency approximations 745

out that the best performances were obtained with upwind discretizations.
Therefore we shall limit ourselves to such schemes in the following.
The sequence’ naturally gives rise to a family of piecewise constant

functionsp? by setting
pi(tw) =pt  for (tx)eT).

WhenA — 0, this sequence eventually converges to a measure in the space
variable. Therefore, we assume that(0,.) — u® asAz — 0 in the weak
topology of measures. This is achieved for instance by defip?ngs the

local average ofi° on|z; 1T 1.

We recall that the convergence of the numerical solution generated by
such a scheme relies on the following properties (see [16] for details). First,
one has to ensure that, according to the notations of (40), the set of coeffi-

cients

n I n J—
1= Gl = A0

=1 )\( n —a” )

70 T j—3.1 g+%,0
=1+ Ma” —a”

Cio=1+ (j+%,1 i+3.0

n __ n o __ _ n
R Cj}l - )\aj—%,l

(41)

are nonnegative. Next, the so-calledak consistencyf the scheme has to
be established. For this, we need the piecewise constant functions; £#or
eT?

Vi )

A
a“(t,z) = J+2’0+a3+11,

1
7 [@-p0 = g0+ @ — o)
The scheme is said to be weakly consistentdf — a in L>(]0, T[xR)
weakx asA — 0, and ifb2 < o for somea? € L'(]0, T).

The key point for all examples is of course the choice of the discretization
of 9. According to Lemma 3, it is clearly convenient to considenvex
combination®fthe adjacent quantitigs’’, ; —¢})/Az. Therefore, in order
to take advantage of the discrete semiconcavity property (39), we define:

bA(t, x) =

¢ﬂ+.+l_¢ﬂ+. To
JTe JTe P _
i=—1o i=—1Io
This general definition permits to recover for instance the particular value
of Dgo?Jrl proposed in [14]1y = 1, {4+, = 1/4, {y = 1/2. But it does not
2
allow to recover the rough “Engquist-Osher type” upwind scheme tested in
[16]. Thisis not a genuine drawback since this discretization would generate
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spurious spikes in the neighborood of the local minimum points of the phase
o (see Fig. 5in [15]).

In the case of the Schdinger equation, we propose the upwind scheme
simply defined by:
(43) A;?+% = (Inax (O,D(p?+%),min (O,DQD;L+%)> .
Theorem 8 (numerical convergence for the Sdldinger equation) Under
the assumptions of Theorems 4 and 6, the sequgmeg.) converges as

A — 0 towards the unique couplep, i) of viscosity/duality solutions to
(21).

Proof. We have shown that the sequeneé converges to the viscosity
solution. This implies that? converges strongly i} (|0, T[xR) toa =

0, (see Theorems 1.1 and 2.2 in [9]). Next, the strong CFL condition (38)
is trivially satisfied by the Hamiltoniap?/2, so a discrete semiconcavity
estimate holds. Therefore, the second assertion in the weak consistency
definition is saitisfied withh® = 4K. Finally, the nonnegativity of the
coefficientsB}, C7' is enforced by the CFL conditions. O

Now, concerning the Helmholtz equation, we propose

max (O DcpT.LJrl) min <0, Dgo?+l)
(44) AjL= nt1 nj ; AT ’
2 (80] — ¥ )/At (80]+1 Spj-s-l)/At

together with the preceding choice fﬁhp?#. This is obviously not the
2
unique possibility.
We have to ensure that the approximatiof,gf remains strictly positive.
This was easy at the level of the continuous equation. Here we have to take
care of the numerical viscosity. This is the purpose of the following lemma.

Lemma 4 Under the assumptions of Theorem 5, the hypotheses (32), (33),
the stronger CFL condition (38), the coeff|C|e|At§ are well-defined and

bounded for alln € N,j € Z, provided the foIIowmg restriction holds:
there exists > ny — 6 > 0 such that

0 0 0 0
) $j —Piji—1 Pj+1 — ¥y
4 7 HLF X J J J J < —k.
( 5) V] € 4, (07 LU], Azx ) Ax K
Remark 9.Conditions (33) and (45) are somehow two discrete versions of
(26). Condition (45) is a slight refinement taking into account the numerical
viscosity involved in the numerical Hamiltonia*".

The constants and3 depend on the initial data and the refraction index.
For instance, provided the initial datum for the phas#i$>, then (45)
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is a consequence of (26), With= 3 + [|9..¢°||«. If the initial phase is
constant, which is the case in the computations presented in Sect. 5, (45)

holds withx = 8 = inf ,cr 7(0, z) = 1.

Proof of Lemma 4We introduce two notations. First we set
Hi = (" 2, 0f) + HE T, v) ) /2

so that, from the assumption > 7o and (33), (35) we have for al, n,
—no < H} < 3. Next, we shall use

H? = —HLF(tnyxjav]rlvv?—&-l) = (SOE‘H_I B ¢?)/At

We have to prove tha? > a > 0 for all j,n € Z x N. We proceed by
induction onn, and first notice that, if (45) holds, then we have:

(46) HY + Inf HY > K — 1.

We claim that this inequality propagates foralE N. Indeed, we have for
anyj, k € 7?2

0 0
G+ A = G S — OHG S HG

:g( T M) + (- 0) (H] + )

+g (H;Ll + %z) .

Consequently, if the inequality (46) holds true for amythen we get the

expected result at the next stept- 1. Therefore, we have that, for atl

H!>rk—m—-Hp>2rk—m+B=a>0. 0
Now we state a convergence theorem for the Helmholtz equation.

Theorem 9 (numerical convergence for the Helmholtz equation)

Under the assumptions of Theorem 5, the sequence of numerical approxi-
mations(p?, 42) generated by the class of schemes (29), (30), (40), (42),
(44) converges ad — 0 to the unique couple of viscosity/duality solutions

of the system (21), providegand x4 (0, .) satisfy the requirements (32),
(33), (45), and the following CFL conditions hold:

15 (2 2
Mllee 1
47 < =,
(47) ATl =2
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Proof. The proof is a direct consequence of Theorem 7 and Lemmas 3, 4.
First, it is straightforward to see that the CFL condition (47) ensures both
the semiconcavity requirement (38) and the nonnegativity of the coefficients
B}, C7 (41). Next, as for the case of the Setinger equation, the conver-

gence ofp? ensures the weak convergenceand¥, and, finally, using the
inequality$ — § < 3(a—c)+ |c|(|—ll7| + ﬁ), we find a constant upper bound

for b2, namelyC = (K + 1]l o). -

5 Numerical results

In this section, we display standard test-cases for this kind of problems.
They all have been already studied for instance in [13-15, 20, 37]. We refer
the reader to these papers for any comparison with our results. All our
computations have been carried out on the same domain, namely the square
x € [-1,1],t € [0,2]. The parameters atdxz = 0.04 and At = 0.02.

We chosed the upper bourtd = % in (29) corresponding to Tadmor’s
modification [43] of the classical Lax-Friedrichs scheme. Finally, we took

Ip =0, 4 = 1in (42).

5.1 The Schidinger equation

We give two examples selected from [20]. One of them leads to smooth
solutions, while the other one is focusing, and generates three phases after
a finite time. We compute in this last case a Dirac mass.

We consider the case of the free Satinger equation, that i8'(z) =
0. The data are the following: the amplitude is the same in both cases,
namely A(0,z) = exp(—x?). The initial phases are chosen(0,z) =
=+ In(cosh(z)), the plus sign corresponds to the expansive case. The results
are displayed in Figs. 1 and 2.

Fig. 1. Numerical phases and amplitudes: Sictinger equation (expansive case)
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Fig. 2. Numerical phases and amplitudes: Sitinger equation (compressive case)

5.2 The Helmholtz equation

For all the computations in this case, the initial data are
Ve eR, ¢(0,2)=0, A(0,z)=1.

The various analytical expressions fpare taken from [15, 37].

A concave lens. We simulate a concave lens by choosing the refraction
indexn the following way:

4
(48) n(t,z) =< 3—cos(n(t—1)/F)
1 in the other cases,

t—1)\2 T \2 T \?2
where D=|——] — (—) , E=03/1 (—) .
< 0.3 ) 0.8 + 0.8

Since the viscosity solution turns out to be differentiable in the whole compu-

tational domain, we end up with a global smooth solution which is actually a

correct approximation of the infinite frequency expansion of the Helmholtz

solution [45] (see Fig. 3). The boundary conditions for the phase need a
specific treatment: we followed the method proposed in [14].

if D <1,

A smooth wedge. We simulate a smooth wedge by selecting the following
value for the refraction index:

(49) n(t,z) = 1.5+ %arctan (10\/5(75 —-0.2— ]x\))

In this case, the growth restriction gr{32) is fulfilled for At small enough.

We observe on Figl a shock on the phasgeafter a short time, = 0.2 and
therefore a blow-up on the amplitudes because of the highly compressive
nature o, . Inthis case, the exact solution of (13) develops strong caustics
and two phases are necessary to describe it (see [37] p.79 for a ray-traced
solution).
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Fig. 3. Numerical values for the phase and the amplitude: the concave lens (48)

Fig. 4. Numerical values for the phase and the amplitude: smooth wedge (49)

A convex lens. We compute a convex lens with the following values for
the refraction index:

(50)
1 ¥p<s FoIN2 a2
n(t,z) =< 3 —cos(wD) with D = (> + <7> .
1 in the other cases 0.3 0.8

In this case, we observe on Fig. 5 the classical blow-up for the amplitude
of the ansatz on the shock curve of the phase. The exact infinite frequency
asymptotics for (13) develop up to five phases around the focal poiat

0,t = 1.5) and settles with three phases behind this region (see [37] and
also [13,14]).

6 Conclusion

We presented in this paper several convergence results for a nonhomoge-
neous system one gets out of the geometric optics expansion for several
significant examples. The problem has been studied from both theoretical

and numerical viewpoints in the context of viscosity and duality solutions. It
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ampliun —
548 -

Fig. 5. Numerical values for the phase and the amplitude: the convex lens (50)

turns out that it is possible to give existence and uniqueness results for very
general initial data in this class of weak solutions and to establish compact-
ness for sequences of approximations generated by rather natural numerical
schemes. Some computational runs demonstrate that this approach is real-
izable and efficient in several practical situations.
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